NOAO Long Range Plan

Total Page:16

File Type:pdf, Size:1020Kb

NOAO Long Range Plan National Optical Astronomy Observatories NATIONAL OPTICAL ASTRONOMY OBSERVATORIES LONG RANGE PLAN FY 1993 - FY 1997 March 17,1992 National Optical Astronomy HObservatories PP. Box 26732 Tucson, AZ 85726-6732 1 : <2(; i)AO; I..' i h ! r e ;-• i r. r TABLE OF CONTENTS EXECUTIVE SUMMARY 1 I. INTRODUCTION AND PLAN OVERVIEW 4 II. NIGHTTIME ASTRONOMY 6 A. Science at CTIO and KPNO 6 1. The Large-Scale Structure of the Universe 6 2. The Formation and Evolution of Galaxies 7 3. Stellar Structure and Evolution 10 4. Star-Formation 11 B. Initiatives for CTIO and KPNO 12 1. Gemini 12 2. WIYN 14 3. 4-m Telescopes at CTIO 15 4. The 2 um All Sky Survey (2MASS) 16 5. Beyond 8-m Telescopes 17 C. Instrumentation for CTIO and KPNO 17 1. Cerro Tololo Inter-American Observatory 19 2. Kitt Peak National Observatory 25 a. KPNO Infrared 26 b. KPNO Optical-Ultraviolet (O/UV) 31 c. 3.5-m Mirror Project 33 in. SOLAR ASTRONOMY 34 A. Science at NSO 34 1. Internal Dynamics 34 2. Magneto-Convection 35 B. Initiatives for NSO 39 1. Global Oscillation Network Group (GONG) Project 39 2. Large Earth-based Solar Telescope (LEST) 42 3. Upgrade of the McMath Teleseope to a 4-m Aperture "The Big Mc" 43 4. Advanced Reflecting Coronagraph (ARC) 44 C. Instrumentation for NSO 46 IV. OBSERVATORY OPERATIONS 55 A. Cerro Tololo Inter-American Observatory 55 B. Kitt Peak National Observatory 58 C. National Solar Observatory 60 V. NOAO OPERATIONS 64 A. Scientific Staff 64 B. Computer Support 64 C. Facilities Maintenance 73 VI. BUDGET 79 Index of Tables Table 1 - CTIO Five-Year Instrumentation Plan Summary 19 Table 2 - KPNO IR Five-Year Instrumentation Plan Summary 25 Table 3 - KPNO O/UV Five-Year Instrumentation Plan Summary 30 Table 4 - NSO Five-Year Instrumentation Plan Summary 46 Table 5 - CTIO Telescope/Instrument Combinations 56 Table 6 - KPNO Telescope/Instrument Combinations 59 Table 7 - NSO Telescope/Instrument Combinations 63 Table 8 - NOAO/Tucson Schedule of Major Capital Expenditures 65 Table 9 - KPNO Schedule of Major Capital Expenditures 65 Table 10 - CTIO Schedule of Major Capital Expenditures 67 Table 11 - NSO Schedule of Major Capital Expenditures 67 Table 12 - NSO/T and NSO/KP Schedule of Major Capital Expenditures 68 Table 13 - Maintenance Requirements 74 EXECUTIVE SUMMARY The mission of NOAO, according to a letter sent to the NSF by AURA in May 1988, is "to conduct world-class scientific investigations in exploring the universe at optical and infrared wavelengths. This includes building, operating, and conducting research with world-class facilities of a range of sizes and technical capabilities open to all US astronomers; and coordinating, participating in, and often leading the technology development programs essential to all optical/infrared efforts in the US." This mission statement translates into specific objectives for the observatory, many of which were summarized in the five-year renewal proposal, which was submitted to the NSF four years ago. These objectives include excelling in service to the community, in building and operating facilities and instrumentation, and in scientific research by the staff; working for the best interests of US astronomy by co-operating with, and complementing the capabilities and interests of, the US university community through joint programs and projects; completing and operating the GONG facilities; representing the US interests in the Gemini program to construct modem 8-m telescopes in both hemispheres; and modernizing the facilities at existing sites, both by upgrading the telescopes already in operation and by participating in joint projects with universities to build modern 4-m class telescopes. In translating these objectives into specific programs, we have defined the future role of NOAO to be broader than its traditional task of providing telescopes to those who do not have access to their own. We see NOAO as having a responsibility for enabling science not only through the telescopes it provides but also by disseminating both data and technology throughout the groundbased community. We plan to carry out this responsibility by: • Operating telescopes with a variety of instrumentation and a range of apertures so that the US community continues to have open access to world class facilities. • Making our sites available for facilities and projects carried out by university and other groups, with shared infrastructure leading to efficient and low cost operations for all of the participating groups. • Entering into agreements with universities to provide observing time in return for making university- built instrumentation available to the user community. • Assuming the responsibility on behalf of, and in partnership with, the community for executing major programs, with GONG and RISE (Radiative