Wetland Plants of the Namoi Catchment 8 References 38 Glossary 39 Index 40

Total Page:16

File Type:pdf, Size:1020Kb

Wetland Plants of the Namoi Catchment 8 References 38 Glossary 39 Index 40 ACKNOWLEDGEMENT: This publication would not have been possible without the contribution of photographic materials from Steffan Holmes (NSW DPI), Greg Steenbeeke (Orkology), Francesca Andreoni (NSW DECC) and Harry Rose (NSW DPI), so a big thankyou to all of you. Thanks also to Francesca Andreoni and Stephanie McCaffery (NSW DECC) for their hard work editing the document. This document was developed and written by staff from Namoi CMA. DISCLAIMER: The information presented in this document has been compiled from both primary and secondary research carried out or commissioned by Namoi CMA staff and is comprised of general statements. No reliance on the information given in this document should be made without seeking the advice of an expert professional, scientist or technician. Namoi CMA will not be made liable for any consequences arising directly or indirectly from using this publication and any information or material contained in it. Table of Contents Introduction What is a wetland? 3 Why are wetlands important? 3 Why are wetlands at risk? 4 What can you do to help? 5 How can Namoi CMA help? 7 Namoi CMA Catchment Area 7 Wetland plants of the Namoi Catchment 8 References 38 Glossary 39 Index 40 1 2 Introduction The wetlands of the Namoi Catchment are unique, and in need of our help to survive. This book is designed to introduce you to some of the more common plants that are found in and around wetlands. We hope this can inspire you to look more closely at these special and vulnerable ecosystems, and how you might best manage any wetlands in your care. What is a wetland? A wetlands is an area that is inundated, or flooded, some or all of the time. The plants and animals that live in any wetland will either be partly or wholly dependant on water for some part of their life cycles. Moreover, wetland drying cycles are equally important to wetland health as periods of time when wetlands are wet. Floodplains, swamps, billabongs, waterholes on river channels, farm dams, lakes, reservoirs, lagoons and wet pasture are just some examples of the rich variety of wetlands found within the Namoi Catchment. Wetlands that appear and disappear over short time periods are called ‘ephemeral’; those that last longer are referred to as ‘permanent’. Why are wetlands important? Wetlands are vital feeding and breeding areas for a variety of native wildlife. Many plants – such as those featured in this book – rely on wetlands to survive. Wetlands are known to mitigate the effects of extreme weather and regulate surface and groundwater quality. Wetlands provide valuable grazing and cropping opportunities for farmers. Culturally, wetlands are of great importance to Aboriginal communities. The information stored in wetlands can help us understand natural and human induced environmental change. Drought cycles are natural phenomena in the Australian climate and over time wetlands flora and fauna have evolved various ways of coping with the unpredictability of Australia’s wet and dry cycles. Wetlands have a particularly important role during drought cycles. At such times wetlands act as important ‘refuges’ in the landscape for fauna and moisture loving flora. 3 Many species have adapted to survive drought. Molluscs and crustaceans for example survive drought by producing desiccation resistant eggs, or adults burying themselves in the mud where they become encased in a desiccation resistant cocoon. Fish, frogs and freshwater turtle species are also able to survive drying periods in wetlands, either by spending periods buried in protective cocoons under ground or as desiccation resistant eggs. The most easily recognised wildlife values of wetlands are the waterbirds. Links between healthy unmodified rivers, streams and wetlands, and healthy waterbird populations are now well understood. Without major breeding events in wetlands during flood years, many waterbirds are unable to sustain their population levels and local extinctions result. Why are wetlands at risk? Most threats to wetlands in the Namoi Catchment are either the direct result of human interference or occur as a consequence of human activity. The types of threats to wetlands in the Namoi Catchment include: • Clearing, drainage and landfilling • Agriculture including cropping and grazing • Water removal and regulation (groundwater and surface water) • Salinisation, that is the increasing saltiness of wetland water and/or soil • Soil erosion • Sedimentation • Animal pests, for example European Carp • Invasive/noxious plant species, for example Willows or Lippia • Mining and extractive industries • Legal and illegal fishing • Removal of dead wood from floodplain or riparian areas • Discontinuity (the isolation of wetlands from river channels, and barriers that prevent the movement of fauna through the wetland system) • Poor water quality • Inappropriate management Solving many of these issues requires a co-ordinated approach involving many different government and community groups. Solutions also need to address these problems at a local and catchment scale. 