Sage 9.4 Reference Manual: Interpreter Interfaces Release 9.4

Total Page:16

File Type:pdf, Size:1020Kb

Sage 9.4 Reference Manual: Interpreter Interfaces Release 9.4 Sage 9.4 Reference Manual: Interpreter Interfaces Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Common Interface Functionality3 2 Common Interface Functionality through Pexpect9 3 Sage wrapper around pexpect’s spawn class and 13 4 Interface to Axiom 15 5 The Elliptic Curve Factorization Method 21 6 Interface to 4ti2 27 7 Interface to FriCAS 33 8 Interface to Frobby for fast computations on monomial ideals. 45 9 Interface to GAP 49 9.1 First Examples.............................................. 49 9.2 GAP and Singular............................................ 49 9.3 Saving and loading objects........................................ 51 9.4 Long Input................................................ 51 9.5 Changing which GAP is used...................................... 51 10 Interface to GAP3 61 10.1 Obtaining GAP3............................................. 61 10.2 Changing which GAP3 is used...................................... 61 10.3 Functionality and Examples....................................... 62 10.4 Common Pitfalls............................................. 63 10.5 Examples................................................. 64 11 Interface to Groebner Fan 69 12 Pexpect Interface to Giac 71 12.1 Tutorial.................................................. 72 13 Interface to the Gnuplot interpreter 81 14 Interface to the GP calculator of PARI/GP 83 15 Interface for extracting data and generating images from Jmol readable files. 93 i 16 Interface to KASH 95 16.1 Issues................................................... 95 16.2 Tutorial.................................................. 95 16.3 Long Input................................................ 101 17 Library interface to Kenzo 105 18 Interface to LattE integrale programs 133 19 Interface to LiE 137 19.1 Tutorial.................................................. 138 20 Lisp Interface 145 21 Interface to Macaulay2 149 22 Interface to Magma 163 22.1 Parameters................................................ 163 22.2 Multiple Return Values.......................................... 164 22.3 Long Input................................................ 164 22.4 Garbage Collection............................................ 164 22.5 Other Examples............................................. 165 23 Interface to the free online MAGMA calculator 183 24 Interface to Maple 185 24.1 Tutorial.................................................. 185 25 Interface to Mathematica 193 25.1 Tutorial.................................................. 194 25.2 Long Input................................................ 197 25.3 Loading and saving............................................ 197 25.4 Complicated translations......................................... 197 26 Interface to MATLAB 203 26.1 Tutorial.................................................. 203 27 Pexpect interface to Maxima 209 27.1 Tutorial.................................................. 210 27.2 Examples involving matrices....................................... 212 27.3 Laplace Transforms........................................... 213 27.4 Continued Fractions........................................... 214 27.5 Special examples............................................. 214 27.6 Miscellaneous.............................................. 215 27.7 Interactivity................................................ 215 27.8 Latex Output............................................... 215 27.9 Long Input................................................ 215 28 Abstract interface to Maxima 219 29 Library interface to Maxima 237 30 Interface to MuPAD 247 31 Interface to mwrank 251 ii 32 Interface to GNU Octave 255 32.1 Computation of Special Functions.................................... 255 32.2 Tutorial.................................................. 256 33 Interface to PHC. 261 34 Interface to polymake 269 35 POV-Ray, The Persistence of Vision Ray Tracer 285 36 Parallel Interface to the Sage interpreter 287 37 Interface to QEPCAD 289 38 Interface to Bill Hart’s Quadratic Sieve 315 39 Interfaces to R 319 40 Interface to several Rubik’s cube solvers. 333 41 Interface to Sage 337 42 Interface to Scilab 343 43 Interface to Singular 349 43.1 Introduction............................................... 349 43.2 Tutorial.................................................. 350 43.3 Computing the Genus.......................................... 352 43.4 An Important Concept.......................................... 353 43.5 Long Input................................................ 