Credits USAID/OFDA Publications

Total Page:16

File Type:pdf, Size:1020Kb

Credits USAID/OFDA Publications Credits The FY 2000 Annual Repor t of the U.S. Agency for Cover photo information: International Development/Bureau for Humanitarian (large photo) A building collapses from damage due Response/Office of U.S. Foreign Disaster Assistance to flooding in souther n V ietnam (photo cour tesy of was researched, written, and produced by Esmie IFRC). Alegrado, Olga Bilyk, Jamy Bond, Kasey Channell, Laura Coughlin, Brady Har tley, Faye Henderson, Jef f (top photo left) USAID/FFP emergency food com­ Ladenson, Alex Mahoney , W esley Mossburg, Matt modities are of f-loaded at a USAID/OFDA-funded Mueller, Joseph Ponte, Pia Rice, Amy Sink, Amy Tohill- feeding center in Sudan (photo by Mikaela Meredith, Stull, Katharine Winings, and Giselle Zimmer man of USAID/OFDA). MacFadden & Associates, Inc./Labat Anderson, Inc. in Washington, D.C. under contract number AOT -C- (top photo center) A helicopter delivers relief supplies 00-00-00224-00. for flood victims in souther n Vietnam (photo cour tesy of IFRC). Design by Robert King. (Top photo right) Children await supplemental feeding at a USAID/OFDA-funded project site in Somalia (photo by Mikaela Meredith, USAID/OFDA). USAID/OFDA Publications In addition to its annual repor t, USAID/OFDA pro­ Current repor ts are available on several Inter net duces several other publications that are available on gophers and World Wide Web sites, such as: the Internet and by request. One of the most useful is the Field Operations Guide (FOG), a pocket-sized USAID Home Page manual that contains methodology for conducting dis­ http://www.usaid.gov aster assessments, as well as infor mation on USAID/OFDA response procedures. USAID/OFDA UNOCHA ReliefWeb Home Page also produces current situation reports on selected dis­ http://www.reliefweb.int asters and crises around the world, which describe the humanitarian situation and the corresponding Volunteers in T echnical Assistance (VIT A) Disaster USG response. Information Center http://www.vita.org OFDA FY 2000 3 CONTENTS Credits and USAID/OFDA Publications..........3 Environmental Degradation and Disasters: Meeting the Challenge..................................10 Message from the Director ............................6 Prior-Year and Non-Declared Disasters ......16 How the U.S. Government Provides Humanitarian Aid............................................7 FY 2000 Declared Disasters ........................17 Africa Angola – Complex Emergency......................19 Burkina Faso – Returnees..............................21 Burundi – Complex Emergency ....................22 Central African Republic – Health Emergency ......................................24 Feature: Urban Flood Mitigation Project in Bamako, Mali ..............................24 Feature: Food for Thought ............................32 Comoros – Health Emergency ......................25 Ghana – Floods ..............................................34 Democratic Republic of the Congo – Kenya – Drought ............................................34 Complex Emergency ..................................26 Mauritania – Floods........................................35 Democratic Republic of the Congo – Morocco – Drought ........................................36 Floods ..........................................................28 Republic of Congo – Democratic Republic of the Congo – Complex Emergency ..................................36 Health Emergency ......................................28 Rwanda – Complex Emergency ....................37 Democratic Republic of the Congo – Accident........................................................29 Sierra Leone – Complex Emergency ............38 Djibouti – Drought ........................................29 Somalia – Complex Emergency ....................40 Eritrea – Complex Emergency Southern Africa – Floods ..............................43 and Drought ................................................29 Sudan – Complex Emergency ......................46 Ethiopia – Complex Emergency Uganda – Complex Emergency ....................48 and Drought ................................................31 and Asia the Pacific China – Earthquake ......................................51 India – Cyclone ............................................52 India – Drought ............................................52 India – Floods................................................53 Indonesia – Complex Emergency ................55 Indonesia – Earthquake ................................57 