Human Platelet Lysate Faqs UPDATED FEB20

Total Page:16

File Type:pdf, Size:1020Kb

Human Platelet Lysate Faqs UPDATED FEB20 LSP-DOC-3339 (ID 11862) Human Platelet Lysate FAQs.docx Frequently Asked Questions (FAQs): Human Platelet Lysate What is hPL? Human Platelet Lysate (hPL) is a cell culture growth supplement obtained from human platelets. hPL contains abundant human growth factors including PDGF, bFGF, EGF, TGF-beta1, VEGF, other cytokines and proteins which yield superior results when culturing many types of human cells, particularly human MSC, regardless of their tissue source. Serum (traditionally FBS or Human) is the supernatant of clotted blood, hPL is manufactured from lysed platelets. How is it collected? hPL is derived from human donor platelets collected from healthy consented volunteer donors at certified blood banks. All individual donors and complete batches are fully tested for pathogens according to 21CFR610. What are the benefits to using hPL instead of FBS? Performance: The future of cell therapy is to be xenogeneic-free and therefore human platelet lysate offers xenogeneic free/serum substitutes for replacing FBS and improving cell culture performance. Cost: FBS is commonly used at concentration between 10-20% in cell culture. However due to the high performance effects of human platelet lysate it is typically used at lower concentrations; 2.5%, 5% or 10%. Batch-to-batch variation: Batch-to-batch variability of hPL is significantly lower than that of FBS because it is derived from standardized human blood products. Since hPL is obtained from multiple donors units that are subsequently pooled in large batch sizes, it enables the manufacture of a consistent product with minimal lot-to-lot variation. What concentration of hPL should I use? Human Platelet Lysate (hPL) can be used at a variety of concentrations, from 10% in basal media to as little as 2.5%. The table below indicates the concentrations of hPL used for a variety of different cell types and applications. Which cell types has hPL been shown to work with? Concentration Species Cell Type Cell Name Description Used (%) Bovine Primary Cell CEC Corneal Endothelial Cells 2.5 - 10% Hamster Cell Line CHO Chinese Hamster Ovary epithelial Unknown Human Cell Line HEK-293 Human Embryonic Kidney 293 cells 1 - 10% Human Cell Line HeLa HeLa Cervical cancer cells 10% Human Cell Line HFFF2 HFFF2 Dermal fibroblasts 5 - 20% Human Cell Line HL-60 Human leukaemia cell lines 20% Human Cell Line HUVEC Human umbilical vein endothelial cells 5 - 20% Page 1 of 8 Life Science Production, a Division of Life Science Group Ltd. Tel: +44 (0) 1234 889180; Email: [email protected] Web: www.lifesciencegroup.co.uk LSP-DOC-3339 (ID 11862) Human Platelet Lysate FAQs.docx Human Cell Line JURKAT Human leukaemia cell lines 10% Human Cell Line K562 Myelogenous leukaemia 10% Human Cell Line KG-1 Human leukaemia cell lines 20% Human Cell Line MCF-7 Human continuous tumour 10% Human Cell Line NCTC 2544 Dermal keratinocytes 5% Human Cell Line NCTC 2544 Dermal keratinocytes 5 - 20% Human Cell Line A-549 Human continuous tumour 5% Human Cell Line Caco-2 Human continuous tumour 5% Human Cell Line HaCaT Keratinocyte cell line from adult human skin 5% Human Cell Line HEK-293 Human Embryonic Kidney 293 cells Unknown Human Cell Line HGF-1 Human Gingiva Fibroblasts 5% Human Cell Line MCF-7 Human continuous tumour 10% Human Cell Line U-251 MG Human continuous tumour 5% Mouse Cell Line C2C12 Myoblastoma Cells 1 - 20% MMT Mouse Cell Line Mouse mammary tumour Unknown 060562 Mouse Cell Line Neuro-2a Neuroblastoma cell line Unknown Mouse Cell Line NIH/3T3 Mouse Embryonic Fibroblasts 1 - 10% Mouse Cell Line RAG Mouse adenocarcinoma cell line Unknown Rabbit Cell Line SIRC Statens Seruminstitut Rabbit Cornea 1 - 10% Rat Primary Cell MSC Mesenchymal Stem Cells 2.5 - 5% Rat Cell Line R2C Testis from rat Unknown The above list represents cell lines and conditions that have been stated in published literature or from customer testimonials. We would recommend testing your cells with a titration range to determine the ideal conditions for your particular cells and application. What does it mean when hPL is labelled as Research Grade, GMP or GMP Clinical Grade? Research Grade material is manufactured to meet the needs of basic research and development. This material supports the in vitro propagation and maintenance of various human cell types. In