Dynamical Inverse Problems: Theory and Application

Total Page:16

File Type:pdf, Size:1020Kb

Dynamical Inverse Problems: Theory and Application ! " ] $ % \' ( ) *() + , ( * \ )**)- ( .(( ( ,, + \ ! / % * /!-0) 0 - 01 1. 021.3-1 2-4.10-.3-01- -2'.153- '1 678 591.0-.301: 2"3 429.15. 30-. 021 50 5 "9 .4.33.533 '10:02. 322 )21 .02)-.1.5. .1 210122.0 '10:02'501 )0 .39 % ;< + ,/= (!* .* % ) + + ( (\! )( *) ) / *)( /!( (!* ) * /, '7?@@/!-0)' 0 ! 01;??<68A; . / %/ !( /! 0"1B;<B?8@?C8 67(*1+9 , PREFACE Classical vibration theory is concerned with the determination of the response of a given dynamical system to a prescribed input. These are called direct problems in vibration and powerful analytical and nu- merical methods are available nowadays for their solution. However, when one studies a phenomenon which is governed by the equations of classical dynamics, the application of the model to real life situa- tions often requires the knowledge of constitutive and/or geometrical parameters which in the direct formulation are considered as part of the data, whereas, in practice, they are not completely known or are inaccessible to direct measurements. Therefore, in several areas in applied science and technology, one has to deal with inverse problems in vibration, that is problems in which the roles of the unknowns and the data is reversed, at least in part. For example, one of the basic problems in the direct vibration theory - for infinitesimal undamped free vibrations - is the determination of the natural frequencies and normal modes of the vibrating body, assuming that the stiffness and mass coefficients are known. In the context of inverse theory, on the contrary, one is dealing with the construction of a model of a given type (i.e., a mass-spring system, a string, a beam) that has given eigenproperties. In addition to its applications, the study of inverse problems in vibration has also inherent mathematical interest, since the issues en- countered have remarkable features in terms of originality and tech- nical difficulty, when compared with the classical problems of direct vibration theory. In fact, inverse problems do not usually satisfy the Hadamard postulates of well-posedeness, also, in many cases, they are extremely non-linear, even if the direct problem is linear. In most cases, in order to overcome such obstacles, it is impossible to invoke all-purpose, ready made, theoretical procedures. Instead, it is neces- sary to single out a suitable approach and trade-off with the intrinsic ill-posedeness by using original ideas and a deep use of mathematical methods from various areas. Another specific and fundamental aspect of the study of inverse problems in vibration concerns the numerical treatment and the development of ad-hoc strategies for the treatment of ill-conditioned, linear and non-linear problems. Finally, when in- verse techniques are applied to the study of real problems, additional obstructions arise because of the complexity of mechanical modelling, the inadequacy of the analytical models used for the interpretation of the experiments, measurement errors and incompleteness of the field data. Therefore, of particular relevance for practical applications is to assess the robustness of the algorithms to measurement errors and to the accuracy of the analytical models used to describe the physical phenomenon. The purpose of the CISM course entitled “Dynamical Inverse Prob- lems: Theory and Application”, held in Udine on May 25-29 2009, was to present a state-of-the-art overview of the general aspects and practical applications of dynamic inverse methods, through the in- teraction of several topics, ranging from classical and advanced in- verse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detec- tion, imaging shear stiffness in biological tissues, wave propagation, computational and experimental aspects relevant for engineering prob- lems. The course was addressed to PhD students and researchers in civil and mechanic engineering, applied mathematics, academic and indus- trial researchers. In the first chapter Gladwell discusses matrix inverse eigenvalue problems. He describes the classical inverse problems for in-line sys- tems, such as discrete models of rods in longitudinal vibration and beams in flexural vibration. He illustrates the theory governing the formation of isospectral systems, and describe how it may be used to construct isospectral finite-element models of membranes. Through- out the chapter, emphasis is placed on ways of choosing data that lead to a realistic system. Morassi in the second chapter describes some classical approaches to the inversion of continuous second-order systems. Attention is focused on uniqueness, stability and existence results for Sturm-Liouville differential operators given in canonical form on a finite interval. A uniqueness result for a fourth order Euler- Bernoulli operator of the bending vibration of a beam is also discussed. The next chapter by R¨ohrl presents a method to numerically solve the Sturm-Liouville inverse problem using a least squares approach based on eigenvalue data. The potential and the boundary conditions are estimated from two sequences of spectral data in several