Inputs from the Sun to the Earth) being two examples. • Participating with universities in joint construction of 4-m class telescopes, one in the north and one in the south, thereby obtaining more observing time for the community, providing technical expertise to assist with construction and operation these telescopes, and assisting the participating universities with strengthening their instrumentation, graduate education, and research programs. • Becoming a focal point for the acquisition, characterization,optimization, and distribution of detectors. The combination of Gemini funding plus NOAO expertise provides an opportunity to negotiate effectively with manufacturers to optimize detectors for groundbased astronomy. It is NOAO's intention to compete to play this role for Gemini and to facilitate distribution of detectors and operating information to the partner countries and to instrument groups in the US. • Disseminating information on technology and instrumentation that is developed both by NOAO and the Gemini staff, including working more closely with other large telescope projects in the US. • Using the existing telescopes, both solar and nighttime, to test new instrumentation, including adaptive optics, to try out innovative observing techniques, and to experiment with flexible scheduling algorithms. • Making data products available to a broader segment of the community through archiving, initially of large data sets reduced to a uniform and common standard. Examples are the GONG data and maps of star-forming regions in the infrared. • Work with the community to define and carry out programs requiring commitments of large amounts of observing time. Such programs might include asteroseismology, deep imaging of galaxies, and redshift surveys of selected classes of objects, but the specific programs will be selected after review of proposals submitted by the community and NOAO staff. During the construction phase of both the Gemini and LEST projects, we expect NOAO to be the focal point for input from the US community into defining the scientific requirements for the new telescopes, for making sure that the US community participates in design reviews and in recommending priorities as budget constraints become defined, and for ensuring that the US community, including NOAO, submits strong proposals to build an appropriate share of the instrumentation required for these facilities. Since the US is the major partner in Gemini, we believe that the headquarters for the project should be in Tucson. While the purely administrative and scientific staff associated with the headquarters should be kept to a minimum, there should be sufficient technical resources available to the project to oversee contracts for fabrication of instrumentation, for upgrading the performance of the telescopes, and for continuing development of software, with the goal of maintaining a common set of standards and interfaces for both Gemini telescopes. The Gemini project should be able to share Tucson personnel with KPNO and NSO, so that it can have access to the range of expertise needed by the project, but with full costs for the staff used by Gemini paid for by the Gemini project. Beyond the projects currently underway, NSO is examining a variety of options, including construction of an All-Reflecting Coronagraph (the ARC) and upgrading the McMath to a 4-m equivalent telescope. The Big Mc would provide a unique facility for infrared solar astronomy and for solar-stellar observations. On the nighttime side, it is our judgment that the next major facility for groundbased optical/infrared astronomy will be an array of telescopes for interferometry. Many technical issues must be resolved before it is possible to define the optimum combination of number of telescopes, aperture of individual telescopes, and baselines over which they should operate. We believe it is best that the variety of developments needed to specify a national interferometric facility be carried out by the numerous interested university groups. NOAO can participate in some of these projects, provide sites for one or more of them, support and facilitate communication among the groups, and aid in planning the national facility. Some of the 8-m telescope engineers have the capability of designing such a facility and preparing a proposal for funding, and they will complete the Gemini telescopes at the end of this decade, which should be about the time the major technical issues involved in defining the national interferometric facility have been resolved. Over the past five years, NOAO has developed and made available to the community several instruments that greatly exceed in complexity what was previously available. Examples include fiber positioners plus spectrographs at both
Recommended publications
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Eyes Skies Full En.Pdf