354 44 SymPy –> Sage conversion 371 45 The Tachyon Ray Tracer 373 46 Interface to TIDES 375 47 Interface to the Sage cleaner 379 48 Quitting interfaces 381 49 An interface to read data files 383 50 Indices and Tables 385 Python Module Index 387 Index 389 iii iv Sage 9.4 Reference Manual: Interpreter Interfaces, Release 9.4 Sage provides a unified interface to the best computational software. This is accomplished using both C-libraries (see C/C++ Library Interfaces) and interpreter interfaces, which are implemented using pseudo-tty’s, system files, etc. This chapter is about these interpreter interfaces. Note: Each interface requires that the corresponding software is installed on your computer. Sage includes GAP, PARI, Singular, and Maxima, but does not include Octave (very easy to install), MAGMA (non-free), Maple (non-free), or Mathematica (non-free). There is overhead associated with each call to one of these systems. For example, computing 2+2 thousands of times using the GAP interface will be slower than doing it directly in Sage. In contrast, the C-library interfaces of C/C++ Library Interfaces incur less overhead. In addition to the commands described for each of the interfaces below, you can also type e.g., %gap, %magma, etc., to directly interact with a given interface in its state. Alternatively, if X is an interface object, typing X.interact() allows you to interact with it. This is completely different than X.console() which starts a complete new copy of whatever program X interacts with. Note that the input for X.interact() is handled by Sage, so the history buffer is the same as for Sage, tab completion is as for Sage (unfortunately!), and input that spans multiple lines must be indicated using a backslash at the end of each line. You can pull data into an interactive session with X using sage(expression). The console and interact methods of an interface do very different things. For example, using gap as an example: 1. gap.console(): You are completely using another program, e.g., gap/magma/gp Here Sage is serving as noth- ing more than a convenient program launcher, similar to bash. 2. gap.interact(): This is a convenient way to interact with a running gap instance that may be “full of” Sage objects. You can import Sage objects into this gap (even from the interactive interface), etc. The console function is very useful on occasion, since you get the exact actual program available (especially useful for tab completion and testing to make sure nothing funny is going on). CONTENTS 1 Sage 9.4 Reference Manual: Interpreter Interfaces, Release 9.4 2 CONTENTS CHAPTER ONE COMMON INTERFACE FUNCTIONALITY See the examples in the other sections for how to use specific interfaces. The interface classes all derive from the generic interface that is described in this section. AUTHORS: • William Stein (2005): initial version • William Stein (2006-03-01): got rid of infinite loop on startup if client system missing • Felix Lawrence (2009-08-21): edited ._sage_() to support lists and float exponents in foreign notation. • Simon King (2010-09-25): Expect._local_tmpfile() depends on Expect.pid() and is cached; Expect.quit() clears that cache, which is important for forking. • Jean-Pierre Flori (2010,2011): Split non Pexpect stuff into a parent class. • Simon King (2015): Improve pickling for InterfaceElement class sage.interfaces.interface.AsciiArtString Bases: str class sage.interfaces.interface.Interface(name) Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.parent_base. ParentWithBase Interface interface object. Note: Two interfaces compare equal if and only if they are identical objects (this is a critical constraint so that caching of representations of objects in interfaces works correctly). Otherwise they are never equal. call(function_name, *args, **kwds) clear(var) Clear the variable named var. console() cputime() CPU time since this process started running. eval(code, **kwds) Evaluate code in an interface. This method needs to be implemented in sub-classes. Note that it is not always to be expected that it returns a non-empty string. In contrast, get() is supposed to return the result of applying a print command to the object so that the output is easier to parse. 3 Sage 9.4 Reference Manual: Interpreter Interfaces, Release 9.4 Likewise, the method _eval_line() for evaluation of a single line, often makes sense to be overridden. execute(*args, **kwds) function_call(function, args=None, kwds=None) EXAMPLES: sage: maxima.quad_qags(x, x,0,1, epsrel=1e-4) [0.5,5.5511151231257...e-15,21,0] sage: maxima.function_call('quad_qags', [x, x,0,1], { 'epsrel':'1e-4'}) [0.5,5.5511151231257...e-15,21,0] get(var) Get the value of the variable var. Note that this needs to be overridden in some interfaces, namely when getting the string representation of an object requires an explicit print command. get_seed() Return the seed used to set the random number generator in this interface. The seed is initialized as None but should be set when
Recommended publications
  • Sagemath and Sagemathcloud
    Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community.