exam- ples. Theorems show why this approach works particularly well. An introduction to the Boundary Control method (BC-method) for solv- ing inverse problems is presented by Belishev in the fourth chapter. In particular, the one-dimensional version of the BC-method is used for two dynamical inverse problems. The first problem is to recover the potential in a Sturm-Liouville operator describing the transverse vibration of a semi-infinite taut string with constant linear mass den- sity by time-history measurements at the endpoint of the string. The second problem deals with a second-order vectorial dynamical system governing, for example, the longitudinal vibration of two semi-infinite connected beams having constant linear mass densities. An inverse problem is to recover the matrix coefficients of the lower order terms via time-domain measurements at the endpoint of the beam. Con- nections between the BC-method and asymptotic methods in PDEs, functional analysis, control and system theory, are especially investi- gated in this chapter. In the fifth chapter Vestroni and Pau introduce dynamic methods for dynamic characterization and damage identifi- cation of civil engineering structures. Indeterminacy and difficulties in modal identification and model updating are discussed with refer- ence to several experimental cases of masonry structures. A dam- age identification procedure in a steel arch with concentrate damage is also presented. Eigenvalue assignment problems in vibration are presented by Mottershead, Tehrani and Ram in the sixth chapter. Procedures are described for pole placement by passive modification and active control using measured receptances. The theoretical basis of the method is described and experimental implementation is ex- plained. The book ends with the lectures by Oberai and Barbone on inverse problems in biomechanical imaging. The authors briefly de- scribe the clinical relevance of these problems and how the measured data is acquired. Attention is focused on two distinct strategies for solving these problems. These include a direct approach that is fast but relies on the availability of complete interior displacement mea- surements. The other is an iterative approach that is computationally intensive but is able to handle incomplete interior data and is robust to noise. Graham M.L. Gladwell and Antonino Morassi CONTENTS Matrix Inverse Eigenvalue Problems by G.M.L. Gladwell...................................... 1 An Introduction to Classical Inverse Eigenvalue Problems by A. Morassi ........................................... 29 A Least Squares Functional for Solving Inverse Sturm- Liouville Problems by N. R¨ohrl.............................................. 63 Boundary Control Method in Dynamical Inverse Problems - An Introductory Course by M.I. Belishev ......................................... 85 Dynamic Characterization and Damage Identification by F. Vestroni and A. Pau ............................... 151 Eigenvalue Assignment Problems in Vibration Using Mea- sured Receptances: Passive Modification and Active Con- trol by J.E. Mottershead, M.G. Tehrani and Y.M. Ram....... 179 Solution of Inverse Problems in Biomechanical Imaging by A.A. Oberai and P.E. Barbone........................ 203 Matrix Inverse Eigenvalue Problems Graham M.L. Gladwell Department of Civil Engineering, University of Waterloo, Waterloo, Ontario, Canada Abstract The term matrix eigenvalue problems refers to the com- putation of the eigenvalues of a symmetric matrix. By contrast, the term inverse matrix eigenvalue problem refers to the construction of a symmetric matrix from its eigenvalues. While matrix eigen- value problems are well posed, inverse matrix eigenvalue problems are ill posed: there is an infinite family of symmetric matrices with given eigenvalues. This means that either some extra constraints must be imposed on the matrix, or some extra information must be supplied. These lectures cover four main areas: i) Classical inverse problems relating to the construction of a tridiagonal matrix from its eigenvalues and the first (or last) components of its eigenvectors. ii) Application of these results to the construction of simple in-line mass-spring systems, and a discussion of extensions of these results to systems with tree structure. iii) Isospectral systems (systems that all
Recommended publications
  • Tilburg University on the Matrix
    Tilburg University On the Matrix (I + X)-1 Engwerda, J.C. Publication date: 2005 Link to publication in Tilburg University Research Portal Citation for published version (APA): Engwerda, J. C. (2005). On the Matrix (I + X)-1. (CentER Discussion Paper; Vol. 2005-120). Macroeconomics. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. sep. 2021 No. 2005–120 -1 ON THE MATRIX INEQUALITY ( I + x ) I . By Jacob Engwerda November 2005 ISSN 0924-7815 On the matrix inequality (I + X)−1 ≤ I. Jacob Engwerda Tilburg University Dept. of Econometrics and O.R. P.O. Box: 90153, 5000 LE Tilburg, The Netherlands e-mail: [email protected] November, 2005 1 Abstract: In this note we consider the question under which conditions all entries of the matrix I −(I +X)−1 are nonnegative in case matrix X is a real positive definite matrix.
