1 Persistent Trees

Total Page:16

File Type:pdf, Size:1020Kb

1 Persistent Trees Persistent Trees Full copy bad Fat no des metho d � replace each singlevalued eld of data structure by list of all values taken sorted by time � requires O space p er data change unavoidable if keep old date � to lo okup data eld need to search based on time � store values in binary tree � checkingchanging a data item takes O log m time after m up dates � slowdown of O log m in structure access Path copying � much of data structure consists of xedsize nodes conencted by pointers � can only reach no de by traversing p ointers starting from root � changes to a no de only visible to ancestors in p ointer structure ) k to ro ot of data structure � when change a no de copy it and ancestors bac � keep list of ro ots sorted by up date time � O log m time to nd right ro ot or const if time is integers � same access time as original structure � additive instead of multiplicative O log m � mo dication time and space usage equals numb er of ancestors p ossibly huge Combined Solution trees only � in each no de store extra timestamp ed eld � if full overrides one of standard elds for any accesses later than stamp ed time � access rule standard access just check for overrides while following p ointers constant factor increase in access time � up date rule when need to changecopy p ointer use extra if available { otherwise make new copy of no de with new info and recursively mo dify parent � Analysis { live no de p ointed at by current ro ot { p otential function numb er of ful l live no des { copying a no de is free new copy not full pays for copy spacetime { pay for lling an extra p ointer do only once since can stop at that p oint { amortized space p er up date O Power of twos Like Fib heaps Show binary tree of mo dications Application p ersistent trees � amortized cost O to change a eld � splay tree has O log n amortized eld change p er access � O log n space p er access � drawback rotations on access mean unbounded space usage Redblack trees � aggressive rebalancers � store redblack bit in each no de k bit to rebalance � use redblac � depth O log n � search standard binary tree search no changes � up date causes changes in redblack elds on path to item O rotations � result log n space per insertdelete � geometry do es O n changes so O n log n space � O log n query time Improvement � redblack bits used only for up dates � only need current version of redblack bits � dont store old versions just overwrite � only up dates needed are for O rotations � so O space p er up date � so O n space overall Result O n space O log n query time for planar p oint lo cation Extensions � metho d extends to arbitrary p ointerbased structures � O cost p er up date for any p ointerbased structure with any constant indegree s � full p ersistence with same b ounds Sux Trees Cro chemore and Rytter Text Algorithms Guseld Algorithms on Strings Trees and Sequences Weiner Linear Patternmatching algorithms IEEE conference on automata and switching theory McCreight A spaceeconomical sux tree construction algorithm JACM Chen and Seifras Ecient and Elegegant Sux tree construction in Ap os tolicoGalil Combninatorial Algorithms on Words Another search structure dedicated to strings Basic problem match a pattern to text � goal decide if a given string pattern is a substring of the text � p ossibly created by concatenating short ones eg newspap er � application in IR also computational bio DNA seqs � if pattern avilable rst can build DFA run in time linear in text � if text available rst can build sux tree run in time linear in pattern tree on strings Inecient b ecause run over pattern many First idea binary times Tries � Idea like bucket heaps use b ounded alphab et � used to store dictionary of strings � trees with children indexed by alphab et � time to search equal length of query string � insertion ditto � optimal since even hashing requires this time to hash � but b etter b ecause no hash function computed � space an issue { using array increases stroage cost by jj { using binary tree on alphab et increases search time by log jj { ok for const alphab et size in worst case sum of word lengths so pretty much solves dictionary problem But what ab out substrings 2 substrings idea trie of all n equivalent to trie of all n suxes put marker at end so no sux contained in other otherwise some sux can b e an internal no de hidden by piece of other sux means one leaf p er sux Naive construction insert each sux basic alg { text a a 1 m { dene s a a i i m { for i to m { insert s i 2 time space O m Better construction uch smaller aaaaaaa note trie size may b e m algorithm with time O jT j idea avoid rep eated work by memoizing also shades of nger search tree idea supp ose just inserted aw next insert is w big prex of w might already b e in trie � avoid traversing skip to end of prex Sux links � any no de in trie corresp onds to string � arrange for no de corresp to ax to p oint at no de corresp to x � supp ose just inserted aw � walk up tree till nd sux link � follow link puts you on path corresp to w � walk down tree adding no des to insert rest of w Memoizing save your work � can add sux link to every no de we walked up � since walked up end of aw and are putting in w now � charging