    [Show full text]
  • Using Macaulay2 Effectively in Practice
    Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
    [Show full text]
  • Introduction to IDL®
    Introduction to IDL® Revised for Print March, 2016 ©2016 Exelis Visual Information Solutions, Inc., a subsidiary of Harris Corporation. All rights reserved. ENVI and IDL are registered trademarks of Harris Corporation. All other marks are the property of their respective owners. This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). Contents 1 Introduction To IDL 5 1.1 Introduction . .5 1.1.1 What is ENVI? . .5 1.1.2 ENVI + IDL, ENVI, and IDL . .6 1.1.3 ENVI Resources . .6 1.1.4 Contacting Harris Geospatial Solutions . .6 1.1.5 Tutorials . .6 1.1.6 Training . .7 1.1.7 ENVI Support . .7 1.1.8 Contacting Technical Support . .7 1.1.9 Website . .7 1.1.10 IDL Newsgroup . .7 2 About This Course 9 2.1 Manual Organization . .9 2.1.1 Programming Style . .9 2.2 The Course Files . 11 2.2.1 Installing the Course Files . 11 2.3 Starting IDL . 11 2.3.1 Windows . 11 2.3.2 Max OS X . 11 2.3.3 Linux . 12 3 A Tour of IDL 13 3.1 Overview . 13 3.2 Scalars and Arrays . 13 3.3 Reading Data from Files . 15 3.4 Line Plots . 15 3.5 Surface Plots . 17 3.6 Contour Plots . 18 3.7 Displaying Images . 19 3.8 Exercises . 21 3.9 References . 21 4 IDL Basics 23 4.1 IDL Directory Structure . 23 4.2 The IDL Workbench . 24 4.3 Exploring the IDL Workbench .
    [Show full text]
  • A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya 1 Introduction
    A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya Sai K. Popuri and Matthias K. Gobbert* Department of Mathematics and Statistics, University of Maryland, Baltimore County *Corresponding author: [email protected], www.umbc.edu/~gobbert Technical Report HPCF{2017{3, hpcf.umbc.edu > Publications Abstract Matlab is the most popular commercial package for numerical computations in mathematics, statistics, the sciences, engineering, and other fields. Octave is a freely available software used for numerical computing. R is a popular open source freely available software often used for statistical analysis and computing. Julia is a recent open source freely available high-level programming language with a sophisticated com- piler for high-performance numerical and statistical computing. They are all available to download on the Linux, Windows, and Mac OS X operating systems. We investigate whether the three freely available software are viable alternatives to Matlab for uses in research and teaching. We compare the results on part of the equipment of the cluster maya in the UMBC High Performance Computing Facility. The equipment has 72 nodes, each with two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) proces- sors with 8 cores per CPU, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected by a quad-data rate InfiniBand interconnect. The tests focused on usability lead us to conclude that Octave is the most compatible with Matlab, since it uses the same syntax and has the native capability of running m-files. R was hampered by somewhat different syntax or function names and some missing functions.
    [Show full text]
  • Using Mathematica As a Teaching Tool in the Undergraduate Economics Curriculum
    USING MATHEMATICA AS A TEACHING TOOL IN THE UNDERGRADUATE ECONOMICS CURRICULUM Gary Hodgin* Abstract In recent years, the quantitative skills required of economics students have increased significantly. Students often experience difficulty in making the transition from their mathematics courses to the use of mathematics in their economics courses. Symbolic computation programs are mathematical tools that can potentially smooth this transition. This paper illustrates a few ways in which one symbolic computation program, Mathematica, has been used in the undergraduate economics curriculum. I. Introduction The undergraduate curriculum in economics has become increasingly quantitative. An economics major typically includes college algebra, statistics, and some form of calculus in its degree requirements.1 In addition, mathematical economics and econometrics are now standard courses in many undergraduate programs. Moreover, this quantitative emphasis generally extends to other courses across the economics curriculum, particularly the intermediate theory and managerial economics courses. For example, approximately 90 percent of the intermediate microeconomics instructors included in von Allmen and Brower's survey (1998, 279) use calculus in their courses. Although one might question whether too much emphasis is placed on quantitative skills, there appears to be consensus among economics professors that mathematics is an important ingredient in undergraduate economic education. Over the past three years, I have used a symbolic computation program entitled Mathematica in two of my intermediate microeconomics and three of my managerial economics courses. My observations in these courses suggests that some students experience difficulty in making the transition from their courses in mathematics to their use of mathematics in economics. By smoothing this transition, symbolic computation programs can assist students in learning economics.