    [Show full text]
  • Arxiv:1909.13402V1 [Math.CA] 30 Sep 2019 Routh-Hurwitz Array [14], Argument Principle [23] and So On
    ON GENERALIZATION OF CLASSICAL HURWITZ STABILITY CRITERIA FOR MATRIX POLYNOMIALS XUZHOU ZHAN AND ALEXANDER DYACHENKO Abstract. In this paper, we associate a class of Hurwitz matrix polynomi- als with Stieltjes positive definite matrix sequences. This connection leads to an extension of two classical criteria of Hurwitz stability for real polynomials to matrix polynomials: tests for Hurwitz stability via positive definiteness of block-Hankel matrices built from matricial Markov parameters and via matricial Stieltjes continued fractions. We obtain further conditions for Hurwitz stability in terms of block-Hankel minors and quasiminors, which may be viewed as a weak version of the total positivity criterion. Keywords: Hurwitz stability, matrix polynomials, total positivity, Markov parameters, Hankel matrices, Stieltjes positive definite sequences, quasiminors 1. Introduction Consider a high-order differential system (n) (n−1) A0y (t) + A1y (t) + ··· + Any(t) = u(t); where A0;:::;An are complex matrices, y(t) is the output vector and u(t) denotes the control input vector. The asymptotic stability of such a system is determined by the Hurwitz stability of its characteristic matrix polynomial n n−1 F (z) = A0z + A1z + ··· + An; or to say, by that all roots of det F (z) lie in the open left half-plane <z < 0. Many algebraic techniques are developed for testing the Hurwitz stability of matrix polynomials, which allow to avoid computing the determinant and zeros: LMI approach [20, 21, 27, 28], the Anderson-Jury Bezoutian [29, 30], matrix Cauchy indices [6], lossless positive real property [4], block Hurwitz matrix [25], extended arXiv:1909.13402v1 [math.CA] 30 Sep 2019 Routh-Hurwitz array [14], argument principle [23] and so on.
    [Show full text]
  • A Note on Nonnegative Diagonally Dominant Matrices Geir Dahl
    UNIVERSITY OF OSLO Department of Informatics A note on nonnegative diagonally dominant matrices Geir Dahl Report 269, ISBN 82-7368-211-0 April 1999 A note on nonnegative diagonally dominant matrices ∗ Geir Dahl April 1999 ∗ e make some observations concerning the set C of real nonnegative, W n diagonally dominant matrices of order . This set is a symmetric and n convex cone and we determine its extreme rays. From this we derive ∗ dierent results, e.g., that the rank and the kernel of each matrix A ∈Cn is , and may b e found explicitly. y a certain supp ort graph of determined b A ∗ ver, the set of doubly sto chastic matrices in C is studied. Moreo n Keywords: Diagonal ly dominant matrices, convex cones, graphs and ma- trices. 1 An observation e recall that a real matrix of order is called diagonal ly dominant if W P A n | |≥ | | for . If all these inequalities are strict, is ai,i j=6 i ai,j i =1,...,n A strictly diagonal ly dominant. These matrices arise in many applications as e.g., discretization of partial dierential equations [14] and cubic spline interp ola- [10], and a typical problem is to solve a linear system where tion Ax = b strictly diagonally dominant, see also [13]. Strict diagonal dominance A is is a criterion which is easy to check for nonsingularity, and this is imp ortant for the estimation of eigenvalues confer Ger²chgorin disks, see e.g. [7]. For more ab out diagonally dominant matrices, see [7] or [13]. A matrix is called nonnegative positive if all its elements are nonnegative p ositive.