    1 00:00:05,240 --> 00:00:08,800 By taking our sense of sight far beyond the realm of our forebears' 2 00:00:08,880 --> 00:00:13,200 imagination, these wonderful instruments, the telescopes, open the way to 3 00:00:13,280 --> 00:00:17,240 a deeper and more perfect understanding of nature. - René Descartes, 1637 4 00:00:17,720 --> 00:00:22,520 For millennia mankind gazed out into the mesmerising night sky 5 00:00:22,600 --> 00:00:28,320 without recognising the stars of our own Milky Way Galaxy as other suns 6 00:00:28,400 --> 00:00:33,400 or the billions of sister galaxies making up the rest of our Universe 7 00:00:35,440 --> 00:00:38,760 or that we are merely punctuation in the Universe’s 8 00:00:38,840 --> 00:00:42,480 13.7 billion year-long story. 9 00:00:42,560 --> 00:00:46,080 With only our eyes as observing tools we had no means of 10 00:00:46,160 --> 00:00:50,120 finding solar systems around other stars, or of determining 11 00:00:50,200 --> 00:00:55,000 whether life exists elsewhere in the Universe. 12 00:00:58,080 --> 00:01:00,320 Today we are well on our way to unravelling many of the 13 00:01:00,400 --> 00:01:03,520 mysteries of the Universe, living in what may be the most remarkable 14 00:01:03,600 --> 00:01:05,920 age of astronomical discovery.
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • Messenger-No117.Pdf
    ESO WELCOMES FINLANDINLAND AS ELEVENTH MEMBER STAATE CATHERINE CESARSKY, ESO DIRECTOR GENERAL n early July, Finland joined ESO as Education and Science, and exchanged which started in June 2002, and were con- the eleventh member state, following preliminary information. I was then invit- ducted satisfactorily through 2003, mak- II the completion of the formal acces- ed to Helsinki and, with Massimo ing possible a visit to Garching on 9 sion procedure. Before this event, howev- Tarenghi, we presented ESO and its scien- February 2004 by the Finnish Minister of er, Finland and ESO had been in contact tific and technological programmes and Education and Science, Ms. Tuula for a long time. Under an agreement with had a meeting with Finnish authorities, Haatainen, to sign the membership agree- Sweden, Finnish astronomers had for setting up the process towards formal ment together with myself. quite a while enjoyed access to the SEST membership. In March 2000, an interna- Before that, in early November 2003, at La Silla. Finland had also been a very tional evaluation panel, established by the ESO participated in the Helsinki Space active participant in ESO’s educational Academy of Finland, recommended Exhibition at the Kaapelitehdas Cultural activities since they began in 1993. It Finland to join ESO “anticipating further Centre with approx. 24,000 visitors. became clear, that science and technology, increase in the world-standing of ESO warmly welcomes the new mem- as well as education, were priority areas Astronomy in Finland”. In February 2002, ber country and its scientific community for the Finnish government. we were invited to hold an information that is renowned for its expertise in many Meanwhile, the optical astronomers in seminar on ESO in Helsinki as a prelude frontline areas.
    [Show full text]
  • Vireo Manual.Pdf
    VIREO: The Virtual Educational Observatory 1 VIREO: THE VIRTUAL EDUCATIONAL OBSERVATORY Software Reference Guide A Manual to Accompany Software Document SM 20: Circ.Version 1.0 Department of Physics Gettysburg College Gettysburg, PA 17325 Telephone: (717) 337-6028 email: [email protected] Software, and Manuals prepared by: Contemporary Laboratory Glenn Snyder and Laurence Marschall (CLEA PROJECT, Gettysburg College) Experiences in Astronomy VIREO: The Virtual Educational Observatory 2 Contents Introduction To Vireo: The Virtual Educational Observatory .................................................................................. 3 Starting Vireo ................................................................................................................................................................ 4 The Virtual Observatory Control Screen ..................................................................................................................... 4 Using an Optical Telescope ........................................................................................................................................... 5 Using the Photometer .................................................................................................................................................... 8 Using the Spectrometer ............................................................................................................................................... 11 Using the Multi-Channel Spectrometer .....................................................................................................................