    [Show full text]
  • The Quadratic Sieve - Introduction to Theory with Regard to Implementation Issues
    The Quadratic Sieve - introduction to theory with regard to implementation issues RNDr. Marian Kechlibar, Ph.D. April 15, 2005 Contents I The Quadratic Sieve 3 1 Introduction 4 1.1 The Quadratic Sieve - short description . 5 1.1.1 Polynomials and relations . 5 1.1.2 Smooth and partial relations . 7 1.1.3 The Double Large Prime Variation . 8 1.1.4 Problems to solve . 10 2 Quadratic Sieve Implementation 12 2.1 The Factor Base . 12 2.2 The sieving process . 15 2.2.1 Interval sieving and solution of polynomials . 16 2.2.2 Practical implementation . 16 2.3 Generation of polynomials . 17 2.3.1 Desirable properties of polynomials . 17 2.3.2 Assessment of magnitude of coecients . 18 2.3.3 MPQS - The Silverman Method . 20 2.3.4 SIQS principle . 21 2.3.5 Desirable properties of b . 22 2.3.6 SIQS - Generation of the Bi's . 23 2.3.7 Generation of b with Gray code formulas . 24 2.3.8 SIQS - General remarks on a determination . 26 2.3.9 SIQS - The bit method for a coecient . 27 2.3.10 SIQS - The Carrier-Wagsta method for a coecient . 28 2.4 Combination of the relations, partial relations and linear algebra 30 2.5 Linear algebra step . 31 2.6 The Singleton Gap . 32 1 3 Experimental Results 36 3.1 Sieving speed - dependence on FB size . 36 3.2 Sieving speed - dependence on usage of 1-partials . 38 3.3 Singletons - dependence on log(N) and FB size . 39 3.4 Properties of the sieving matrices .
    [Show full text]
  • Rapid Research with Computer Algebra Systems
    doi: 10.21495/71-0-109 25th International Conference ENGINEERING MECHANICS 2019 Svratka, Czech Republic, 13 – 16 May 2019 RAPID RESEARCH WITH COMPUTER ALGEBRA SYSTEMS C. Fischer* Abstract: Computer algebra systems (CAS) are gaining popularity not only among young students and schol- ars but also as a tool for serious work. These highly complicated software systems, which used to just be regarded as toys for computer enthusiasts, have reached maturity. Nowadays such systems are available on a variety of computer platforms, starting from freely-available on-line services up to complex and expensive software packages. The aim of this review paper is to show some selected capabilities of CAS and point out some problems with their usage from the point of view of 25 years of experience. Keywords: Computer algebra system, Methodology, Wolfram Mathematica 1. Introduction The Wikipedia page (Wikipedia contributors, 2019a) defines CAS as a package comprising a set of algo- rithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language. There are 35 different systems listed on the page, four of them discontinued. The oldest one, Reduce, was publicly released in 1968 (Hearn, 2005) and is still available as an open-source project. Maple (2019a) is among the most popular CAS. It was first publicly released in 1984 (Maple, 2019b) and is still popular, also among users in the Czech Republic. PTC Mathcad (2019) was published in 1986 in DOS as an engineering calculation solution, and gained popularity for its ability to work with typeset mathematical notation in combination with automatic computations.