scheme charge traversal up a no de to creation of sux link � traversal up also covers same length traversal down � once no de has sux link never passed up again � thus total time sp ent going updown equals numb er of sux links � one sux link p er no de so time O jT j Sux Trees 2 m problem maybe jT j is large compress paths in sux trie path on letters a a corresp to substring of text i j replace by edge lab elled by i j implicit nodes gives tree where every no de has indegree at least in such a tree size is order numb er of leaves O m Search still works { preserves invariant at most one edge starting with given character leaves a no de { store edges in array indexed by starting character { walk down same as trie but use indexing into text to nd chars { called slownd for later Construction � obvious build sux trie compress 2 � drawback may take m time and intermediate space � b etter use original construction idea work in compressed domain � as b efore insert suxes in order s s 1 m � compressed tree of what inserted so far � to insert s walk down tree i � at some p oint path diverges from whats in tree � may force us to break an edge show � tack on one new edge for rest of string cheap MacReight � use sux link idea of uplinkdown � problem cant sux link every character only explict no des � want to work prop ortional to real no des traversed � need to skip characters inside edges since cant pay for them � intro duced fastnd { idea fast alg for descending tree if know string present in tree { just check rst char on edge then skip numb er of chars equal to edge length { may land you in middle of edge sp ecied oset b er of explicit no des in path { cost of search num { pay for with sux links Analysis � supp ose just inserted string aw � sitting on its leaf which has parent � invariant every internal no de except for parent of current leaf has sux link to another explicit no de � plausible { supp ose s and s diverge creating explicit no de at v j k { claim s and s diverge at suxv creating another explicit j +1 k +1 no de { only problem if s not yet present k +1 { happ ens only if k is current sux { only blo cks parent of current leaf � insertion step { consider parent p and grandparent parent of parent g of current i i no de { g to p link has string w i i 1 { p to l link w i i 2 { go up to grandparent { follow sux link { fastnd w 1 { claim know w is present in tree 1 es in variant { create sux link from p preserv i { slownd w stopping when leave current tree 2 { break current edge { add new edge for rest of w 2 Analysis � Break into two costs from sufg to sufp w then sufp to p i i 1 i i+1 w 2 � slownd cost is time to get from sufp to p plus const i i+1 � note p is descendant of sufp i+1 i P � so total cost O jp p j O n i+1 i what ab out time to nd sufp i less than slownd so at most jg j jg j to reach g fastnd costs i+1 i i+1 Sums to linear Done if g b elow sufp double counts but who cares i+1 i what if g ab ove sufp i+1 i can only happ en if sufp p this is only no de b elow g i i+1 i+1 in this case fastnd takes step to go from g to p landing in middle i+1 i+1 of edge only case where fastnd necessary but cant tell in advance Weiner algorithm insert strings backwards use prex links Ukonnen online version Sux arrays Applications � prepro cess b ottom up storing rst last num of suxes in subtree � allows to answer queries what rst last count of w in text in time O jw j enumerate k o ccurrences in time O w jk j traverse subtree binary so size order of numb er of o ccurences longest common substring work b ottom up deciding if subtree contains suxes of b oth strings Take deep est no de satisfying .
Recommended publications
  • Compressed Suffix Trees with Full Functionality
    Compressed Suffix Trees with Full Functionality Kunihiko Sadakane Department of Computer Science and Communication Engineering, Kyushu University Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan [email protected] Abstract We introduce new data structures for compressed suffix trees whose size are linear in the text size. The size is measured in bits; thus they occupy only O(n log |A|) bits for a text of length n on an alphabet A. This is a remarkable improvement on current suffix trees which require O(n log n) bits. Though some components of suffix trees have been compressed, there is no linear-size data structure for suffix trees with full functionality such as computing suffix links, string-depths and lowest common ancestors. The data structure proposed in this paper is the first one that has linear size and supports all operations efficiently. Any algorithm running on a suffix tree can also be executed on our compressed suffix trees with a slight slowdown of a factor of polylog(n). 1 Introduction Suffix trees are basic data structures for string algorithms [13]. A pattern can be found in time proportional to the pattern length from a text by constructing the suffix tree of the text in advance. The suffix tree can also be used for more complicated problems, for example finding the longest repeated substring in linear time. Many efficient string algorithms are based on the use of suffix trees because this does not increase the asymptotic time complexity. A suffix tree of a string can be constructed in linear time in the string length [28, 21, 27, 5].