    [Show full text]
  • Astronomy Alphabet
    Astronomy Alphabet Educational video for children Teacher https://vimeo.com/77309599 & Learner Guide This guide gives background information about the astronomy topics mentioned in the video, provides questions and answers children may be curious about, and suggests topics for discussion. Alhazen A Alhazen, called the Father of Optics, performed NASA/Goddard/Lunar Reconnaissance Orbiter, Apollo 17 experiments over a thousand years ago Can you find Alhazen crater when you look at the Moon? to learn about how light travels and Why does the Moon look bigger near the behaves. He also studied astronomy, horizon? separated light into colors, and sought to Believe it or not, scientists still don’t know for sure why explain why the Moon looks bigger near we perceive the Moon to be larger when it lies near to the the horizon. horizon. Though photos of the Moon at different points in the sky show it to be the same size, we humans think we I’ve never heard of Abu Ali al-Hasan ibn al- see something quite different. Try this experiment yourself Hasan ibn al-Hatham (Alhazen). sometime! One possibility is that objects we see next to the Tell me more about him. Moon when it’s near to them give us the illusion that it’s We don’t know that much about Alhazen be- bigger, because of a sense of scale and reference. cause he lived so long ago, but we do know that he was born in Persia in 965. He wrote hundreds How many craters does the Moon have, and what of books on math and science and pioneered the are their names? scientific method of experimentation.
    [Show full text]
  • Star-Birth Myth 'Busted' (W/ Podcast) 25 August 2009
    Star-birth myth 'busted' (w/ Podcast) 25 August 2009 The different numbers of stars of different masses at birth is called the ‘initial mass function’ (IMF). Most of the light we see from galaxies comes from the highest mass stars, while the total mass in stars is dominated by the lower mass stars. By measuring the amount of light from a population of stars, and making some corrections for the stars’ ages, astronomers can use the IMF to False-colour images of two galaxies, NGC 1566 (left) estimate the total mass of that population of stars. and NGC 6902 (right), showing their different proportions of very massive stars. Regions with massive O stars Results for different galaxies can be compared only show up as white or pink, while less massive B stars if the IMF is the same everywhere, but Dr Meurer’s appear in blue. NGC 1566 is much richer in O stars than team has shown that this ratio of high-mass to low- is NGC 6902. The images combine observations of UV mass newborn stars differs between galaxies. emission by NASA's Galaxy Evolution Explorer spacecraft and H-alpha observations made with the For instance, small 'dwarf' galaxies form many Cerro Tololo Inter-American Observatory (CTIO) telescope in Chile. NGC 1566 is 68 million light years more low-mass stars than expected. away in the southern constellation of Dorado. NGC 6902 is about 33 million light years away in the constellation To arrive at this finding, Dr Meurer’s team used Sagittarius. Photo by: NASA/JPL-Caltech/JHU galaxies from the HIPASS Survey (HI Parkes All Sky Survey) done with CSIRO’s Parkes radio telescope.
    [Show full text]
  • The Wide Field Cassegrain: Exploring Solution Space Peter Ceravolo Ceravolo Optical Systems [email protected]
    The Wide Field Cassegrain: Exploring Solution Space Peter Ceravolo Ceravolo Optical Systems www.ceravolo.com [email protected] Abstract This article illustrates the use of an internal aperture stop in a high speed, wide field Cassegrain optical system. The astrograph features a well corrected and uniformly illuminated focal plane. Opto-mechanical design and manufacturing issues are also discussed. 1. Introduction Of all the conventional astronomical telescope Aperture Stop designs used in amateur astronomy the Cassegrain is the least likely to be considered a candidate for wide field imaging applications. This perception is a hangover from the era of visual observing where minimizing the central obscuration was critical to preserving image fidelity. The resulting long focal length, slow telescopes did not lend themselves to photography. The central obscuration in reflector astrographs need not be so constrained since ground based amateur instruments never achieve diffraction limited performance, primarily due to poor seeing, image sampling limitations and tracking errors. Cassegrain astrographs with a large obscuration (50% of the aperture diameter or greater) and a fast primary will permit a relatively short overall focal length, a wider field of view and more uniform focal plane illumination. While the larger obscuration does reduce system through put, the light loss can be compensated for with longer exposures. Figure 1, internal stop Cassegrain astrograph In addition to the benefits of a larger obscuration, allowing the aperture stop position to move from the primary mirror to a more central location in the Cassegrain optical system offers the potential to achieve very wide fields of view in a fast system 2.