    [Show full text]
  • Running Sagemath (With Or Without Installation)
    Running SageMath (with or without installation) http://www.sagemath.org/ Éric Gourgoulhon Running SageMath 9 Feb. 2017 1 / 5 Various ways to install/access SageMath 7.5.1 Install on your computer: 2 options: install a compiled binary version for Linux, MacOS X or Windows1 from http://www.sagemath.org/download.html compile from source (Linux, MacOS X): check the prerequisites (see here for Ubuntu) and run git clone git://github.com/sagemath/sage.git cd sage MAKE=’make -j8’ make Run on your computer without installation: Sage Debian Live http://sagedebianlive.metelu.net/ Bootable USB flash drive with SageMath (boosted with octave, scilab), Geogebra, LaTeX, gimp, vlc, LibreOffice,... Open a (free) account on SageMathCloud https://cloud.sagemath.com/ Run in SageMathCell Single cell mode: http://sagecell.sagemath.org/ 1requires VirtualBox; alternatively, a full Windows installer is in pre-release stage at https://github.com/embray/sage-windows/releases Éric Gourgoulhon Running SageMath 9 Feb. 2017 2 / 5 Example 1: installing on Ubuntu 16.04 1 Download the archive sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 from one the mirrors listed at http://www.sagemath.org/download-linux.html 2 Run the following commands in a terminal: bunzip2 sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 tar xvf sage-7.5.1-Ubuntu_16.04-x86_64.tar cd SageMath ./sage -n jupyter A Jupyter home page should then open in your browser. Click on New and select SageMath 7.5.1 to open a Jupyter notebook with a SageMath kernel. Éric Gourgoulhon Running SageMath 9 Feb. 2017 3 / 5 Example 2: using the SageMathCloud 1 Open a free account on https://cloud.sagemath.com/ 2 Create a new project 3 In the second top menu, click on New to create a new file 4 Select Jupyter Notebook for the file type 5 In the Jupyter menu, click on Kernel, then Change kernel and choose SageMath 7.5 Éric Gourgoulhon Running SageMath 9 Feb.
    [Show full text]
  • Axiom / Fricas
    Axiom / FriCAS Christoph Koutschan Research Institute for Symbolic Computation Johannes Kepler Universit¨atLinz, Austria Computer Algebra Systems 15.11.2010 Master's Thesis: The ISAC project • initiative at Graz University of Technology • Institute for Software Technology • Institute for Information Systems and Computer Media • experimental software assembling open source components with as little glue code as possible • feasibility study for a novel kind of transparent single-stepping software for applied mathematics • experimenting with concepts and technologies from • computer mathematics (theorem proving, symbolic computation, model based reasoning, etc.) • e-learning (knowledge space theory, usability engineering, computer-supported collaboration, etc.) • The development employs academic expertise from several disciplines. The challenge for research is interdisciplinary cooperation. Rewriting, a basic CAS technique This technique is used in simplification, equation solving, and many other CAS functions, and it is intuitively comprehensible. This would make rewriting useful for educational systems|if one copes with the problem, that even elementary simplifications involve hundreds of rewrites. As an example see: http://www.ist.tugraz.at/projects/isac/www/content/ publications.html#DA-M02-main \Reverse rewriting" for comprehensible justification Many CAS functions can not be done by rewriting, for instance cancelling multivariate polynomials, factoring or integration. However, respective inverse problems can be done by rewriting and produce human readable derivations. As an example see: http://www.ist.tugraz.at/projects/isac/www/content/ publications.html#GGTs-von-Polynomen Equation solving made transparent Re-engineering equation solvers in \transparent single-stepping systems" leads to types of equations, arranged in a tree. ISAC's tree of equations are to be compared with what is produced by tracing facilities of Mathematica and/or Maple.
    [Show full text]
  • Introduction to GNU Octave
    Introduction to GNU Octave Hubert Selhofer, revised by Marcel Oliver updated to current Octave version by Thomas L. Scofield 2008/08/16 line 1 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 8 6 4 2 -8 -6 0 -4 -2 -2 0 -4 2 4 -6 6 8 -8 Contents 1 Basics 2 1.1 What is Octave? ........................... 2 1.2 Help! . 2 1.3 Input conventions . 3 1.4 Variables and standard operations . 3 2 Vector and matrix operations 4 2.1 Vectors . 4 2.2 Matrices . 4 1 2.3 Basic matrix arithmetic . 5 2.4 Element-wise operations . 5 2.5 Indexing and slicing . 6 2.6 Solving linear systems of equations . 7 2.7 Inverses, decompositions, eigenvalues . 7 2.8 Testing for zero elements . 8 3 Control structures 8 3.1 Functions . 8 3.2 Global variables . 9 3.3 Loops . 9 3.4 Branching . 9 3.5 Functions of functions . 10 3.6 Efficiency considerations . 10 3.7 Input and output . 11 4 Graphics 11 4.1 2D graphics . 11 4.2 3D graphics: . 12 4.3 Commands for 2D and 3D graphics . 13 5 Exercises 13 5.1 Linear algebra . 13 5.2 Timing . 14 5.3 Stability functions of BDF-integrators . 14 5.4 3D plot . 15 5.5 Hilbert matrix . 15 5.6 Least square fit of a straight line . 16 5.7 Trapezoidal rule . 16 1 Basics 1.1 What is Octave? Octave is an interactive programming language specifically suited for vectoriz- able numerical calculations.