addition, it provides a cost effective alternative to using serum-free media. Material is supplied in validated PETG NALEGENE bottles (25 mL, 100 mL and 500 mL). GMP Grade material is manufactured under GMP-controlled conditions for use in GMP compliant cell culture SOPs. This material is provided in cryo-bags (100 mL) or in validated PETG Nalgene bottles (100 mL and 500 mL). GMP Clinical Grade material is manufactured and gamma irradiated under GMP conditions to comply with the high safety guidelines for clinical applications. Due to pathogen-reduction, GMP Clinical Grade hPL provides a high safety level for expansion of different human cell types (particularly adult stem cells, e.g. MSCs) for clinical and therapeutic applications. Page 2 of 8 Life Science Production, a Division of Life Science Group Ltd. Tel: +44 (0) 1234 889180; Email: [email protected] Web: www.lifesciencegroup.co.uk LSP-DOC-3339 (ID 11862) Human Platelet Lysate FAQs.docx Which hPL product should I choose? Product Key Benefits Pack sizes Fibrinogen Requires Animal- available -depleted heparin? component free Human Platelet Animal serum-free; 25 mL, 100 mL No Yes Yes* Lysate Solution most cost effective & 500 mL option Human Platelet Animal serum-free; 10 mL, 50 mL, Yes No No** Lysate -FD fibrinogen-depleted 100 mL & 500 mL Human Platelet Animal component- 10 mL, 50 mL, Yes No YesƗ Lysate-XF free; fibrinogen- 100mL & 500 depleted mL Human Platelet Animal serum-free; Customisable No Yes Yes* Lysate - Customised customisable; small scale process development *does not contain any heparins (these are added at the point of use). **contains residues of porcine- derived heparin. ᵻ contains residues of fully synthetic heparin. Which Heparin product should I use? Only the Human Platelet Lysate Standard and Customised products requires the addition of heparin. There are two types of heparin available: 1. Heparin - Standard animal-derived heparin (5,000 U/mL) - HSUP-001M. 1. Xeno-Free Heparin - Animal component-free heparin, fully synthetic and preservative-free (12.5 mg/mL) - HSUP-XF-001M. What does ‘Xeno-Free’ mean? Our ‘Xeno-Free’ products are non-xenogeneic and animal serum-free. i.e. they do not contain material from species other than human origin. Materials that are described as being ‘Xenogenic’ are derived from a different species and therefore are not genetically or immunologically compatible. This is very important for cell therapy and clinical applications. What is the difference between ‘animal-serum free’ and ‘animal-component free’? All of our hPL products are derived from human platelets and therefore are naturally free form other animal derived material. No animal serum is added during the manufacture of these products. For a product to be animal-component free, no products can be added to the product during the manufacturing process that are derived from another species. For an animal-component free option (i.e. Page 3 of 8 Life Science Production, a Division of Life Science Group Ltd. Tel: +44 (0) 1234 889180; Email: [email protected] Web: www.lifesciencegroup.co.uk LSP-DOC-3339 (ID 11862) Human Platelet Lysate FAQs.docx free from non-human species), either choose Human Platelet Lysate Standard with Xeno-free heparin, or Human Platelet Lysate Solution XF (which is manufactured using Xeno-free heparin, a fully synthetic heparin product). What does it mean when hPL product is described as being Fibrinogen-depleted? For both Human Platelet Lysate-XF (Xeno-Free) and Human Platelet Lysate-FD (Fibrinogen Depleted), a fibrinogen depletion step is performed during the manufacturing process in order to remove all fibrinogen. In addition, heparin is added during the manufacturing process. This means that you do not need to add heparin while preparing the cell culture medium. For Human Platelet Lysate FD, the heparin used in manufacturing is derived from porcine intestine (and therefore not xeno-free). For Human Platelet Lysate XF, the heparin used is a xeno-free version, and is fully synthetic, offering a completely xeno-free (animal-component free) end product. Why is heparin not required for the FD and XF products? Heparin is an anti-coagulant that prevents the fibrinogen in human platelet lysate from clotting in the cell culture medium during cell expansion. Both Human Platelet Lysate XF and Human Platelet Lysate FD are fibrinogen-depleted and so do not require the addition of heparin