Southeast Asia – Floods ..............................59 Indonesia – Floods ........................................58 Vietnam – Floods ..........................................61 Mongolia – Winter Emergency ....................58 Vietnam – Floods ..........................................62 Philippines – Volcano ..................................59 Feature: Disaster Preparedness in Asia ........63 4 OFDA FY 2000 CONTENTS Europe and the Near East Afghanistan – Complex Emergency ............65 Afghanistan – Drought ..................................67 Albania – Refugees ........................................67 Georgia – Drought ........................................67 Greece – Fire ................................................68 Hungary – Accident ......................................68 Hungary – Floods ..........................................69 Pakistan – Drought ........................................69 Romania – Accident ......................................70 Romania – Floods ..........................................70 Tajikistan – Drought ......................................74 Serbia-Montenegro – Complex Emergency ..................................70 Turkey – Earthquake ....................................74 Feature: The Effort to Divert Ukraine – Accident ........................................75 a Potential Disaster: Lake Sarez ....................73 Uzbekistan – Drought ..................................75 Latin America and the Caribbean Bolivia – Drought ..........................................77 Caribbean – Hurricane ..................................78 Chile – Floods ................................................78 Ecuador – Volcano ........................................79 El Salvador – Health Emergency..................79 Honduras – Floods ........................................79 Mexico – Floods ............................................80 Feature: The Central American Mitigation Initiative ......................................80 Paraguay – Drought ......................................81 Venezuela – Floods ......................................82 Feature: USAID/OFDA’s Global Training Program ............................84 Appendix: Summary of USAID/OFDA Response in FY 2000 ....................................86 Commonly Used Acronyms ..........................93 OFDA FY 2000 5 OVERVIEW MESSAGE FROM THE DIRECTOR Finding Like Minds in Hard Times he requirements for humanitarian assistance, unfortunately, are on the increase. The human­ Titarian community has an obligation to recog­ nize this and respond in as creative and proactive a manner as possible. One of the great rewards of working in the humanitarian arena is the mutual rein­ forcement that people of like minds provide to each other; assumptions are made that don't require explanation: "Yes, we will find some way of help­ ing...was that ever a question?" The humanitarian community has begun to think and operate in partnerships that reflect the realities of working in environments that are increasingly insecure. Reinforcement like this is intellectual, emotional, and moral, and goes a long way during hard times. The individual attitudes have a direct impact on the organizations they represent, which in tur n encour­ ages institutionalization of truly cooperative behavior. Beneficiaries of What we have increasingly seen, however , are USAID/OFDA- arrangements and understandings put in place that standards of humanitarian relief. The Sphere Project* funded drought greatly facilitate developing a shared agenda. At the is conspicuous among these ef forts. assistance programs same time, the unique identities of the individual in Paraguay (photo organizations involved have not been compromised. On a personal note, this will be my final message as by Alejandro James, The humanitarian community has begun to think and Director. It has been an extraordinar y experience in USAID/OFDA). operate in par tnerships that reflect the realities of the best of company. Thank you all. working in environments that are increasingly inse­ cure. Donors have acknowledged the value of such arrangements by recognizing their work in funding H. Roy Williams decisions. The development of cooperative arrange­ Director ments represents a positive step in this direction, as Office of U.S. Foreign Disaster Assistance reflected in the concer ted efforts set forth to raise the * The Sphere Project is an inter-agency collaborative ef fort to increase the ef fectiveness of humanitarian assistance through a Humanitarian Charter and minimum standards guide. 6 OFDA FY 2000 OVERVIEW HOW USAID/OFDA WORKS How the U.S. Government Provides Humanitarian Aid The Office of U.S. Foreign (USAID/PVC), and the Of fice of American Schools Disaster Assistance and Hospitals Abroad (USAID/ASHA). The Of fice of U.S. Foreign Disaster Assistance (USAID/OFDA) is the office within USAID responsible USAID/OFDA recently reorganized into three divi­ for providing non-food humanitarian assistance in sions, under the management of the Of fice of the response to inter national
