Bioavailability of Genistein and Its Glycoside Genistin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Note High-Performance Liquid Chromatography
Journal of Chromatography. 234 (1982) 494--496 Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands CHROM. 14.241 Note High-performance liquid chromatography separation of soybean iso flavones and their glucosides A. C. ELDRIDGE Nonhern Regional Research Celller. Agricll/Illra/ Research. Science and Edllcmion Administration, U.S. Department of Agricll/llIre, 1815 North University Street, Peoria. 1L 61604 (U.S.A.; (Received July 27th, 1981) Soybeans are known to contain several isoflavones (daidzein, glycitein, genis tein) and isoflavone glucosides l (daidzin, glycitein-7-f3-0-glucoside, genistin) which 2 3 4 have been reported to have estrogenic , antifungal and antioxidant activity. The quantitative determination of soybean isoflavones has been reported by gas-liquid chromatography (GLC)l, and more recently high-performance liquid chromatogra phy (HPLC)5.6.7 has been used. Carlson and Dolphin5 separated soybean isoflavone aglycones present in an alcohol extract on a pPorasil column. The isoflavone glucosides were determined after hydrolytic treatment with aqueous acid. In a paper by West et al. 6 only two isoflavone aglycones from soybean extracts were separated. This communication reports the development of a procedure for the separation of the naturally occurring soybean isoflavone glucosides and isoflavone algycones using HPLC with mild solvents and reversed phase packing that may be less likely to catalyze decomposition compared to other packings. MATERIALS AND METHODS* A Waters Assoc. (Milford, MA, U.S.A.) HPLC system was used, comprised of a WISP 710A, M-45 solvent delivery system, Model 660 solvent flow programmer, Model 450 variable-wavelength detector, with a DuPont Zorbax ODS 25 x 0.46 cm 1.0. -
Content and Composition of Isoflavonoids in Mature Or Immature
394 Journal of Health Science, 47(4) 394–406 (2001) Content and Composition of tivities1) and reported to be protective against can- cer, cardiovascular diseases and osteoporosis.3–9) Isoflavonoids in Mature or Much research has been reported about the content Immature Beans and Bean of isoflavonoids in soybeans and soybean-derived processed foods.10–23) In contrast, there are few re- Sprouts Consumed in Japan ports about the isoflavonoid content in beans other than soybeans.11,12,18,23) Yumiko Nakamura,* Akiko Kaihara, Japanese people are reported to ingest Kimihiko Yoshii, Yukari Tsumura, isoflavonoids mainly through the consumption of Susumu Ishimitsu, and Yasuhide Tonogai soybeans and its derived processed foods.20) Re- cently, we estimated that the Japanese daily intake Division of Food Chemistry, National Institute of Health Sci- of isoflavonoids from soybeans and soybean-based ences, Osaka Branch, 1–1–43 Hoenzaka, Chuo-ku, Osaka 540– processed foods is 27.80 mg per day (daidzein 0006, Japan (Received January 9, 2001; Accepted April 6, 2001) 12.02 mg, glycitein 2.30 mg and genistein 13.48 mg).24) However, isoflavonoid intake from the The content of 9 types of isoflavonoids (daidzein, consumption of immature beans, sprouts and beans glycitein, genistein, formononetin, biochanin A, other than soybeans has not been elucidated. Here coumestrol, daidzin, glycitin and genistin) in 34 do- we have measured the content of isoflavonoids in mestic or imported raw beans including soybeans, 7 mature and immature beans and bean sprouts con- immature beans and 5 bean sprouts consumed in Ja- sumed in Japan, and have compared the content and pan were systematically analyzed. -
Analysis of Bovine Serum Albumin Ligands from Puerariae Flos Using Ultrafiltration Combined with HPLC-MS
Hindawi Publishing Corporation Journal of Chemistry Volume 2015, Article ID 648361, 6 pages http://dx.doi.org/10.1155/2015/648361 Research Article Analysis of Bovine Serum Albumin Ligands from Puerariae flos Using Ultrafiltration Combined with HPLC-MS Ping Tang,1,2 Shihui Si,1 and Liangliang Liu3 1 College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China 2School of Environmental Science and Engineering, Hubei Polytechnic University, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi, Hubei 435003, China 3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China Correspondence should be addressed to Liangliang Liu; [email protected] Received 24 September 2015; Revised 26 November 2015; Accepted 30 November 2015 Academic Editor: Eulogio J. Llorent-Martinez Copyright © 2015 Ping Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rapid screening techniques for identification of active