in the cell culture media. What cell types are particularly recommended? Human Mesenchymal Stromal Cells from Bone Marrow (hMSC-BM) Human Mesenchymal Stromal Cells from Umbilical Cord (hMSC-UC) Human Mesenchymal Stromal Cells from Adipose Tissue (hMSC-AT) Human Dermal Fibroblasts (HDF) In addition, see FAQ ‘Which cell types has hPL been shown to work in?’, for a more detailed table of other cell types that hPL has been shown to work with. Can I use hPL in diagnostic or therapeutic applications? No. hPL is for in vitro experimental and research use only (RUO) and the product is not intended for human or animal diagnostic or therapeutic uses. What tests are carried out on hPL? Each batch of hPL is tested to ensure the absence of bacteria, fungi, yeast, mycoplasma (M. fermentans, M. arginini, M. orale, M. hyorhinis, M. salivarium, M. hominis, M. pneumoniae, Acholeplasma laidlawii, M. synoviae and Ureaplasma species). Batches are also tested for the ability to support growth of specific cell lines. In addition, each batch is also tested for standard parameters. These include endotoxin, pH, osmolality and total protein.
Recommended publications
  • US 2017/0020926 A1 Mata-Fink Et Al
    US 20170020926A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0020926 A1 Mata-Fink et al. (43) Pub. Date: Jan. 26, 2017 (54) METHODS AND COMPOSITIONS FOR 62/006,825, filed on Jun. 2, 2014, provisional appli MMUNOMODULATION cation No. 62/006,829, filed on Jun. 2, 2014, provi sional application No. 62/006,832, filed on Jun. 2, (71) Applicant: RUBIUS THERAPEUTICS, INC., 2014, provisional application No. 61/991.319, filed Cambridge, MA (US) on May 9, 2014, provisional application No. 61/973, 764, filed on Apr. 1, 2014, provisional application No. (72) Inventors: Jordi Mata-Fink, Somerville, MA 61/973,763, filed on Apr. 1, 2014. (US); John Round, Cambridge, MA (US); Noubar B. Afeyan, Lexington, (30) Foreign Application Priority Data MA (US); Avak Kahvejian, Arlington, MA (US) Nov. 12, 2014 (US) ................. PCT/US2O14/0653O4 (21) Appl. No.: 15/301,046 Publication Classification (22) PCT Fed: Mar. 13, 2015 (51) Int. Cl. A6II 35/28 (2006.01) (86) PCT No.: PCT/US2O15/02O614 CI2N 5/078 (2006.01) (52) U.S. Cl. S 371 (c)(1), CPC ............. A61K 35/28 (2013.01); C12N5/0641 (2) Date: Sep. 30, 2016 (2013.01): CI2N 5/0644 (2013.01); A61 K Related U.S. Application Data 2035/122 (2013.01) (60) Provisional application No. 62/059,100, filed on Oct. (57) ABSTRACT 2, 2014, provisional application No. 62/025,367, filed on Jul. 16, 2014, provisional application No. 62/006, Provided are cells containing exogenous antigen and uses 828, filed on Jun. 2, 2014, provisional application No.
    [Show full text]
  • Human Platelet Lysate As a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells
    Brief Report Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells Mathew Cowper 1,†, Trivia Frazier 1,2,3, Xiying Wu 2,3, Lowry Curley 2,4, Michelle H. Ma 3, Omair A. Mohuiddin 1, Marilyn Dietrich 5, Michelle McCarthy 1, Joanna Bukowska 1,6 and Jeffrey M. Gimble 1,2,3,* 1 School of Medicine, Tulane University, New Orleans, LA 70112, USA 2 LaCell LLC, New Orleans, LA 70148, USA 3 Obatala Sciences Inc., New Orleans, LA 70148, USA 4 Axosim Sciences Inc., New Orleans, LA 70803, USA 5 Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA 6 Institute for Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland * Correspondence: [email protected]; Tel.: 1-(504)-300-0266 † Current Affiliations: Department of Urology, Bowman Gray School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA. Received: 15 May 2019; Accepted: 9 July 2019; Published: 15 July 2019 Abstract: Introduction: Adipose derived stromal/stem cells (ASCs) hold potential as cell therapeutics for a wide range of disease states; however, many expansion protocols rely on the use of fetal bovine serum (FBS) as a cell culture nutrient supplement. The current study explores the substitution of lysates from expired human platelets (HPLs) as an FBS substitute. Methods: Expired human platelets from an authorized blood center were lysed by freeze/thawing and used to examine human ASCs with respect to proliferation using hematocytometer cell counts, colony forming unit- fibroblast (CFU-F) frequency, surface immunophenotype by flow cytometry, and tri-lineage (adipocyte, chondrocyte, osteoblast) differentiation potential by histochemical staining.