Recommended publications
  • Jan-Jun of 2020: Major Water-Related Disasters in the World
    Jan-Jun of 2020: Major Water-Related Disasters in the World As of March 3, 2020 Storms Ciara and Dennis Nepal (June to July) India (Assam) China (South) (North Europe) Floods and landslides were (June to September) (June to August) (February) triggered by incessant Assam floods was Heavy seasonal rains caused North Europe was hit by two monsoon rain. Authorities worsened by intermittent flooding in large swath area, intense storms in a row. said it was the worst monsoon rainfall. Over 20 especially in Yangtze river Strong wind and heavy rain monsoon damage in 11 levees along Brahmaputra basin. Three Gorges Dam caused power outages and years. River breached. reached the record high water traffic disturbance. UK was Death Toll: 102, Missing: 44. Death Toll: 150. level since it opened in 2003. severely affected by floods Death Toll: more than 200. Brazil (South East) after Storm Dennis. (January to Feburuary) Death Toll from Ciara: 9, from Record rainfall continued Dennis: 5. to cause floods and landslides. Minas Gerais state government issued a state of emergency for Storm Gloria 101 municipalities. (Spain and France) Death Toll: 81. (January) Gloria brought torrential rainfall which flooded multiple rivers. Ebro River Brazil (South East) Delta, south of Barcelona (March) was hit by a storm surge Sao Paulo and Rio de which swept 3km inland. Janeiro states were Death Toll: 13, Missing: 3. affected by deadly floods and landslides. Death Toll: 49, East Africa (March to June) Missing: 34. Exceptionally heavy seasonal rains resulted in widespread Tropical Cyclone Amphan flooding. Millions of people (India and Bangladesh) (May) Bangladesh (June to August) across East Africa suffered Number of Death 0~49 Pakistan (North) Amphan was the first super Monsoon rains along with from triple threat of floods, (March to April) cyclone (more than221km/h) in river waters from upstream Number of Death 50~99 locusts and COVID-19.
    [Show full text]
  • On the Performance of High Frequency Radar in the Western Mediterranean During the Record-Breaking Storm Gloria
    fmars-08-645762 March 8, 2021 Time: 12:6 # 1 ORIGINAL RESEARCH published: 10 March 2021 doi: 10.3389/fmars.2021.645762 On the Performance of High Frequency Radar in the Western Mediterranean During the Record-Breaking Storm Gloria Pablo Lorente1,2*, Jue Lin-Ye1,3, Manuel García-León1,3, Emma Reyes4, Maria Fernandes5, Marcos Garcia Sotillo1, Manuel Espino3, Maria Isabel Ruiz1, Vicente Gracia3, Susana Perez1, Roland Aznar1,2, Andres Alonso-Martirena5 and Enrique Álvarez-Fanjul1 1 Área de Medio Físico, Puertos del Estado, Madrid, Spain, 2 Nologin Consulting SL, Zaragoza, Spain, 3 Laboratori d’Enginyeria Marítima, Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain, 4 SOCIB – Edited by: Balearic Islands Coastal Ocean Observing and Forecasting System, Palma, Spain, 5 Qualitas Remos, Madrid, Spain Alejandro Jose Souza, Center for Research and Advanced Studies - Mérida Unit, Mexico Storm Gloria (January 19–24, 2020) hit the NW Mediterranean Sea with heavy rainfall, Reviewed by: strong easterly winds, and very high waves, causing structural damages and 13 Jorge Alejandro Kurczyn Robledo, National Autonomous University of fatalities. The low-lying Ebro Delta (ED) region was severely inundated, ruining rice Mexico, Mexico fields and seaside promenades. A variety of Copernicus Marine Environment Monitoring Christian M. Appendini, Service (CMEMS) modeling and observational products were jointly used to examine National Autonomous University of Mexico, Mexico the fingerprint of Gloria and the response of the upper oceanic layer. According to *Correspondence: the results, Gloria can be interpreted as a high-impact once-in-a-decade metocean Pablo Lorente event where various historical records were beaten. The 99th percentile of several [email protected] parameters (wind speed, significant wave height, wave period, and surface current Specialty section: velocity), derived from long-term observational time series, was persistently exceeded.