    [Show full text]
  • Suffix Trees
    JASS 2008 Trees - the ubiquitous structure in computer science and mathematics Suffix Trees Caroline L¨obhard St. Petersburg, 9.3. - 19.3. 2008 1 Contents 1 Introduction to Suffix Trees 3 1.1 Basics . 3 1.2 Getting a first feeling for the nice structure of suffix trees . 4 1.3 A historical overview of algorithms . 5 2 Ukkonen’s on-line space-economic linear-time algorithm 6 2.1 High-level description . 6 2.2 Using suffix links . 7 2.3 Edge-label compression and the skip/count trick . 8 2.4 Two more observations . 9 3 Generalised Suffix Trees 9 4 Applications of Suffix Trees 10 References 12 2 1 Introduction to Suffix Trees A suffix tree is a tree-like data-structure for strings, which affords fast algorithms to find all occurrences of substrings. A given String S is preprocessed in O(|S|) time. Afterwards, for any other string P , one can decide in O(|P |) time, whether P can be found in S and denounce all its exact positions in S. This linear worst case time bound depending only on the length of the (shorter) string |P | is special and important for suffix trees since an amount of applications of string processing has to deal with large strings S. 1.1 Basics In this paper, we will denote the fixed alphabet with Σ, single characters with lower-case letters x, y, ..., strings over Σ with upper-case or Greek letters P, S, ..., α, σ, τ, ..., Trees with script letters T , ... and inner nodes of trees (that is, all nodes despite of root and leaves) with lower-case letters u, v, ...
    [Show full text]
  • Search Trees
    Lecture III Page 1 “Trees are the earth’s endless effort to speak to the listening heaven.” – Rabindranath Tagore, Fireflies, 1928 Alice was walking beside the White Knight in Looking Glass Land. ”You are sad.” the Knight said in an anxious tone: ”let me sing you a song to comfort you.” ”Is it very long?” Alice asked, for she had heard a good deal of poetry that day. ”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it - either it brings tears to their eyes, or else -” ”Or else what?” said Alice, for the Knight had made a sudden pause. ”Or else it doesn’t, you know. The name of the song is called ’Haddocks’ Eyes.’” ”Oh, that’s the name of the song, is it?” Alice said, trying to feel interested. ”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name is called. The name really is ’The Aged, Aged Man.’” ”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself. ”No you oughtn’t: that’s another thing. The song is called ’Ways and Means’ but that’s only what it’s called, you know!” ”Well, what is the song then?” said Alice, who was by this time completely bewildered. ”I was coming to that,” the Knight said. ”The song really is ’A-sitting On a Gate’: and the tune’s my own invention.” So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time with one hand, and with a faint smile lighting up his gentle, foolish face, he began..