4 What can you do to help? As landholders or community members there are many things that you can do to help protect wetlands. Planning: Planning is essential if the full potential of a wetland is to be realised. A management plan will provide the opportunity to identify your aims, issues and management actions. Plans should identify the range of wildlife using the area and connectivity at a landscape scale. At the individual property level, planning should allow for buffer zones around the wetland that will minimise outside disturbances and address issues such as fencing, grazing regimes, weed control, tree planting and impacts of other activities. In most areas of management, a passive approach, allowing natural processes to ‘manage’ the wetlands, is usually preferable to intervention. Careful prior investigation of the potential consequences of active management is essential. Restore natural fluctuation in water levels: Australian wetlands rely upon the fluctuations in water level as much as the wetting effect. Constant or longer periods of inundation do not necessarily lead to an improvement in wetland values and sometimes can do more damage than good. A natural regime of water level fluctuations should be the primary consideration in management. Reduce turbidity and sedimentation: Sedimentation of a wetland reduces its volume; the silt can suffocate plants and animals, and reduce light penetration. Sediments also carry nutrients and possible chemicals with toxic properties into wetlands. Clearing vegetation and allowing stock unrestricted access to wetland areas is a significant source of excess sediment. Maintenance of ground level plant cover and diversity surrounding a wetland is the most significant method of reducing sedimentation and turbidity. The stocking rates or cropping regimes in surrounding paddocks may need to be adjusted with reducing turbidity and sedimentation in mind. Generally speaking this may mean that less stock can be grazed on surrounding paddocks, and cropping areas will need to be worked in ways that will reduce soil erosion. 5 Reduce salinisation: Salinisation of a wetland is generally part of a much wider salinisation problem occurring due to changes in catchment hydrology. Salty run off can be managed by the revegetation of groundwater recharge areas however this is a longer term solution. In the meantime, protection of the wetland can only be achieved by diverting salinised flows which also has implications, and also ensuring that a well vegetated buffer zone occurs around the wetland. Minimise grazing and trampling: Many wetlands offer a degree of richness in plant abundance, growth rate and diversity which make them valuable fattening pastures. Overgrazing is damaging to wetlands and some wetland types will tolerate no grazing at all. Livestock can damage wetlands by grazing all plant species too much, or particular plant species to the benefit of others, compacting soils via trampling, pugging soils when wet therefore changing where water collects or remains in dryer periods, adding nutrients through manure and bringing in weed seeds from other places. These processes contribute significantly to sedimentation of the wetland. On the other hand, well managed grazing can maintain open areas in wetlands that may be preferred by particular species and provide a degree of disturbance to plant communities which provides the opportunity for an increase in diversity. In general, fencing of the wetland is the main management action required so that grazing can be managed in the wetland context. Grazing regimes can then be set to maximise ground cover, with livestock removed completely when the wetland is wet to prevent nitrification and pugging and to allow wetland plants to grow, flower and seed uninterrupted. Control feral animals and weeds: Feral animals and weeds require a particular degree of careful management around wetlands as the use of poisons and toxins in a wetland context can have catastrophic results. Reducing the levels of disturbance to wetland areas can reduce the numbers and types of weeds that grow in a wetlands as can preventing their spread by reducing or managing livestock access to wetlands. Any use of chemical controls near wetlands should be avoided if possible in favour of mechanical removal of weeds; however some particular chemicals are designed with wetland and riparian areas in mind. Careful use of these chemicals in accordance with directions on the label can have good results. 6 Feral animal control is also complex as it is often the values of a wetland that the manager is promoting for wildlife habitat purposes that attracts feral animals such as rabbits, foxes and pigs. A feral animal control plan will need to be developed that takes into account off-target animal sensitivity to particular control agents and a holistic and integrated approach to feral animal management. Namoi Catchment Management Authority, Rural Land Protection Boards and Department of Primary Industries officers can all help with this issue. How can Namoi CMA help? More than 90% of all NSW waterways run through farmland (NSW Department of Primary Industries 2008).