    [Show full text]
  • Conditioning Analysis of Positive Definite Matrices by Approximate Factorizations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 26 (1989) 257-269 257 North-Holland Conditioning analysis of positive definite matrices by approximate factorizations Robert BEAUWENS Service de M&rologie NucGaire, UniversitP Libre de Bruxelles, 50 au. F.D. Roosevelt, 1050 Brussels, Belgium Renaud WILMET The Johns Hopkins University, Baltimore, MD 21218, U.S.A Received 19 February 1988 Revised 7 December 1988 Abstract: The conditioning analysis of positive definite matrices by approximate LU factorizations is usually reduced to that of Stieltjes matrices (or even to more specific classes of matrices) by means of perturbation arguments like spectral equivalence. We show in the present work that a wider class, which we call “almost Stieltjes” matrices, can be used as reference class and that it has decisive advantages for the conditioning analysis of finite element approxima- tions of large multidimensional steady-state diffusion problems. Keywords: Iterative analysis, preconditioning, approximate factorizations, solution of finite element approximations to partial differential equations. 1. Introduction The conditioning analysis of positive definite matrices by approximate factorizations has been the subject of a geometrical approach by Axelsson and his coworkers [1,2,7,8] and of an algebraic approach by one of the authors [3-51. In both approaches, the main role is played by Stieltjes matrices to which other cases are reduced by means of spectral equivalence or by a similar perturbation argument. In applications to discrete partial differential equations, such arguments lead to asymptotic estimates which may be quite poor in nonasymptotic regions, a typical instance in large engineering multidimensional steady-state diffusion applications, as illustrated below.
    [Show full text]
  • Similarities on Graphs: Kernels Versus Proximity Measures1
    Similarities on Graphs: Kernels versus Proximity Measures1 Konstantin Avrachenkova, Pavel Chebotarevb,∗, Dmytro Rubanova aInria Sophia Antipolis, France bTrapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Russia Abstract We analytically study proximity and distance properties of various kernels and similarity measures on graphs. This helps to understand the mathemat- ical nature of such measures and can potentially be useful for recommending the adoption of specific similarity measures in data analysis. 1. Introduction Until the 1960s, mathematicians studied only one distance for graph ver- tices, the shortest path distance [6]. In 1967, Gerald Sharpe proposed the electric distance [42]; then it was rediscovered several times. For some col- lection of graph distances, we refer to [19, Chapter 15]. Distances2 are treated as dissimilarity measures. In contrast, similarity measures are maximized when every distance is equal to zero, i.e., when two arguments of the function coincide. At the same time, there is a close relation between distances and certain classes of similarity measures. One of such classes consists of functions defined with the help of kernels on graphs, i.e., positive semidefinite matrices with indices corresponding to the nodes. Every kernel is the Gram matrix of some set of vectors in a Euclidean space, and Schoenberg’s theorem [39, 40] shows how it can be transformed into the matrix of Euclidean distances between these vectors. arXiv:1802.06284v1 [math.CO] 17 Feb 2018 Another class consists of proximity measures characterized by the trian- gle inequality for proximities. Every proximity measure κ(x, y) generates a ∗Corresponding author Email addresses: [email protected] (Konstantin Avrachenkov), [email protected] (Pavel Chebotarev), [email protected] (Dmytro Rubanov) 1This is the authors’ version of a work that was submitted to Elsevier.