    [Show full text]
  • Relative Sea-Level Rise Scenario for 2100 Along the Coast of South Eastern Sicily (Italy) by Insar Data, Satellite Images and High-Resolution Topography
    remote sensing Article Relative Sea-Level Rise Scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography Marco Anzidei 1, Giovanni Scicchitano 2 , Giovanni Scardino 2,* , Christian Bignami 1 , Cristiano Tolomei 1 , Antonio Vecchio 3,4 , Enrico Serpelloni 1 , Vincenzo De Santis 2, Carmelo Monaco 5,6,7 , Maurilio Milella 8, Arcangelo Piscitelli 8 and Giuseppe Mastronuzzi 2 1 Istituto Nazionale di Geofisica e Vulcanologia, 00143 Roma, Italy; [email protected] (M.A.); [email protected] (C.B.); [email protected] (C.T.); [email protected] (E.S.) 2 Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy; [email protected] (G.S.); [email protected] (V.D.S.); [email protected] (G.M.) 3 Radboud Radio Lab, Department of Astrophysics/IMAPP–Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; [email protected] 4 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92195 Meudon, France 5 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Catania, 95129 Catania, Italy; [email protected] 6 CRUST—Interuniversity Center for 3D Seismotectonics with Territorial Applications, 66100 Chieti, Italy 7 Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, 95125 Catania, Italy Citation: Anzidei, M.; Scicchitano, 8 Environmental Surveys S.r.l., Spin-Off Università degli Studi di Bari Aldo Moro, 74121 Taranto, Italy; G.; Scardino, G.; Bignami, C.; Tolomei, [email protected] (M.M.); [email protected] (A.P.) C.; Vecchio, A.; Serpelloni, E.; De * Correspondence: [email protected] Santis, V.; Monaco, C.; Milella, M.; et al.
    [Show full text]
  • Internal Displacement 2020: Mid-Year Update
    Internal displacement 2020: PANTONE Mid-year update P 108-16 C 2020 Mid-year update CONTENTS | Regional Overviews 7 || Sub-Saharan Africa 8 || Middle East and North Africa 18 || East Asia and Pacific 25 || South Asia 30 || Americas 35 || Europe and Central Asia 39 | In focus: The impacts of Covid-19 on IDPs 41 | Assessing the seasonal nature of disaster displacement 50 | Notes 54 Cover:2 A father and his son in front of their tent in Barsalogho displacement camp. © Tom Peyre-Costa/NRC 2020 Mid-year update At a glance We detected 14.6 million new internal displacements across 127 countries in the first six months of 2020 Conflict and violence triggered around 4 8 million and disasters 9 8 million Conflict and violence displacement increased sharply in a number of countries. The half-year figures for Cameroon, Mozambique, Niger and Somalia are already higher than those for the whole of 2019 Burkina Faso, the Democratic Republic of the Congo (DRC) and Syria also recorded a significant number of displacements If such trends continue, the end-of-year figures for many countries are likely to be higher than the previous year Disasters continue to trigger the majority of new displacements worldwide. Cyclone Amphan was the largest single displacement event in the first half of 2020, triggering 3 3 million pre-emptive evacuations in India and Bangladesh A number of countries in East Africa were hit by major floods and a locust infestation that aggravated food insecurity, and intense bushfires led to unprecedented displacement in Australia Many IDPs whose homes have been damaged or destroyed face the prospect of prolonged displacement 3 2020 Mid-year update The UN Secretary General’s call for a global ceasefire to focus efforts on tackling the Covid-19 pandemic was taken up in a number of countries, but only briefly.
    [Show full text]
  • ​EMS INFORMATION BULLETIN Nr 422 the COPERNICUS EMERGENCY MANAGEMENT SERVICE
    30/01/2020 EMSR422 Floods in Girona and Mediterranean coast, Spain ​EMS INFORMATION BULLETIN Nr 422 THE COPERNICUS EMERGENCY MANAGEMENT SERVICE MONITORS IMPACT OF FLOOD IN SPAIN From 20 to 23 January 2020, Spain was hit by Storm Gloria. On 20 January, heavy snowfall, heavy rain ​ ​ and strong winds affected several regions of Spain. According to media reports, in Asturias a man was ​ ​ ​ killed after being hit by a vehicle on a snowbound road and Alicante Airport was closed for 24 hours and 200 flights were disrupted. The Spanish Meteorological Agency (AEMET) issued several red warnings, ​ ​ expecting winds of up to 130 km/h, seven-meter waves and heavy snowfall. The ports of Valencia and Gandia were closed to shipping traffic. On 21 January, four fatalities were reported across the country. In the northeasterly province of Girona, ​ ​ 220,000 residents remained without power and 2500 km of roads were covered with snow. On 22 January, nine additional fatalities and four missing were reported. A storm surge also swept 3 km ​ ​ ​ inland, devastating rice paddies and coastal features in the Ebro river delta and causing major damage to ​ ​ ​ beaches around Barcelona, Valencia and areas of the Balearic Islands. ​ On 23 January, the death toll rose to 13 with 4 missing and in the Balearic Islands, unusually high waves ​ ​ forced residents to evacuate their homes in several locations. On the same day, the Copernicus EMS Rapid Mapping module was activated by the “Centro de Coordinacion Operativa (CECOP) de la Direccion General de Proteccion Civil y Emergencias” (Spanish Civil Protection Directorate) on behalf of the Civil Protection Agency of Catalonia, for mapping areas in the region of Catalonia affected by Storm Gloria.