    [Show full text]
  • Review Article the Roles of Platelets in Inflammation, Immunity, Wound Healing and Malignancy
    Int J Clin Exp Med 2016;9(3):5347-5358 www.ijcem.com /ISSN:1940-5901/IJCEM0021296 Review Article The roles of platelets in inflammation, immunity, wound healing and malignancy Ymer H Mekaj1,2 1Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo; 2Department of Hemostasis and Thrombosis, National Blood Transfusion Center of Kosovo, Prishtina, Kosovo Received December 6, 2015; Accepted March 10, 2016; Epub March 15, 2016; Published March 30, 2016 Abstract: The roles of platelets as essential effector cells in hemostasis have been known for over a century. Platelets also have many other functions, which are facilitated by their complex morphological structures and their ability to synthesize and store a variety of biochemical substances. These substances are released via the platelet release re- action in response to tissue/cell damage. The aim of the current study was to review the reported functions of plate- lets in inflammation, immunity, wound healing and malignancy. For this purpose, we used relevant data from the latest numerous scientific studies, including review articles, and original research articles. Platelets physiologically respond to inflammation by recruiting inflammatory cells to repair and resolve injuries. This response is facilitated by the ability of platelets to promote vascular permeability under inflammatory conditions. Platelets have critical roles in innate and adaptive immune responses and extensively interact with endothelial cells, various pathogens, and almost all known immune cell types, including neutrophils, monocytes, macrophages and lymphocytes. Additionally, platelets affect wound healing by integrating complex cascades between their mediators, which include multiple cytokines, transforming growth factors, platelet growth factors, and vascular endothelial growth factors, among oth- ers.
    [Show full text]
  • The Expanding Horizons in Thrombosis and Hemostasis
    The Expanding Horizons in Thrombosis and Hemostasis Vivian Xiaoyan Du The Expanding Horizons in Thrombosis and Hemostasis Thesis University Utrecht ISBN: 978-90-8891-881-0 Cover design: Andrea Almering Layout: Vivian X. Du Printing: Uitgeverij BOXPress Copy right © X.Du, Utrecht 2014 The Expanding Horizons in Thrombosis and Hemostasis De Uitbreiding van de Horizon van Trombose en Hemostase (met een samenvatting in het Nederlands) 血栓与凝血新进展 (含中文概要) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G. J. van der Zwaan, ingevolge het besluit van het collage voor promoties in het openbaar te verdedigen op maandag 16 juni 2014 des middags te 2.30 uur door Xiaoyan Du geboren op 23 september 1980 te Dongping county, China Promotor: Prof. dr. Ph. G. de Groot Co-promotor: Dr. B. de Laat The studies described in this thesis were supported by a grant from Sanquin Blood Supply awarded to Dr. Bas de Laat . Financial support by the Netherlands Heart Foundation for the publication of this thesis is gratefully acknowledged. Financial support by Synapse B.V. and Phenom-World for publication of this thesis is gratefully acknowledged. Additional financial support by Stago BNL, CASLO ApS, Bayer B.V. and ChipSoft B.V. is gratefully acknowledged. “As far as we can discern, the sole purpose of human existence is to kindle a light in the darkness of mere being.” Carl Jung To Iwan My father Pa en Ma Fernhout Dear Uncle and Aunt Du Beoordelingscommissie: prof. dr. J. A. G. van Strijp prof.