    [Show full text]
  • Comets in UV
    Comets in UV B. Shustov1 • M.Sachkov1 • Ana I. G´omez de Castro 2 • Juan C. Vallejo2 • E.Kanev1 • V.Dorofeeva3,1 Abstract Comets are important “eyewitnesses” of So- etary systems too. Comets are very interesting objects lar System formation and evolution. Important tests to in themselves. A wide variety of physical and chemical determine the chemical composition and to study the processes taking place in cometary coma make of them physical processes in cometary nuclei and coma need excellent space laboratories that help us understand- data in the UV range of the electromagnetic spectrum. ing many phenomena not only in space but also on the Comprehensive and complete studies require for ad- Earth. ditional ground-based observations and in-situ exper- We can learn about the origin and early stages of the iments. We briefly review observations of comets in evolution of the Solar System analogues, by watching the ultraviolet (UV) and discuss the prospects of UV circumstellar protoplanetary disks and planets around observations of comets and exocomets with space-born other stars. As to the Solar System itself comets are instruments. A special refer is made to the World Space considered to be the major “witnesses” of its forma- Observatory-Ultraviolet (WSO-UV) project. tion and early evolution. The chemical composition of cometary cores is believed to basically represent the Keywords comets: general, ultraviolet: general, ul- composition of the protoplanetary cloud from which traviolet: planetary systems the Solar System was formed approximately 4.5 billion years ago, i.e. over all this time the chemical composi- 1 Introduction tion of cores of comets (at least of the long period ones) has not undergone any significant changes.
    [Show full text]
  • Science Programs for a 2-M Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope
    CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2005, 22, 199–235 Science Programs for a 2-m Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope M. G. BurtonA,M, J. S. LawrenceA, M. C. B. AshleyA, J. A. BaileyB,C, C. BlakeA, T. R. BeddingD, J. Bland-HawthornB, I. A. BondE, K. GlazebrookF, M. G. HidasA, G. LewisD, S. N. LongmoreA, S. T. MaddisonG, S. MattilaH, V. MinierI, S. D. RyderB, R. SharpB, C. H. SmithJ, J. W. V. StoreyA, C. G. TinneyB, P. TuthillD, A. J. WalshA, W. WalshA, M. WhitingA, T. WongA,K, D. WoodsA, and P. C. M. YockL A School of Physics, University of New South Wales, Sydney NSW 2052, Australia B Anglo Australian Observatory, Epping NSW 1710, Australia C Centre for Astrobiology, Macquarie University, Sydney NSW 2109, Australia D University of Sydney, Sydney NSW 2006, Australia E Massey University, Auckland, New Zealand F John Hopkins University, Baltimore, MD 21218, USA G Swinburne University, Melbourne VIC 3122, Australia H Stockholm Observatory, Stockholm, Sweden I CEA Centre d’Etudes de Saclay, Paris, France J Electro Optics Systems, Queanbeyan NSW 2620, Australia K CSIRO Australia Telescope National Facility, Epping NSW 1710, Australia L University of Auckland, Auckland, New Zealand M Corresponding author. E-mail: [email protected] Received 2004 November 12, accepted 2005 April 12 Abstract: The cold, dry, and stable air above the summits of the Antarctic plateau provides the best ground- based observing conditions from optical to sub-millimetre wavelengths to be found on the Earth.