    [Show full text]
  • Facts from Linear Algebra
    Appendix A Facts from Linear Algebra Abstract We introduce the notation of vector and matrices (cf. Section A.1), and recall the solvability of linear systems (cf. Section A.2). Section A.3 introduces the spectrum σ(A), matrix polynomials P (A) and their spectra, the spectral radius ρ(A), and its properties. Block structures are introduced in Section A.4. Subjects of Section A.5 are orthogonal and orthonormal vectors, orthogonalisation, the QR method, and orthogonal projections. Section A.6 is devoted to the Schur normal form (§A.6.1) and the Jordan normal form (§A.6.2). Diagonalisability is discussed in §A.6.3. Finally, in §A.6.4, the singular value decomposition is explained. A.1 Notation for Vectors and Matrices We recall that the field K denotes either R or C. Given a finite index set I, the linear I space of all vectors x =(xi)i∈I with xi ∈ K is denoted by K . The corresponding square matrices form the space KI×I . KI×J with another index set J describes rectangular matrices mapping KJ into KI . The linear subspace of a vector space V spanned by the vectors {xα ∈V : α ∈ I} is denoted and defined by α α span{x : α ∈ I} := aαx : aα ∈ K . α∈I I×I T Let A =(aαβ)α,β∈I ∈ K . Then A =(aβα)α,β∈I denotes the transposed H matrix, while A =(aβα)α,β∈I is the adjoint (or Hermitian transposed) matrix. T H Note that A = A holds if K = R . Since (x1,x2,...) indicates a row vector, T (x1,x2,...) is used for a column vector.
    [Show full text]
  • Inverse M-Matrix, a New Characterization
    Linear Algebra and its Applications 595 (2020) 182–191 Contents lists available at ScienceDirect Linear Algebra and its Applications www.elsevier.com/locate/laa Inverse M-matrix, a new characterization Claude Dellacherie a, Servet Martínez b, Jaime San Martín b,∗ a Laboratoire Raphaël Salem, UMR 6085, Université de Rouen, Site du Madrillet, 76801 Saint Étienne du Rouvray Cedex, France b CMM-DIM, Universidad de Chile, UMI-CNRS 2807, Casilla 170-3 Correo 3, Santiago, Chile a r t i c l e i n f o a b s t r a c t Article history: In this article we present a new characterization of inverse M- Received 18 June 2019 matrices, inverse row diagonally dominant M-matrices and Accepted 20 February 2020 inverse row and column diagonally dominant M-matrices, Available online 22 February 2020 based on the positivity of certain inner products. Submitted by P. Semrl © 2020 Elsevier Inc. All rights reserved. MSC: 15B35 15B51 60J10 Keywords: M-matrix Inverse M-matrix Potentials Complete Maximum Principle Markov chains Contents 1. Introduction and main results.......................................... 183 2. Proof of Theorem 1.1 and Theorem 1.3 .................................... 186 3. Some complements.................................................. 189 * Corresponding author. E-mail addresses: [email protected] (C. Dellacherie), [email protected] (S. Martínez), [email protected] (J. San Martín). https://doi.org/10.1016/j.laa.2020.02.024 0024-3795/© 2020 Elsevier Inc. All rights reserved. C. Dellacherie et al. / Linear Algebra and its Applications 595 (2020) 182–191 183 Acknowledgement....................................................... 190 References............................................................ 190 1. Introduction and main results In this short note, we give a new characterization of inverses M-matrices, inverses of row diagonally dominant M-matrices and inverses of row and column diagonally domi- nant M-matrices.