    [Show full text]
  • Results Presentation 2020
    Download the IBERDROLA Investor Relations app: 2020 February 24, 2021 Available in Available on the Available on the Google App Store App Store Play (iPad) (iPhone) IBERDROLA, S.A. Investor relations Phone: 00 34 91 784 2804 Fax: 00 34 91 784 2064 [email protected] www.iberdrola.com Legal Notice | 1 Legal Notice www.iberdrola.com Results twelve months 2020 | 2 | Legal Notice DISCLAIMER This document has been prepared by Iberdrola, S.A. exclusively for use during the presentation of financial results of the 2020 fiscal year. As a consequence thereof, this document may not be disclosed or published, nor used by any other person or entity, for any other reason without the express and prior written consent of Iberdrola, S.A. Iberdrola, S.A. does not assume liability for this document if it is used with a purpose other than the above. Except for the financial information included in this document (which has been extracted from the annual financial statements of Iberdrola, S.A. corresponding to the fiscal year ended on 31 December 2020, as audited by KPMG Auditores, S.L.), the information and any opinions or statements made in this document have not been verified by independent third parties; therefore, no express or implied warranty is made as to the impartiality, accuracy, completeness or correctness of the information or the opinions or statements expressed herein. Neither Iberdrola, S.A. nor its subsidiaries or other companies of the Iberdrola Group or its affiliates assume liability of any kind, whether for negligence or any other reason, for any damage or loss arising from any use of this document or its contents.
    [Show full text]
  • Vulnerability Analysis of the Riumar Dune Field in El Garxal Coastal Wetland (Ebro Delta, Spain)
    Journal of Marine Science and Engineering Article Vulnerability Analysis of the Riumar Dune Field in El Garxal Coastal Wetland (Ebro Delta, Spain) Inmaculada Rodríguez-Santalla * , Alejandro Díez-Martínez and Nuria Navarro Departamento de Biología, Geología, Física y Química Inorgánica, ESCET—Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; [email protected] (A.D.-M.); [email protected] (N.N.) * Correspondence: [email protected] Abstract: The aim of this work is to apply a vulnerability index in the dune field located in the Riumar urban zone at the mouth of the Ebro River. This dune field represents the natural barrier of the El Garxal coastal lagoon system. The index used integrates the dimensions of exposure, susceptibility, and resilience from the analysis of 19 variables. The results obtained show moderate susceptibility and high resilience, which are in line with the behavior of this dune field during the last sea storms (Gloria in January 2020 and Philomena in January 2021, among others) that have tested the capacity of this system to cope with the effects of these storms. Therefore, increasing the knowledge of the factors affecting the vulnerability of the dunes can be helpful in the management and conservation of these coastal environments. Keywords: dunar vulnerability index; dunar susceptibility; dunar resilience; coastal lagoon system Citation: Rodríguez-Santalla, I.; 1. Introduction Díez-Martínez, A.; Navarro, N. The systems formed by the coastal barriers and lagoons correspond to relatively Vulnerability Analysis of the Riumar shallow areas that have been partially or completely isolated from the sea due to the Dune Field in El Garxal Coastal development of spits or sand barriers caused by the wave and tide dynamics.