    [Show full text]
  • J'/ 7 ~,J,,F42~OD'/ 4~Z T 0014- AL4 '4 N 444 4 V-~ V~'4,,/C4D4 ;/L X' 3* ''(N I /I -- -K
    4'T,4 "~ J, itI' ~ " 4 4~~~~~~t f"- N'. 4 tV34 '' '4~~~~~~~r "''',) m/4' - 4 / .,~~~~t 4f {'NW ' I, '~ / . 4 4'~~~~~-' ~~~~-"" ' ' A '' " I \ ' o A4 j'/ 7 ~,j,,f42~OD'/ 4~z t 0014- AL4 '4 N 444 4 v-~ v~'4,,/C4D4 ;/l x' 3* ''(N I /I -- -K . 2 . /-, -, 1 '> 97 (; ' '-I' -4 )-' Ni\iS ,L -I-' "1/ iT h 'i l I .=.,, ca ec~- fr ain ivsoOd* .: 25 C , '-A- ", ---.- a a en .- -_ . - ; . - - '1 (N, -< I' 4 -I --. N ?- j -. Thspprpeet h veso h uhrs adde o eesr .I ~rf~c :";athethe vieio oddr Spce ight Cenbitr o: NASA r 7-ref e.'th viGods th~ar ddSpace', Fligt . enter. .. orN-/- " -- -' -- I / -I- _ . - " . -,t -" , *-*- . : TABLE OF CONTENTS Page LIST OF ATTENDEES 3 FOREWORD 6 INTRODUCTION TO SPACELAB/SHUTTLE 8 ASTRONOMY PAYLOADS 12 I. A Very High Resolution Spectrograph for Interstellar Matter 15 Research - E. Jenkins and D. York, Princeton University Observatory 2. Schmidt Camera/Spectrograph for Far Ultraviolet Sky Survey 20 G. Carruthers and C. Opal, Naval Research Laboratory 3. UV Telescope with Echelle Spectrometer - Y. Kondo and 25 C. Wells, Johnson Spacecraft Center 4. Small Infrared Cryogenic Telescope - R. Walker, Air Force 29 Cambridge Research Laboratory 5. Two EUV Experiments - S. Bowyer, University of California 33 at Berkeley 6. Ultraviolet Photometer - A. Code and R. Bless, University 39 of Wisconsin 7. Schwarzschild Camera - A. Smith, Goddard Space Flight Center 43 8. Three Rocket-Class Payloads for Spacelab - C. Lillie, 49 University of Colorado 9. Additional Payloads 57 ASTRONOMY MISSION STUDIES - W. Scull, Goddard Space Flight Center 60 SMALL INSTRUMENT POINTING SYSTEM (SIPS) - C.
    [Show full text]
  • The Swift Ultra-Violet/Optical Telescope
    The Swift Ultra-Violet/Optical Telescope Peter W. A. Roming*a, Thomas E. Kennedyb, Keith O. Masonb, John A. Nouseka, Lindy Ahrc, Richard E. Binghamd, Patrick S. Broosa, Mary J. Carterb, Barry K. Hancockb, Howard E. Huckleb, S. D. Hunsbergera, Hajime Kawakamib, Ronnie Killoughc, T. Scott Kocha, Michael K. McLellandc, Kelly Smithc, Philip J. Smithb, Juan Carlos Soto†e, Patricia T. Boydf, Alice A. Breeveldb, Stephen T. Hollandf, Mariya Ivanushkinaa, Michael S. Pryzbyg, Martin D. Stillf, Joseph Stockg aDepartment of Astronomy & Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA bMullard Space Sciences Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK cSouthwest Research Institute, 6220 Culebra Rd, San Antonio, TX 78228, USA dOptical Science Laboratory, University College London, Gower St, London WC1E 6BT, UK eStarsys Research Corporation, 4909 Nautilus Court N., Boulder, CO 80301, USA fNASA/Goddard Space Flight Center, Code 660.1, Greenbelt, MD 20771, USA gSwales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705, USA ABSTRACT The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (~1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chrétien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub- arcsecond positioning of sources.
    [Show full text]