    [Show full text]
  • Pages 269-315) Effects DOI: of 10.22203/Ecm.V041a19platelet Products on Bio-Physiology ISSN of BM-Mscs1473-2262
    EuropeanJ Vun et al. Cells and Materials Vol. 41 2021 (pages 269-315) Effects DOI: of 10.22203/eCM.v041a19platelet products on bio-physiology ISSN of BM-MSCs1473-2262 THE IN VITRO EFFECTS OF PLATELET PRODUCTS ON THE BIOPHYSIOLOGICAL FUNCTIONS OF HUMAN BONE MARROW MESENCHYMAL STROMAL CELLS: A SYSTEMATIC REVIEW J. Vun1,2,3,*, M. Panteli1,2,3, E. Jones2 and P.V. Giannoudis1,2,3,4 1 Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK 2 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK 3 Leeds Orthopaedic and Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds, UK 4 NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK Abstract Platelet products (PP) and bone-marrow aspirate are popular sources of osteoinductive signalling molecules and osteogenic bone marrow mesenchymal stromal cells (BM-MSCs) used in the treatment of impaired bone healing. However, the combined use of PP and BM-MSCs in clinical studies has reported mixed results. Understanding the cellular and molecular interactions between PP and BM-MSCs plays the important role of guiding future research and clinical application. This systematic review investigates the effects of PP on the biophysiological functions of BM-MSCs in in vitro human studies, including (i) proliferation, (ii) migration, (iii) differentiation, (iv) growth factor/cytokine/protein expression, (v) immunomodulation, (vi) chemotactic effect on haematopoietic stem cells, (vii) response to apoptotic stress, and (viii) gene expression.In vitro studies in human have demonstrated the multi-faceted ‘priming effect’ of PP on the biophysiological functions of BM-MSCs.
    [Show full text]
  • Platelets Kill Circulating Parasites of All Major Plasmodium Species in Human Malaria
    From www.bloodjournal.org by guest on November 3, 2018. For personal use only. Regular Article PLATELETS AND THROMBOPOIESIS Platelets kill circulating parasites of all major Plasmodium species in human malaria Steven Kho,1 Bridget E. Barber,1,2 Edison Johar,3 Benediktus Andries,4 Jeanne R. Poespoprodjo,4-6 Enny Kenangalem,4,5 Kim A. Piera,1 Anna Ehmann,3 Ric N. Price,1,7 Timothy William,2,8,9 Tonia Woodberry,1 Simon Foote,3 Gabriela Minigo,1 Tsin W. Yeo,1,2 Matthew J. Grigg,1,2 Nicholas M. Anstey,1,2,* and Brendan J. McMorran3,* 1Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; 2Infectious Diseases Society Sabah- Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; 3Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; 4Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia; 5Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia; 6Department of Paediatrics, University of Gadjah Mada, Yogyakarta, Indonesia; 7Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; 8Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia; and 9Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Ministry of Health, Malaysia KEY POINTS Platelets are understood to assist host innate immune responses against infection, although direct evidence of this function in any human disease, including malaria, is unknown. Here we l Platelets directly – fl interact with and characterized platelet erythrocyte interactions by microscopy and ow cytometry in patients kill circulating with malaria naturally infected with Plasmodium falciparum, Plasmodium vivax, Plasmodium Plasmodium parasites malariae,orPlasmodium knowlesi.