    [Show full text]
  • Internal Displacement 2020: Mid-Year Update
    Internal displacement 2020: PANTONE Mid-year update P 108-16 C 2020 Mid-year update CONTENTS | Regional Overviews 7 || Sub-Saharan Africa 8 || Middle East and North Africa 18 || East Asia and Pacific 25 || South Asia 30 || Americas 35 || Europe and Central Asia 39 | In focus: The impacts of Covid-19 on IDPs 41 | Assessing the seasonal nature of disaster displacement 50 | Notes 54 Cover:2 A father and his son in front of their tent in Barsalogho displacement camp. © Tom Peyre-Costa/NRC 2020 Mid-year update At a glance We detected 14.6 million new internal displacements across 127 countries in the first six months of 2020 Conflict and violence triggered around 4 8 million and disasters 9 8 million Conflict and violence displacement increased sharply in a number of countries. The half-year figures for Cameroon, Mozambique, Niger and Somalia are already higher than those for the whole of 2019 Burkina Faso, the Democratic Republic of the Congo (DRC) and Syria also recorded a significant number of displacements If such trends continue, the end-of-year figures for many countries are likely to be higher than the previous year Disasters continue to trigger the majority of new displacements worldwide. Cyclone Amphan was the largest single displacement event in the first half of 2020, triggering 3 3 million pre-emptive evacuations in India and Bangladesh A number of countries in East Africa were hit by major floods and a locust infestation that aggravated food insecurity, and intense bushfires led to unprecedented displacement in Australia Many IDPs whose homes have been damaged or destroyed face the prospect of prolonged displacement 3 2020 Mid-year update The UN Secretary General’s call for a global ceasefire to focus efforts on tackling the Covid-19 pandemic was taken up in a number of countries, but only briefly.
    [Show full text]
  • July 22, 2020
    Download the IBERDROLA Investor Relations app: First half July 22, 2020 Available in Available on the Available on the Google App Store App Store Play (iPad) (iPhone) IBERDROLA, S.A. Investor relations Phone: 00 34 91 784 2804 Fax: 00 34 91 784 2064 [email protected] www.iberdrola.com Legal Notice | 1 Legal Notice www.iberdrola.com First half 2020 | 2 | Legal Notice DISCLAIMER This document has been prepared by Iberdrola, S.A. exclusively for use during the presentation of financial results of the first semester of the 2020 fiscal year. As a consequence thereof, this document may not be disclosed or published, nor used by any other person or entity, for any other reason without the express and prior written consent of Iberdrola, S.A. Iberdrola, S.A. does not assume liability for this document if it is used with a purpose other than the above. The information and any opinions or statements made in this document have not been verified by independent third parties; therefore, no express or implied warranty is made as to the impartiality, accuracy, completeness or correctness of the information or the opinions or statements expressed herein. Neither Iberdrola, S.A. nor its subsidiaries or other companies of the Iberdrola Group or its affiliates assume liability of any kind, whether for negligence or any other reason, for any damage or loss arising from any use of this document or its contents. Neither this document nor any part of it constitutes a contract, nor may it be used for incorporation into or construction of any contract or agreement.
    [Show full text]
  • Coastal Impacts of Storm Gloria (January 2020) Over the North-Western Mediterranean
    Nat. Hazards Earth Syst. Sci., 20, 1955–1968, 2020 https://doi.org/10.5194/nhess-20-1955-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean Angel Amores1, Marta Marcos1,2, Diego S. Carrió3,4, and Lluís Gómez-Pujol5 1Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles, Spain 2Department of Physics, University of the Balearic Islands, Palma, Spain 3School of Earth Sciences. The University of Melbourne, Parkville, Victoria, Australia 4ARC Centre of Excellence for Climate Extremes. The University of Melbourne, Parkville, Victoria, Australia 5Earth Sciences Research Group, Department of Biology, University of the Balearic Islands, Palma, Spain Correspondence: Angel Amores ([email protected]) Received: 10 March 2020 – Discussion started: 25 March 2020 Revised: 3 June 2020 – Accepted: 3 June 2020 – Published: 14 July 2020 Abstract. The ocean component and coastal impacts of system evolved towards the south-east until it reached the Storm Gloria, which hit the western Mediterranean between western Mediterranean Sea (Fig.1) on 19 January, where 20 and 23 January 2020, are investigated with a numerical it intensified, severely affecting the northern and eastern re- simulation of the storm surges and wind waves. Storm Glo- gions of the Iberian Peninsula, including the Balearic Islands. ria caused severe damages and beat several historical records, This low-pressure system was named Gloria by the State Me- such as significant wave height or 24 h accumulated pre- teorological Agency (AEMET). However, the life-cycle of cipitation. The storm surge that developed along the east- Gloria lasted approximately 24 h, since it was absorbed by ern coasts of the Iberian Peninsula, reaching values of up to a larger low-pressure system that was centred over the Alb- 1 m, was accompanied by wind waves with a significant wave oran Sea and lasted until 26 January.