compounds from natural products are important not only for clarification of the therapeutic material basis, but also for supplying suitable chemical markers for quality control. In the present study, ultrafiltration combined with high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed and conducted to screen and identify bovine serum albumin (BSA) bound ligands from Puerariae flos. Fundamental parameters affecting the screening like incubation time, BSA concentration, pH, and temperature were studied and optimized. Under the optimum conditions, nine active compounds were identified by UV and MS data. The results indicated that this method was able to screen and identify BSA bound ligands form natural products without the need of preparative isolation techniques. -
Changes of Phytoestrogens Daidzein, Genistein and Their Glycosides Daidzin and Genistin and Coumestrol During Processing of Soyabeans
Czech J. Food Sci. Vol. 22, Special Issue Changes of Phytoestrogens Daidzein, Genistein and Their Glycosides Daidzin and Genistin and Coumestrol during Processing of Soyabeans J. LOJZA*, V. SCHULZOVÁ and J. HAJŠLOVÁ Department of Food Chemistry and Analysis, Institute of Chemical Technology, Prague, Czech Republic, *E-mail: [email protected] Abstract: Phytoestrogens represent biologically active compounds showing estrogenic activity similar to that of sex hormones – estrogens. Various adverse effects such as sterility, increase of females’ genitals, lost of males’ copulation activity, etc. were observed in farm animals after exposure to higher amounts of fodder containing phytoestrogens. On the other side, their presence in human diet is nowadays the object of many research stud- ies concerned with prevention of breast and prostate cancer, osteoporosis and other hormone-linked diseases by dietary intake of phytoestrogens. Soya (Glycine max) is one of the main sources of these compounds in diet. Isoflavones daidzein and genistein occurring either free or bound in glycosides are the main phytoestrogens in this food crop. Coumesterol representing coumestans is another effective phytoestrogen contained in some ed- dible plants. In the first part of our study, analytical method for determination of free and total phytoestrogens was developed and validated. Following steps are included: (i) acid hydrolysis (only for “total phytoestrogens” analysis), (ii) extraction with methanol/water mixture, (iii) SPE preconcentration; (iv) identification/quantifica- tion using HPLC/DAD/FLD. The aim of present study was to document the fate of phytoestrogens and their forms during household/industrial processing. As documented in our experiments the most dynamic changes of phytoestrogen levels occur during soyabeans sprouting. -
Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract 1
[CANCER RESEARCH 53, 5815-5821, December 1, 1993] Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract 1 Kazuyoshi Yanagihara, 2 Akihiro Ito, Tetsuya Toge, and Michitaka Numoto Department of Pathology [K. Y, M. N.], Cancer Research [A. L], and Surgery iT. T.], Research Institute for Nuclear Medicine and Biology, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734, Japan ABSTRACT MATERIALS AND METHODS Seven isoflavones, biochanin A, daidzein, genistein, genistin, prunectin, Establishment of Cancer Cell Lines. Tumor tissues were trimmed of fat puerarin, and pseudobaptigenin were tested for cytostatic and cytotoxic and necrotic portions and minced with scalpels. The tissue pieces were trans- effects on 10 newly established cancer cell lines of the human gastrointes- ferred, together with medium, at 10 to 15 fragments/dish to 60-mm culture tinal origin. Proliferation of HSC-41E6, HSC-45M2, and SH101-P4 stom- dishes (Falcon, Lincoln Park, N J). The patient's ascitic tumor cells were ach cancer cell lines was strongly inhibited by biochanin A and genistein, harvested by centrifugation (1000 rpm for 10 min) and plated into 60-mm whereas other stomach, esophageal, and colon cancer lines were moder- dishes. Culture dishes initially selectively trypsinized [trypsin, 0.05% (w/v); ately suppressed by both compounds. Biochanin A and genistein were EDTA, 0.02% (w/v)], to remove overgrowing fibroblasts. In addition, we cytostatic at low concentrations (<20 pg/ml for biochanin A, <10/tg/ml for attempted to remove the fibroblasts mechanically and to transfer the tumor genistein) and were cytotoxic at higher concentrations (>40 pg/ml for cells selectively. -
Daidzein and Genistein Content of Cereals