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Survey and Description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia
    Survey and description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia. C.R. Dickson, L. Farrington & M. Bachmann April 2014 Report to the Department of Environment, Water and Natural Resources Page i Citation Dickson C.R., Farrington L., & Bachmann M. (2014) Survey and description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia. Report to Department of Environment, Water and Natural Resources, Government of South Australia. Nature Glenelg Trust, Mount Gambier, South Australia. Correspondence in relation to this report contact Mr Mark Bachmann Principal Ecologist Nature Glenelg Trust (08) 8797 8181 [email protected] Cover photo: Craspedia paludicola at a Seasonal Herbaceous Wetland in Bangham Conservation Park. Disclaimer This report was commissioned by the Department of Environment, Water and Natural Resources. Although all efforts were made to ensure quality, it was based on the best information available at the time and no warranty express or implied is provided for any errors or omissions, nor in the event of its use for any other purposes or by any other parties. Page ii Acknowledgements We would like to acknowledge and thank the following people for their assistance during the project: . Private and public landholders throughout the South East of South Australia for providing access to their properties and sharing local knowledge of site history. Steve Clarke, Michael Dent, Claire Harding, and Abigail Goodman (DEWNR) and Bec Harmer (NGT) for providing field assistance on field surveys of wetlands between November 2013 and February 2014.
    [Show full text]
  • Kingdom Class Family Scientific Name Common Name I Q a Records
    Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Cunninghamia Date of Publication: September 2016 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: September 2016 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Vegetation of Naree and Yantabulla stations on the Cuttaburra Creek, Far North Western Plains, New South Wales John T. Hunter1 & Vanessa H. Hunter2 1School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 AUSTRALIA; email: [email protected] 2Hewlett Hunter Pty Ltd, Armidale, NSW 2350 AUSTRALIA. Abstract: Naree and Yantabulla stations (31,990 ha) are found 60 km south-east of Hungerford and 112 km north-west of Bourke, New South Wales (lat. 29° 55'S; long. 150°37'N). The properties occur on the Cuttaburra Creek within the Mulga Lands Bioregion. We describe the vegetation assemblages found on these properties within three hierarchical levels (Group, Alliance & Association). Vegetation levels are defined based on flexible UPGMA analysis of cover- abundance scores of all vascular plant taxa. These vegetation units are mapped based on extensive ground truthing, SPOT5 imagery interpretation and substrate. Three ‘Group’ level vegetation types are described: Mulga Complex, Shrublands Complex and Floodplain Wetlands Complex. Within these Groups nine ‘Alliances’ are described: Rat’s tail Couch – Lovegrass Grasslands, Canegrass Grasslands, Lignum – Glinus Shrublands, Coolibah – Black Box Woodlands, Turpentine – Button Grass – Windmill Grass Shrublands, Turpentine – Hop Bush – Kerosene Grass shrublands and Mulga Shrublands. Sixteen ‘Associations’ are described 1)
    [Show full text]
  • Cunninghamia : a Journal of Plant Ecology for Eastern Australia
    Westbrooke et al., Vegetation of Peery Lake area, western NSW 111 The vegetation of Peery Lake area, Paroo-Darling National Park, western New South Wales M. Westbrooke, J. Leversha, M. Gibson, M. O’Keefe, R. Milne, S. Gowans, C. Harding and K. Callister Centre for Environmental Management, University of Ballarat, PO Box 663 Ballarat, Victoria 3353, AUSTRALIA Abstract: The vegetation of Peery Lake area, Paroo-Darling National Park (32°18’–32°40’S, 142°10’–142°25’E) in north western New South Wales was assessed using intensive quadrat sampling and mapped using extensive ground truthing and interpretation of aerial photograph and Landsat Thematic Mapper satellite images. 378 species of vascular plants were recorded from this survey from 66 families. Species recorded from previous studies but not noted in the present study have been added to give a total of 424 vascular plant species for the Park including 55 (13%) exotic species. Twenty vegetation communities were identified and mapped, the most widespread being Acacia aneura tall shrubland/tall open-shrubland, Eremophila/Dodonaea/Acacia open shrubland and Maireana pyramidata low open shrubland. One hundred and fifty years of pastoral use has impacted on many of these communities. Cunninghamia (2003) 8(1): 111–128 Introduction Elder and Waite held the Momba pastoral lease from early 1870 (Heathcote 1965). In 1889 it was reported that Momba Peery Lake area of Paroo–Darling National Park (32°18’– was overrun by kangaroos (Heathcote 1965). About this time 32°40’S, 142°10’–142°25’E) is located in north western New a party of shooters found opal in the sandstone hills and by South Wales (NSW) 110 km north east of Broken Hill the 1890s White Cliffs township was established (Hardy (Figure 1).