    [Show full text]
  • Localization in Matrix Computations: Theory and Applications
    Localization in Matrix Computations: Theory and Applications Michele Benzi Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA. Email: [email protected] Summary. Many important problems in mathematics and physics lead to (non- sparse) functions, vectors, or matrices in which the fraction of nonnegligible entries is vanishingly small compared the total number of entries as the size of the system tends to infinity. In other words, the nonnegligible entries tend to be localized, or concentrated, around a small region within the computational domain, with rapid decay away from this region (uniformly as the system size grows). When present, localization opens up the possibility of developing fast approximation algorithms, the complexity of which scales linearly in the size of the problem. While localization already plays an important role in various areas of quantum physics and chemistry, it has received until recently relatively little attention by researchers in numerical linear algebra. In this chapter we survey localization phenomena arising in various fields, and we provide unified theoretical explanations for such phenomena using general results on the decay behavior of matrix functions. We also discuss compu- tational implications for a range of applications. 1 Introduction In numerical linear algebra, it is common to distinguish between sparse and dense matrix computations. An n ˆ n sparse matrix A is one in which the number of nonzero entries is much smaller than n2 for n large. It is generally understood that a matrix is dense if it is not sparse.1 These are not, of course, formal definitions. A more precise definition of a sparse n ˆ n matrix, used by some authors, requires that the number of nonzeros in A is Opnq as n Ñ 8.
    [Show full text]
  • F(X, Y) C[(A, B) X
    SIAM J. ScI. STAT. COMPUT. 1983 Society for Industrial and Applied Mathematics Vol. 4, No. 2, June 1983 0196-5204/83/0402--0008 $1.25/0 A HYBRID ASYMPTOTIC-FINITE ELEMENT METHOD FOR STIFF TWO-POINT BOUNDARY VALUE PROBLEMS* R. C. Y. CHINe AND R. KRASNY' Abstract. An accurate and efficient numerical method has been developed for a nonlinear stiff second order two-point boundary value problem. The scheme combines asymptotic methods with the usual solution techniques for two-point boundary value problems. A new modification of Newton's method or quasilinear- ization is used to reduce the nonlinear problem to a sequence of linear problems. The resultant linear problem is solved by patching local solutions at the knots or equivalently by projecting onto an affine subset constructed from asymptotic expansions. In this way, boundary layers are naturally incorporated into the approximation. An adaptive mesh is employed to achieve an error of O(1/N2)+O(/e). Here, N is the number of intervals and e << is the singular perturbation parameter. Numerical computations are presented. Key words, projection method, quasilinearization, asymptotic expansions, boundary layers, singular perturbations, two-point boundary value problems, y-elliptic splines 1. Introduction. We treat the following stiff boundary value problem: ey" =f(x, y), a <x <b, f(x, y) C[(a, b) x R], f(x, y)>0, O<e << 1, with boundary conditions: (1.2) aoy(a)-aly'(a)=a, (1.3) boy(b + bly'(b fl. Under the assumptions that aoa >0, bobl >0 and la01/lb01 >0 Keller [26] and Bernfield and Lakshmikantham [8] have shown that the boundary value problem (BVP) has a unique solution.
    [Show full text]
  • Ultrametric Sets in Euclidean Point Spaces
    The Electronic Journal of Linear Algebra. A publication of the International Linear Algebra Society. Volume 3, pp. 23-30, March 1998. ELA ISSN 1081-3810. ULTRAMETRIC SETS IN EUCLIDEAN POINT SPACES y MIROSLAV FIEDLER Dedicated to Hans Schneider on the occasion of his seventieth birthday. Abstract. Finite sets S of p oints in a Euclidean space the mutual distances of which satisfy the ultrametric inequality A; B maxfA; C ;C; B g for all p oints in S are investigated and geometrically characterized. Inspired by results on ultrametric matrices and previous results on simplices, connections with so-called centered metric trees as well as with strongly isosceles right simplices are found. AMS sub ject classi cations. 51K05, 05C12. Key words. Ultrametric matrices, isosceles, simplex, tree. 1. Intro duction. In the theory of metric spaces cf. [1], a metric is called ultrametric if 1 A; B maxA; C ;C; B holds for all p oints A; B ; C , of the space. Let us observe already at this p oint that if A; B and C are mutually distinct p oints, then they are vertices of an isosceles triangle in which the length of the base do es not exceed the lengths of the legs. This is the reason why ultrametric spaces are also called isosceles spaces. It is well known [5, Theorem 1] that every nite ultrametric space consisting of n + 1 distinct p oints can b e isometrically emb edded into a p oint Euclidean n- dimensional space but not into suchann 1-dimensional space. We reprove this theorem and, in addition, nd a complete geometric characterization of such sets.