    [Show full text]
  • Arxiv:2102.02679V1 [Cs.LO] 4 Feb 2021 HOL-ODE [10], Which Supports Reasoning for Systems of Ordinary Differential Equations (Sodes)
    Certifying Differential Equation Solutions from Computer Algebra Systems in Isabelle/HOL Thomas Hickman, Christian Pardillo Laursen, and Simon Foster University of York Abstract. The Isabelle/HOL proof assistant has a powerful library for continuous analysis, which provides the foundation for verification of hybrid systems. However, Isabelle lacks automated proof support for continuous artifacts, which means that verification is often manual. In contrast, Computer Algebra Systems (CAS), such as Mathematica and SageMath, contain a wealth of efficient algorithms for matrices, differen- tial equations, and other related artifacts. Nevertheless, these algorithms are not verified, and thus their outputs cannot, of themselves, be trusted for use in a safety critical system. In this paper we integrate two CAS systems into Isabelle, with the aim of certifying symbolic solutions to or- dinary differential equations. This supports a verification technique that is both automated and trustworthy. 1 Introduction Verification of Cyber-Physical and Autonomous Systems requires that we can verify both discrete control, and continuous evolution, as envisaged by the hy- brid systems domain [1]. Whilst powerful bespoke verification tools exist, such as the KeYmaera X [2] proof assistant, software engineering requires a gen- eral framework, which can support a variety of notations and paradigms [3]. Isabelle/HOL [4] is a such a framework. Its combination of an extensible fron- tend for syntax processing, and a plug-in oriented backend, based in ML, which supports a wealth of heterogeneous semantic models and proof tools, supports a flexible platform for software development, verification, and assurance [5,6,7]. Verification of hybrid systems in Isabelle is supported by several detailed li- braries of Analysis, including Multivariate Analysis [8], Affine Arithmetic [9], and arXiv:2102.02679v1 [cs.LO] 4 Feb 2021 HOL-ODE [10], which supports reasoning for Systems of Ordinary Differential Equations (SODEs).
    [Show full text]
  • The Quadratic Sieve Factoring Algorithm
    The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001 1 1 Introduction Mathematicians have been attempting to find better and faster ways to fac- tor composite numbers since the beginning of time. Initially this involved dividing a number by larger and larger primes until you had the factoriza- tion. This trial division was not improved upon until Fermat applied the factorization of the difference of two squares: a2 b2 = (a b)(a + b). In his method, we begin with the number to be factored:− n. We− find the smallest square larger than n, and test to see if the difference is square. If so, then we can apply the trick of factoring the difference of two squares to find the factors of n. If the difference is not a perfect square, then we find the next largest square, and repeat the process. While Fermat's method is much faster than trial division, when it comes to the real world of factoring, for example factoring an RSA modulus several hundred digits long, the purely iterative method of Fermat is too slow. Sev- eral other methods have been presented, such as the Elliptic Curve Method discovered by H. Lenstra in 1987 and a pair of probabilistic methods by Pollard in the mid 70's, the p 1 method and the ρ method. The fastest algorithms, however, utilize the− same trick as Fermat, examples of which are the Continued Fraction Method, the Quadratic Sieve (and it variants), and the Number Field Sieve (and its variants). The exception to this is the El- liptic Curve Method, which runs almost as fast as the Quadratic Sieve.
    [Show full text]