European Journal of Clinical Nutrition (2002) 56, 961–966 ß 2002 Nature Publishing Group All rights reserved 0954–3007/02 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION Daidzein and genistein content of cereals J Liggins1, A Mulligan1,2, S Runswick1 and SA Bingham1,2* 1Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, UK; and 2European Prospective Investigation of Cancer, University of Cambridge, Cambridge, UK Objective: To analyse 75 cereals and three soy flours commonly eaten in Europe for the phytoestrogens daidzein and genistein. Design: The phytoestrogens daidzein and genistein were extracted from dried foods, and the two isoflavones quantified after hydrolytic removal of any conjugated carbohydrate. Completeness of extraction and any procedural losses of the isoflavones 0 0 were accounted for using synthetic daidzin (7-O-glucosyl-4 -hydroxyisoflavone) and genistin (7-O-glucosyl-4 5-dihydroxyiso- flavone) as internal standards. Setting: Foods from the Cambridge UK area were purchased, prepared for eating, which included cooking if necessary, and freeze dried. Three stock soy flours were also analysed. Results: Eighteen of the foods assayed contained trace or no detectable daidzein or genistein. The soy flours were rich sources, containing 1639 – 2117 mg=kg. The concentration of the two isoflavones in the remaining foods ranged from 33 to 11 873 mg=kg. Conclusion: These analyses will supply useful information to investigators determining the intake of phytoestrogens in cereal products in order to relate intakes to potential biological activities. Sponsorship: This work was supported by the United Kingdom Medical Research Council, Ministry of Agriculture Fisheries and Food (contract FS2034) and the United States of America Army (contract DAMD 17-97-1-7028). -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice
8760 J. Agric. Food Chem. 2005, 53, 8760−8767 Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice ELIAS MEEZAN,† ELISABETH M. MEEZAN,† KENNETH JONES,† RAY MOORE,‡ | STEPHEN BARNES,†,‡,§, AND JEEVAN K. PRASAIN*,†,§ Department of Pharmacology & Toxicology, Comprehensive Cancer Center Mass Spectrometry Shared Facility, and Purdue-UAB Botanicals Center for Age-Related Diseases, and UAB Center for Nutrient-Gene Interaction in Cancer Prevention, University of Alabama at Birmingham, Birmingham, Alabama 35294 Puerarin and daidzin are the major isoflavone glucosides found in kudzu dietary supplements. In this study, we demonstrated that puerarin significantly improves glucose tolerance in C57BL/6J-ob/ob mice, an animal model of type 2 diabetes mellitus, blunting the rise in blood glucose levels after i.p. administration of glucose. In contrast, daidzin, the O-glucoside, had a significant but opposite effect, impairing glucose tolerance as compared to saline-treated controls. When they were administered i.p. with 14C-glucose to C57BL/6J lean mice, puerarin inhibited glucose uptake into tissues and incorporation into glycogen, while daidzin stimulated glucose uptake, showing an opposite effect to puerarin. Puerarin also antagonized the stimulatory effect of decyl-â-D-thiomaltoside, an artificial primer of glycogen synthesis, which increases 14C-glucose uptake and incorporation into glycogen in mouse liver and heart. A liquid chromatography-tandem mass spectrometry procedure was used to investigate the metabolism and bioavailability of puerarin and daidzin. The blood puerarin concentra- tion-time curve by i.p. and oral administration indicated that puerarin was four times more bioavailable via i.p. injection than via the oral route of administration. -
IN SILICO ANALYSIS of FUNCTIONAL Snps of ALOX12 GENE and IDENTIFICATION of PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS
Tulasidharan Suja Saranya et al. Int. Res. J. Pharm. 2014, 5 (6) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article IN SILICO ANALYSIS OF FUNCTIONAL SNPs OF ALOX12 GENE AND IDENTIFICATION OF PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS LIPOXYGENASE INHIBITORS Tulasidharan Suja Saranya, K.S. Silvipriya, Manakadan Asha Asokan* Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Viswa Vidyapeetham University, AIMS Health Sciences Campus, Kochi, Kerala, India *Corresponding Author Email: [email protected] Article Received on: 20/04/14 Revised on: 08/05/14 Approved for publication: 22/06/14 DOI: 10.7897/2230-8407.0506103 ABSTRACT Cancer is a disease affecting any part of the body and in comparison with normal cells there is an elevated level of lipoxygenase enzyme in different cancer cells. Thus generation of lipoxygenase enzyme inhibitors have suggested being valuable. Individual variation was identified by the functional effects of Single Nucleotide Polymorphisms (SNPs). 