    [Show full text]
  • A Comparison of Limited-Memory Krylov Methods for Stieltjes Functions of Hermitian Matrices Güttel, Stefan and Schweitzer, Marc
    A comparison of limited-memory Krylov methods for Stieltjes functions of Hermitian matrices Güttel, Stefan and Schweitzer, Marcel 2020 MIMS EPrint: 2020.15 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 A COMPARISON OF LIMITED-MEMORY KRYLOV METHODS FOR STIELTJES FUNCTIONS OF HERMITIAN MATRICES STEFAN GUTTEL¨ ∗ AND MARCEL SCHWEITZERy Abstract. Given a limited amount of memory and a target accuracy, we propose and compare several polynomial Krylov methods for the approximation of f(A)b, the action of a Stieltjes matrix function of a large Hermitian matrix on a vector. Using new error bounds and estimates, as well as existing results, we derive predictions of the practical performance of the methods, and rank them accordingly. As by-products, we derive new results on inexact Krylov iterations for matrix functions in order to allow for a fair comparison of rational Krylov methods with polynomial inner solves. Key words. matrix function, Krylov method, shift-and-invert method, restarted method, Stielt- jes function, inexact Krylov method, outer-inner iteration AMS subject classifications. 65F60, 65F50, 65F10, 65F30 1. Introduction. In recent years considerable progress has been made in the development of numerical methods for the efficient approximation of f(A)b, the action of a matrix function f(A) on a vector b. In applications, the matrix A 2 CN×N is typically large and sparse and the computation of the generally dense matrix f(A) is infeasible.
    [Show full text]
  • Appunti Di Perron-Frobenius
    Appunti di Perron-Frobenius Nikita Deniskin 13 July 2020 1 Prerequisiti e fatti sparsi > ej `e j-esimo vettore della base canonica e il vettore 1 = (1; 1;::: 1) . Spectrum: σ(A) Spectral radius: ρ(A) Autospazio generalizzato: EA(λ) = Ker(A − λ I) Algebraic multiplicity: mi of λi Geometric multiplicity: di of λi λi is simple if mi = 1, semi-simple if mi = di, defective if di < mi. lim Ak `eil limite puntuale delle matrici. k k 1 Teorema di Gelfand e su ρ(A) = lim(jjA jj) k Cose su Jordan e scrittura astratta con il proiettore. Si ha che lim Bk = 0 se e solo se ρ(B) < 1. k Inoltre il limite di Bk non diverge solo se ρ(B) ≤ 1 e 1 `eun autovalore semisemplice (guarda la forma di Jordan). DA COMPLETARE Definition 1.1 Let A 2 Cn×n. Then: • A is zero-convergent if lim An = 0 n!1 • A is convergent if lim An = B 2 n×n. n!1 C Achtung! Some authors call zero-convergent matrix convergent and convergent matrix semi- convergent. Theorem 1.2 Let A 2 Cn×n, A is zero-convergent () ρ(A) < 1. Proof. Write A = CJC−1 where J is the Jordan Normal Form and note that A is zero- convergent () J is zero-convergent. Theorem 1.3 Let A 2 Cn×n, A is convergent () ALL the three following conditions apply: 1. ρ(A) ≤ 1 1 2. If ρ(A) = 1, then λ 2 σ(A); jλj = 1 ) λ = 1 3. If ρ(A) = 1, then the eigenvalue λ = 1 is semi-simple.
    [Show full text]