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction Agenda: • Welcome to CS 238 — Algorithmic Techniques in Computational Biology • Official course information • Course description • Announcements • Basic concepts in molecular biology 1 Lecture 1: Introduction Official course information • Grading weights: – 50% assignments (3-4) – 50% participation, presentation, and course report. • Text and reference books: – T. Jiang, Y. Xu and M. Zhang (co-eds), Current Topics in Computational Biology, MIT Press, 2002. (co-published by Tsinghua University Press in China) – D. Gusfield, Algorithms for Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge Press, 1997. – D. Krane and M. Raymer, Fundamental Concepts of Bioin- formatics, Benjamin Cummings, 2003. – P. Pevzner, Computational Molecular Biology: An Algo- rithmic Approach, 2000, the MIT Press. – M. Waterman, Introduction to Computational Biology: Maps, Sequences and Genomes, Chapman and Hall, 1995. – These notes (typeset by Guohui Lin and Tao Jiang). • Instructor: Tao Jiang – Surge Building 330, x82991, [email protected] – Office hours: Tuesday & Thursday 3-4pm 2 Lecture 1: Introduction Course overview • Topics covered: – Biological background introduction – My research topics – Sequence homology search and comparison – Sequence structural comparison – string matching algorithms and suffix tree – Genome rearrangement – Protein structure and function prediction – Phylogenetic reconstruction * DNA sequencing, sequence assembly * Physical/restriction mapping * Prediction of regulatiory elements • Announcements:
    [Show full text]
  • Suffix Trees for Fast Sensor Data Forwarding
    Suffix Trees for Fast Sensor Data Forwarding Jui-Chieh Wub Hsueh-I Lubc Polly Huangac Department of Electrical Engineeringa Department of Computer Science and Information Engineeringb Graduate Institute of Networking and Multimediac National Taiwan University [email protected], [email protected], [email protected] Abstract— In data-centric wireless sensor networks, data are alleviates the effort of node addressing and address reconfig- no longer sent by the sink node’s address. Instead, the sink uration in large-scale mobile sensor networks. node sends an explicit interest for a particular type of data. The source and the intermediate nodes then forward the data Forwarding in data-centric sensor networks is particularly according to the routing states set by the corresponding interest. challenging. It involves matching of the data content, i.e., This data-centric style of communication is promising in that it string-based attributes and values, instead of numeric ad- alleviates the effort of node addressing and address reconfigura- dresses. This content-based forwarding problem is well studied tion. However, when the number of interests from different sinks in the domain of publish-subscribe systems. It is estimated increases, the size of the interest table grows. It could take 10s to 100s milliseconds to match an incoming data to a particular in [3] that the time it takes to match an incoming data to a interest, which is orders of mangnitude higher than the typical particular interest ranges from 10s to 100s milliseconds. This transmission and propagation delay in a wireless sensor network. processing delay is several orders of magnitudes higher than The interest table lookup process is the bottleneck of packet the propagation and transmission delay.
    [Show full text]
  • Suffix Trees and Suffix Arrays in Primary and Secondary Storage Pang Ko Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Suffix trees and suffix arrays in primary and secondary storage Pang Ko Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Bioinformatics Commons, and the Computer Sciences Commons Recommended Citation Ko, Pang, "Suffix trees and suffix arrays in primary and secondary storage" (2007). Retrospective Theses and Dissertations. 15942. https://lib.dr.iastate.edu/rtd/15942 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Suffix trees and suffix arrays in primary and secondary storage by Pang Ko A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Engineering Program of Study Committee: Srinivas Aluru, Major Professor David Fern´andez-Baca Suraj Kothari Patrick Schnable Srikanta Tirthapura Iowa State University Ames, Iowa 2007 UMI Number: 3274885 UMI Microform 3274885 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii DEDICATION To my parents iii TABLE OF CONTENTS LISTOFTABLES ................................... v LISTOFFIGURES .................................. vi ACKNOWLEDGEMENTS. .. .. .. .. .. .. .. .. .. ... .. .. .. .. vii ABSTRACT....................................... viii CHAPTER1. INTRODUCTION . 1 1.1 SuffixArrayinMainMemory .
    [Show full text]
  • Finger Search Trees
    11 Finger Search Trees 11.1 Finger Searching....................................... 11-1 11.2 Dynamic Finger Search Trees ....................... 11-2 11.3 Level Linked (2,4)-Trees .............................. 11-3 11.4 Randomized Finger Search Trees ................... 11-4 Treaps • Skip Lists 11.5 Applications............................................ 11-6 Optimal Merging and Set Operations • Arbitrary Gerth Stølting Brodal Merging Order • List Splitting • Adaptive Merging and University of Aarhus Sorting 11.1 Finger Searching One of the most studied problems in computer science is the problem of maintaining a sorted sequence of elements to facilitate efficient searches. The prominent solution to the problem is to organize the sorted sequence as a balanced search tree, enabling insertions, deletions and searches in logarithmic time. Many different search trees have been developed and studied intensively in the literature. A discussion of balanced binary search trees can e.g. be found in [4]. This chapter is devoted to finger search trees which are search trees supporting fingers, i.e. pointers, to elements in the search trees and supporting efficient updates and searches in the vicinity of the fingers. If the sorted sequence is a static set of n elements then a simple and space efficient representation is a sorted array. Searches can be performed by binary search using 1+⌊log n⌋ comparisons (we throughout this chapter let log x denote log2 max{2, x}). A finger search starting at a particular element of the array can be performed by an exponential search by inspecting elements at distance 2i − 1 from the finger for increasing i followed by a binary search in a range of 2⌊log d⌋ − 1 elements, where d is the rank difference in the sequence between the finger and the search element.