    [Show full text]
  • Riparian Vegetation of the River Murray COVER: Healthy Red Gum in the Kex)Ndrook State Forest Near Barham N.S.W
    Riparian Vegetation of The River Murray COVER: Healthy red gum in the Kex)ndrook State Forest near Barham N.S.W. Background, black box silhouette. PHOTO: D. Eastburn ISBN 1 R75209 02 6 RIVER MURRAY RIPARIAN VEGET ION STUDY PREPARED FOR: MURRAY-DARLING BASIN COMMISSION BY: MARGULES AND PARTNERS PTY LTD PAND J SMITH ECOLOGICAL CONSULTANTS DEPARTMENT OF CONSERVATION FORESTS AND LANDS VICTORIA January 1990 SUMMARY AND CONCLUSIONS The River Murray Riparian Vegetation Survey was initiated by the Murray­ Darling Basin Commission t9 assessJhe present status ofthe vegetationalong the Murray, to identify causes ofdegradation, and to develop solutions for its rehabilitation and long term stability. The study area was the floodplain of the Murray River and its anabranches, including the Edward-Wakool system, from below Hume Dam to the upper end of Lake Alexandrina. The components of the study were: · Literature Review A comprehensive bibliography was compiled on the floodplain vegeta­ tion, its environment and the impact ofman's activities. The literature was reviewed and summarised. · Floristic Survey A field survey was carried out, visiting 112 sites throughout the study area and collecting vegetation data from 335 plots. Data collected were the species present, their relative abundance, the condition of the eucalypts, the amount ofeucalypt regeneration and indices ofgrazing pressure. Brief studies were made of the effects of river regulation and salinisation at specific sites. Thirty-seven plant communities were identified from a numerical analyis ofthe floristic survey data. The differences reflect environmental changes both along the river and across the floodplain. The most important factors were identified as soil salinity levels and flooding frequency.
    [Show full text]
  • The Riparian Flora and Plant Communities of the Pilbara Region Of
    DOI: 10.18195/issn.0313-122x.78(2).2015.485-513 Records of the Western Australian Museum, Supplement 78: 485–513 (2015). The riparian fl ora and plant communities of the Pilbara region of Western Australia M.N. Lyons Department of Parks and Wildlife, Science and Conservation Division, Kieran McNamara Conservation Science Centre, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia. Email: [email protected] Abstract – A survey of riparian fl ora and plant communities was undertaken at 98 wetlands and rivers in the Pilbara region of Western Australia. Sampling was quadrat-based, with fl oristics, surface soils and wetland attributes recorded. Selected sites captured the full range of Pilbara wetland types including springs, river pools, claypans, salt marshes and rock pools. A total of 455 taxa was recorded from the survey sites, representing ca. 25% of the known fl ora of the Pilbara bioregion. The fl ora is dominated by taxa with Eremaean and tropical affi nities, with only six taxa endemic in the region. Of recorded taxa known from four or fewer bioregions, most are shared with the adjacent Carnarvon and Gascoyne bioregions rather than the adjoining internally draining deserts. Sixteen taxa of conservation signifi cance were documented, with claypans, the Fortescue Marsh, and Millstream and Karijini National Park sites dominating occurrences of rare species. Eight major groups were defi ned by classifying wetlands in terms of species presence/absence data. Floristic patterning was strongly aligned with the major wetland types (geomorphic/hydrological) used in the primary sampling stratifi cation. A combination of wetland morphology/hydrological setting, site edaphic attributes and distance to the coast were dominant variables related to riparian fl oristic composition.