    [Show full text]
  • Scale up of Platelet Production from Human Pluripotent Stem Cells for Developing Targeted Therapies: Advances and Challenges
    CELL & GENE THERAPY INSIGHTS STRATEGIES FOR SCALE-UP & SCALE-OUT EXPERT INSIGHT Scale up of platelet production from human pluripotent stem cells for developing targeted therapies: advances and challenges Jonathan N Thon & Sven M Karlsson Without question, the future of regenerative medicine is in the scalable production of transfusable human tissues for therapeutic use. Platelets will be among the first of these stem-cell based therapeutic tissues to be developed and adopted for clinical use, most notably because they are anucleate and can be safely irradiated to substantially reduce the risk of teratoma development and other cell contaminants. Furthermore, plate- lets are short-lived, well characterized, easily transplanted, are not re- quired to be autologous, and support a larger than $20 billion per year global market that relies entirely on human volunteer donors. While we are within a decade of realizing the potential of stem cell-based therapeu- tics, this was not obvious only several years ago. This article identifies the major logistical challenges associated with commercially scaling platelet production for therapeutic use and our experiential insights into translat- ing this technology to the clinic. Submitted for review: Sep 6 2017 u Published: Nov XX 2017 While platelets are primarily re- immunity [1–6]. Among the stem be safely irradiated to kill any con- sponsible for clot formation at sites cell-based therapeutic landscape, taminating nucleated cells, thereby of active hemorrhage, it is becom- platelets are an ideal early
    [Show full text]
  • Comparative Analysis of Different Platelet Lysates and Platelet Rich Preparations to Stimulate Tendon Cell Biology: an in Vitro Study
    International Journal of Molecular Sciences Article Comparative Analysis of Different Platelet Lysates and Platelet Rich Preparations to Stimulate Tendon Cell Biology: An In Vitro Study Franka Klatte-Schulz 1,*,†, Tanja Schmidt 1,† ID , Melanie Uckert 1, Sven Scheffler 2, Ulrich Kalus 3, Markus Rojewski 4,5, Hubert Schrezenmeier 4,5, Axel Pruss 3 and Britt Wildemann 1 ID 1 Julius Wolff Institute, Berlin-Brandenburger Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany, [email protected] (T.S.); [email protected] (M.U.); [email protected] (B.W.) 2 Sporthopaedicum Berlin, 10627 Berlin, Germany; sven.scheffl[email protected] 3 Institute of Transfusion Medicine, Tissue Bank, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] (U.K.); [email protected] (A.P.) 4 Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; [email protected] (M.R.); [email protected] (H.S.) 5 Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany * Correspondence: [email protected]; Tel.: +49-30-450-559058 † These authors contributed equally to this work. Received: 13 December 2017; Accepted: 8 January 2018; Published: 10 January 2018 Abstract: The poor healing potential of tendons is still a clinical problem, and the use of Platelet Rich Plasma (PRP) was hypothesized to stimulate healing. As the efficacy of PRPs remains unproven, platelet lysate (PL) could be an alternative with its main advantages of storage and characterization before use.
    [Show full text]
  • A Therapy-Grade Protocol for Differentiation of Pluripotent Stem
    Luzzani et al. Stem Cell Research & Therapy 2015, 6:6 http://stemcellres.com/content/6/1/6 RESEARCH Open Access A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement Carlos Luzzani1*, Gabriel Neiman1, Ximena Garate1, María Questa1, Claudia Solari2, Darío Fernandez Espinosa1, Marcela García3, Ana Lía Errecalde3, Alejandra Guberman2,4, María Elida Scassa1, Gustavo Emilio Sevlever1, Leonardo Romorini1,4 and Santiago Gabriel Miriuka1,3,4* Abstract Introduction: Mesenchymal stem cells (MSCs) are a promising source of cells for regenerative therapies. Although they can be isolated easily from several tissues, cell expansion is limited since their properties are lost with successive passages. Hence, pluripotent derived MSCs (PD-MSCs) arise as a suitable alternative for MSC production. Nevertheless, at present, PD-MSC derivation protocols are either expensive or not suitable for clinical purposes. Methods: In this work we present a therapy-grade, inexpensive and simple protocol to derive MSCs from pluripotent stem cells (PSCs) based on the use of platelet lysate (PL) as medium supplement. Results: We showed that the PD-MSCPL expressed multiple MSC markers, including CD90, CD73, CD105, CD166, and CD271, among others. These cells also show multilineage differentiation ability and immunomodulatory effects on pre-stimulated lymphocytes. Thorough characterization of these cells showed that a PD-MSCPL resembles an umbilical cord (UC) MSC and differs from a PSC in surface marker and extracellular matrix proteins and integrin expression. Moreover, the OCT-4 promoter is re-methylated with mesenchymal differentiation comparable with the methylation levels of UC-MSCs and fibroblasts. Lastly, the use of PL-supplemented medium generates significantly more MSCs than the use of fetal bovine serum.