    [Show full text]
  • Lecture Notes of CSCI5610 Advanced Data Structures
    Lecture Notes of CSCI5610 Advanced Data Structures Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong July 17, 2020 Contents 1 Course Overview and Computation Models 4 2 The Binary Search Tree and the 2-3 Tree 7 2.1 The binary search tree . .7 2.2 The 2-3 tree . .9 2.3 Remarks . 13 3 Structures for Intervals 15 3.1 The interval tree . 15 3.2 The segment tree . 17 3.3 Remarks . 18 4 Structures for Points 20 4.1 The kd-tree . 20 4.2 A bootstrapping lemma . 22 4.3 The priority search tree . 24 4.4 The range tree . 27 4.5 Another range tree with better query time . 29 4.6 Pointer-machine structures . 30 4.7 Remarks . 31 5 Logarithmic Method and Global Rebuilding 33 5.1 Amortized update cost . 33 5.2 Decomposable problems . 34 5.3 The logarithmic method . 34 5.4 Fully dynamic kd-trees with global rebuilding . 37 5.5 Remarks . 39 6 Weight Balancing 41 6.1 BB[α]-trees . 41 6.2 Insertion . 42 6.3 Deletion . 42 6.4 Amortized analysis . 42 6.5 Dynamization with weight balancing . 43 6.6 Remarks . 44 1 CONTENTS 2 7 Partial Persistence 47 7.1 The potential method . 47 7.2 Partially persistent BST . 48 7.3 General pointer-machine structures . 52 7.4 Remarks . 52 8 Dynamic Perfect Hashing 54 8.1 Two random graph results . 54 8.2 Cuckoo hashing . 55 8.3 Analysis . 58 8.4 Remarks . 59 9 Binomial and Fibonacci Heaps 61 9.1 The binomial heap .
    [Show full text]
  • String Algorithm
    Trie: A data-structure for a set of words All words over the alphabet Σ={a,b,..z}. In the slides, let say that the alphabet is only {a,b,c,d} S – set of words = {a,aba, a, aca, addd} Need to support the operations Tries and suffixes trees • insert(w) – add a new word w into S. • delete(w) – delete the word w from S. • find(w) is w in S ? Alon Efrat • Future operation: Computer Science Department • Given text (many words) where is w in the text. University of Arizona • The time for each operation should be O(k), where k is the number of letters in w • Usually each word is associated with addition info – not discussed here. 2 Trie (Tree+Retrive) for S A trie - example p->ar[‘b’-’a’] Note: The label of an edge is the label of n A tree where each node is a struct consist the cell from which this edge exits n Struct node { p a b c d n char[4] *ar; 0 a n char flag ; /* 1 if a word ends at this node. b d Otherwise 0 */ a b c d a b c d Corresponding to w=“d” } a b c d a b c d flag 1 1 0 ar 1 b Corr. To w=“db” (not in S, flag=0) S={a,b,dbb} a b c d 0 a b c d flag ar 1 b Rule: a b c d Corr. to w= dbb Each node corresponds to a word w 1 “ ” (w which is in S iff the flag is 1) 3 In S, so flag=1 4 1 Finding if word w is in the tree Inserting a word w p=root; i =0 Recall – we need to modify the tree so find(w) would return While(1){ TRUE.