    [Show full text]
  • Appendix 1. Locality Map Appendix 2
    Appendix 1. Locality map Appendix 2. Species of conservation significance recorded within the site. Table 1. Threatened Flora species Common Name Scientific Name National NSW Victoria Threatened Threatened Threatened Species Species Species Boree Acacia pendula e Common Joyweed Alternanthera nodiflora k Swamp Wallaby Amphibromus fluitans vvk Grass Emu-foot Cullen tenax e Western Boobialla Myoporum montanum r Austral Pillwort Pilularia novae-hollandiae e Sandalwood Santalum lanceolatum e Lilac Darling Pea Swainsona phacoides e Key: e, endangered; v, vulnerable; r, rare; k, poorly known in Victoria 1 Other noteworthy flora may occur in the NSW Murray Central State Forests but their presence has not been positively determined. Potentially occurring threatened species include Brachycome muelleroides, Callitriche cyclocarpa, Cullen parvum, Lepidium monoplocoides, Rhodanthe stricta and Sclerolaena napiformis; National Threatened Species: listed under the Environment Protection and Biodiversity Conservation Act 1999; NSW Threatened Species: listed under the NSW Threatened Species Conservation Act 1995; Victorian Threatened Species: listed under the Victorian Flora and Fauna Guarantee Act 1988. Table 2. Threatened Fauna Species Common Name Scientific NameIUCN Threatened Species Act JAMBA/ Red Nationa NSW Victoria CAMBA List l BIRDS Australasian Shoveler4 (a) Anas rhynchotis v Forked-tailed Swift5 Apus pacificus J,C Great Egret3 (a) Ardea alba eJ,C Little Egret3 (a) Egretta garzetta ce Cattle Egret4 (a) Ardea ibis J,C Intermediate Egret3 (a) Ardea
    [Show full text]
  • Ephemeral Wetlands of the Pilliga Outwash, Northwest NSW
    Cunninghamia Date of Publication: 30/07/2012 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Ephemeral wetlands of the Pilliga Outwash, northwest NSW Dorothy M. Bell1, John T. Hunter2 & Lisa Montgomery3 1Botany, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, 2School of Behavioural, Cognitive and Social Sciences, University of New England, Armidale, NSW 2351, 3Office of Environment & Heritage, Baradine, NSW 2396 AUSTRALIA Abstract: The floristic composition and vegetation partitioning of the ephemeral wetlands of the Pilliga Outwash within the Pilliga National Park and Pilliga State Conservation Area (30˚30’S, 149˚22’E) on the North Western Plains of New South Wales are described. SPOT5 imagery was used to map 340 wetlands across the Pilliga Outwash. A total of 240 plots within 31 wetlands explored composition and species richness in relation to water depth and wetland size. The predominant community described is the species-rich herbfield of shallow basin wetlands, along with the structurally distinct but the less common sedgeland/herbfield of the deeper ‘tank’ wetlands and a single wetland with a floristically depauperate Diplachne fusca wet grassland. A total of 131 taxa were recorded including three species listed under the NSW Threatened Species Conservation Act (1995): Eriocaulon australasicum, Lepidium monoplocoides and Myriophyllum implicatum. New records for an additional six taxa were recorded for the North Western Plains. 11% of taxa were exotic in origin. Cunninghamia (2012) 12(3): 181–190 doi: 10.7751/cunninghamia.2012.12.015 Introduction is often only available as part of localized vegetation description (McGann et al.
    [Show full text]