696 SNPs were identified from the ALOX12 gene, out of which 73 were in the coding non-synonymous region, from which 8 were found to be damaging. In silico analysis was performed to determine naturally occurring flavonoids such as isoflavones having the basic 3- phenylchromen-4-one skeleton for the pharmacological activity, like Genistein, Diadzein, Irilone, Orobol and Pseudobaptigenin. O-methylated isoflavones such as Biochanin, Calycosin, Formononetin, Glycitein, Irigenin, 5-O-Methylgenistein, Pratensein, Prunetin, ψ-Tectorigenin, Retusin and Tectorigenine were also used for the study. Other natural products like Aesculetin, a coumarin derivative; flavones such as ajoene and baicalein were also used for the comparative study of these natural compounds along with acteoside and nordihydroguaiaretic acid (antioxidants) and active inhibitors like Diethylcarbamazine, Zileuton and Azelastine as standard for the computational analysis. -
Glycitein Induces Cellular Differentiation in Nontumorigenic Prostate Epithelial Cells Elizabeth A
Glycitein induces cellular differentiation in nontumorigenic prostate epithelial cells Elizabeth A. Clubbs and Joshua A. Bomser OSU Interdisciplinary PhD program in Nutrition, The Ohio State University, Columbus OH 43210, USA ABSTRACT HYPOTHESIS RESULTS and DISCUSSION Epidemiological and experimental evidence suggests We hypothesize that soy isoflavones may Question 1: Do soy isoflavones reduce the proliferation of Question 2: We show that glycitein reduces RWPE-1 cellular that increased consumption of soy is associated nontumorigenic prostate epithelial cells? proliferation, does glycitein alter cell cycle distribution? with a reduced risk for prostate cancer. Soy reduce prostate cancer risk by increasing isoflavones are thought to be responsible, in part, prostate epithelial cell differentiation. Table 1. Cell cycle analysis of RWPE-1 cells treated 8 days as measured by flow for this anticancer activity. Soy isoflavones have cytometry. 4-HPR is a synthetic retinoid known to induce G 0/G 1 cell cycle arrest and been shown to induce cellular differentiation in a was used as a positive control. Data are given as means ± R.S.E. number of tissues. However, isoflavone-induced 140 genistein differentiation in the prostate has not been daidzein examined. The present study examined the effects 120 equol Cell Cycle Distribution (%) of the soy isoflavone, glycitein, on luminal and basal glycitein Cell Cycle cell differentiation in a nontumorigenic prostate 100 Distribution Control 4-HPR 5µµµM glycitein 50 µµµM glycitein epithelial cell line (RWPE-1). Differentiation was * a ± b ± a ± a ± * G /G 63.6 0.8 71.5 2.7 65.9 1.4 62.9 1.2 characterized by inhibition of cellular proliferation, 80 0 1 a ± c ± ab ± b ± cell cycle arrest, and cytokeratin expression. -
Cratoxylum Formosum (Jack) Dyer in Hook and Their DPPH Radical Scavenging Activities
– MEDICINAL Medicinal Chemistry Research (2019) 28:1441 1447 CHEMISTRY https://doi.org/10.1007/s00044-019-02383-9 RESEARCH ORIGINAL RESEARCH Chemical constituents of the Vietnamese plants Dalbergia tonkinensis Prain and Cratoxylum formosum (Jack) Dyer in Hook and their DPPH radical scavenging activities 1,2 1 2 1 2 1 Ninh The Son ● Mari Kamiji ● Tran Thu Huong ● Miwa Kubo ● Nguyen Manh Cuong ● Yoshiyasu Fukuyama Received: 29 April 2019 / Accepted: 7 June 2019 / Published online: 15 June 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Phytochemical investigations of the leaves and roots of Dalbergia tonkinensis led to the isolation of a new isoflavone glycoside derivative, isocaviunin 7-O-β-D-apiofuranosyl-(1 → 6)-β-D-glucopyranoside (1), and a new scalemic sesqui- terpene lactone, 3,7-dimethyl-3-vinylhexahydro-6,7-bifuran-3(2H)-one (2), along with the previously known compounds 3- 16, and nine other known compounds 17-25 were isolated from the leaves of Cratoxylum formosum. The chemical structures of the isolated compounds were elucidated by 1D- and 2D-NMR analyses as well as MS spectroscopic data. The results suggest that flavonoids are characteristic of both plants. In the DPPH radical scavenging assay, (3 R)-vestitol (5) and 1234567890();,: 1234567890();,: isoquercetin (24) possessed the strongest antioxidative IC50 values of 42.20 µg/mL and 45.63 µg/mL, respectively, and their values were comparable to that of the positive control catechin (IC50 42.98 µg/mL). Keywords Dalbergia tonkinensis ● Cratoxylum formosum ● leaves ● roots ● DPPH radical scavenging activity Introduction inhibition (Nguyen et al. 2018), but to date, the phyto- chemical studies on this plant have been quite limited. -
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-