    [Show full text]
  • Pointer-Machine Algorithms for Fully-Online Construction of Suffix
    Pointer-Machine Algorithms for Fully-Online Construction of Suffix Trees and DAWGs on Multiple Strings Shunsuke Inenaga Department of Informatics, Kyushu University, Japan PRESTO, Japan Science and Technology Agency, Japan [email protected] Abstract. We deal with the problem of maintaining the suffix tree indexing structure for a fully-online collection of strings, where a new character can be prepended to any string in the collection at any time. The only previously known algorithm for the problem, recently proposed by Takagi et al. [Algorithmica 82(5): 1346-1377 (2020)], runs in O(N log σ) time and O(N) space on the word RAM model, where N denotes the total length of the strings and σ denotes the alphabet size. Their algorithm makes heavy use of the nearest marked ancestor (NMA) data structure on semi-dynamic trees, that can answer queries and supports insertion of nodes in O(1) amortized time on the word RAM model. In this paper, we present a simpler fully-online right-to-left algorithm that builds the suffix tree for a given string collection in O(N(log σ + log d)) time and O(N) space, where d is the maximum number of in-coming Weiner links to a node of the suffix tree. We note that d is bounded by the height of the suffix tree, which is further bounded by the length of the longest string in the collection. The advantage of this new algorithm is that it works on the pointer machine model, namely, it does not use the complicated NMA data structures that involve table look-ups.
    [Show full text]
  • Analysis of Algorithms and Data Structures for Text Indexing
    ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ FAKULTÄT FÜR INFORMATIK ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Effiziente Algorithmen Analysis of Algorithms and Data Structures for Text Indexing Moritz G. Maaß ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ FAKULTÄT FÜR INFORMATIK ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Effiziente Algorithmen Analysis of Algorithms and Data Structures for Text Indexing Moritz G. Maaß Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Dr. h.c. mult. Wilfried Brauer Prüfer der Dissertation: 1. Univ.-Prof. Dr. Ernst W. Mayr 2. Prof. Robert Sedgewick, Ph.D. (Princeton University, New Jersey, USA) Die Dissertation wurde am 12. April 2005 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 26. Juni 2006 angenommen. Abstract Large amounts of textual data like document collections, DNA sequence data, or the Internet call for fast look-up methods that avoid searching the whole corpus. This is often accomplished using tree-based data structures for text indexing such as tries, PATRICIA trees, or suffix trees. We present and analyze improved algorithms and index data structures for exact and error-tolerant search. Affix trees are a data structure for exact indexing. They are a generalization of suffix trees, allowing a bidirectional search by extending a pattern to the left and to the right during retrieval. We present an algorithm that constructs affix trees on-line in both directions, i.e., by augmenting the underlying string in both directions. An amortized analysis yields that the algorithm has a linear-time worst-case complexity. A space efficient method for error-tolerant searching in a dictionary for a pattern allowing some mismatches can be implemented with a trie or a PATRICIA tree.
    [Show full text]
  • 4. Suffix Trees and Arrays
    4. Suffix Trees and Arrays Let T = T [0::n) be the text. For i 2 [0::n], let Ti denote the suffix T [i::n). Furthermore, for any subset C 2 [0::n], we write TC = fTi j i 2 Cg. In particular, T[0::n] is the set of all suffixes of T . Suffix tree and suffix array are search data structures for the set T[0::n]. • Suffix tree is a compact trie for T[0::n]. • Suffix array is a ordered array for T[0::n]. They support fast exact string matching on T : • A pattern P has an occurrence starting at position i if and only if P is a prefix of Ti. • Thus we can find all occurrences of P by a prefix search in T[0::n]. There are numerous other applications too, as we will see later. 138 The set T[0::n] contains jT[0::n]j = n + 1 strings of total length 2 2 jjT[0::n]jj = Θ(n ). It is also possible that L(T[0::n]) = Θ(n ), for example, when T = an or T = XX for any string X. • A basic trie has Θ(n2) nodes for most texts, which is too much. Even a leaf path compacted trie can have Θ(n2) nodes, for example when T = XX for a random string X. • A compact trie with O(n) nodes and an ordered array with n + 1 entries have linear size. • A compact ternary trie and a string binary search tree have O(n) nodes too.
    [Show full text]