    [Show full text]
  • SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure
    Journal of Marine Science and Engineering Article SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure Corrado Altomare 1,2 , Angelantonio Tafuni 3,* , José M. Domínguez 4 , Alejandro J. C. Crespo 4 , Xavi Gironella 1 and Joaquim Sospedra 1 1 Maritime Engineering Laboratory, Universitat Politècnica de Catalunya, BarcelonaTech, 08034 Barcelona, Spain; [email protected] (C.A.); [email protected] (X.G.); [email protected] (J.S.) 2 Department of Civil Engineering, Ghent University, B-9052 Ghent, Belgium 3 School of Applied Engineering and Technology, New Jersey Institute of Technology, Newark, NJ 07102, USA 4 Environmental Physics Laboratory, Campus Sur, Universidade de Vigo, 32004 Ourense, Spain; [email protected] (J.M.D.); [email protected] (A.J.C.C.) * Correspondence: [email protected]; Tel.: +1-973-596-6187 Received: 18 September 2020; Accepted: 14 October 2020; Published: 21 October 2020 Abstract: The Pont del Petroli is a dismissed pier in the area of Badalona, Spain, with high historical and social value. This structure was heavily damaged in January 2020 during the storm Gloria that hit southeastern Spain with remarkable strength. The reconstruction of the pier requires the assessment and characterization of the wave loading that determined the structural failure. Therefore, a state-of-the-art Computational Fluid Dynamic (CFD) code was employed herein as an aid for a planned experimental campaign that will be carried out at the Maritime Engineering Laboratory of Universitat Politècnica de Catalunya-BarcelonaTech (LIM/UPC). The numerical model is based on Smoothed Particle Hydrodynamics (SPH) and has been employed to simulate conditions very similar to those that manifested during the storm Gloria.
    [Show full text]
  • COASTAL DAMAGES CAUSED by an EXTREME STORM (GLORIA EVENT) ALONG the SPANISH MEDITERRANEAN COAST Sancho-García* A., Guillén** J
    COASTAL DAMAGES CAUSED BY AN EXTREME STORM (GLORIA EVENT) ALONG THE SPANISH MEDITERRANEAN COAST Sancho-García* A., Guillén** J. and Rubio-Nicolás* B. *IMEDMAR-UCV (Universidad Católica de Valencia), [email protected] **Marine Sciences Institute (ICM-CSIC), [email protected] ABSTRACT An extreme storm event called Gloria hit the Spanish Mediterranean coast on the 18th-26th January 2020. The waves were generated by a low pressure system coming from the Atlantic Ocean and propagated with a mean wave direction of 55º. It was recorded a historical maximum of significant wave height of 8.4 m (Tp = 11.7 s) in the Gulf of Valencia and a sea level around 60 cm above the mean level. The storm caused a severe damage along the coast, with erosion and flooding of beaches and destruction of coastal infrastructures. In this work, we evaluate the distribution and intensity of coastal damages caused by this extreme event along the Spanish Mediterranean coast based on the analysis of published news in the most popular newspapers of each region. The type of damage, its intensity and spatial distribution are discussed. Most of the beaches were impacted by the storm, being the main damages the erosion and destruction, and the most impacted provinces Valencia, Castellón and Barcelona. This methodology is suggested to be a good approach to comparatively evaluate damages caused by extreme storms at a regional scale. Keyword: extreme waves, storm surge, coastal damages, Mediterranean Sea. 1. Introduction Coastal hazards caused by extreme storm events impact on infrastructure and economy, and also produce non-monetary issues as loss of human life or ecosystem services.
    [Show full text]