    [Show full text]
  • Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 3, 2014 CONTENTS
    Journal of Blood Group Serology and Molecular Genetics VOLUME 30, N UMBER 3, 2014 Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 3, 2014 CONTENTS S EROLO gi C M ETHOD R EV I EW 113 Cold acid elution (ELU Kit II) M. Hinrichs and M.A. Keith E DUC AT I ON A L FORUM C A SE R EPORT 117 A case of masquerading alloantibodies: the value of a multitechnique approach P.M.S. Wennersten and L.J. Sutor B LOOD G ROUP A LLELE R EPORT 121 RHCE variant allele: RHCE*ce254G,733G J.A. Keller, T. Horn, C. Chiappa, C. Melland, C. Vietz, L. Castilho, and M.A. Keller O R igi N A L R EPORT 123 Detection and identification of platelet-associated alloantibodies by a solid-phase modified antigen capture enzyme-linked immunosorbent assay method and its correlation to platelet refractoriness in multiplatelet concentrate–transfused patients N. Jain, R.S. Sarkar, and J. Philip O R igi N A L R EPORT 126 Effects of pH changes of stock normal saline solution on 5 percent red cell suspension G.L. Martin, P.J.M. Caraan, J.J.S. Chua, J.A.L. Crescini, J.M.C. Diokno, C.B.Dlr. Javier, M.K.B.O. Reyes, and R.Y. Soliven C OMMUN I C AT I ON 135 Unusual erythrocyte split chimerism in pregnancy after allogeneic stem cell transplantation M.L. Barjas-Castro, A.C. Vigoritto, F.A. Moretto, and V. Castro 137 A NNOUNCEMENTS 141 A DVERT I SEMENTS 145 I NSTRUCT I ONS FOR A UTHORS E D I TOR - I N -C H I EF E D I TOR ia L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Paul M.
    [Show full text]
  • Platelet Gel for Healing Cutaneous Chronic Wounds
    Transfusion and Apheresis Science 30 (2004) 145–151 intl.elsevierhealth.com/journals/tras Platelet gel for healing cutaneous chronic wounds Giovanni Crovetti a,*, Giovanna Martinelli a, Marwan Issi a, Marilde Barone a, Marco Guizzardi b, Barbara Campanati c, Marco Moroni d, Angelo Carabelli b a Servizio di Immunoematologia e Medicina Trasfusionale, Azienda Ospedaliera ‘‘Ospedale di Circolo di Busto Arsizio’’ Ple Solaro 3, 21052 Busto Arsizio (Varese), Italy b UO di Dermatologia, Azienda Ospedaliera di Gallarate, Lgo Boito 2, 21013 Gallarate (Varese), Italy c UO Chirurgia Vascolare, Azienda Ospedaliera ‘‘Ospedale di Circolo di Busto Arsizio’’ Ple Solaro 3, 21052 Busto Arsizio (Varese), Italy d UO Malattie Infettive, Azienda Ospedaliera ‘‘Ospedale di Circolo di Busto Arsizio’’ Ple Solaro 3, 21052 Busto Arsizio (Varese), Italy Abstract Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies dem- onstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of a-granules growth factors (platelet derived growth factor––PDGF; transforming growth factor-b––TGF-b; vascular endothelial growth factor––VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We per- formed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme.
    [Show full text]
  • Novel Effectors of Human Platelet Lysate Activity
    EuropeanE Torreggiani Cells et and al. Materials Vol. 28 2014 (pages 137-151) DOI: PL-derived 10.22203/eCM.v028a11 exosomes affect BMSC functions ISSN 1473-2262 in vitro EXOSOMES: NOVEL EFFECTORS OF HUMAN PLATELET LYSATE ACTIVITY E. Torreggiani1,*, F. Perut1, L. Roncuzzi1, N. Zini2,3, SR. Baglìo1 and N. Baldini1,4 1Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy 2CNR – National Research Council, Institute of Molecular Genetics, Bologna, Italy 3Laboratory of Muscoloskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, Italy 4Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy Abstract Introduction Despite the popularity of platelet-rich plasma (PRP) and Despite the remarkable ability of bone to undergo extensive platelet lysate (PL) in orthopaedic practice, the mechanism remodelling and regeneration, prompt healing is sometimes of action and the effectiveness of these therapeutic tools impaired if the amount of bone loss is excessive or the are still controversial. So far, the activity of PRP and PL local or systemic conditions are unfavourable. In order to has been associated with different growth factors (GF) increase the chances of cure in the context of regenerative released during platelet degranulation. This study, for the medicine techniques as applied to orthopaedic conditions, first time, identifies exosomes, nanosized vesicles released new approaches based on platelet derivatives, such as in the extracellular compartment by a number of elements, platelet-rich plasma (PRP) and platelet lysate (PL), including platelets, as one of the effectors of PL activity. have attracted the attention of several investigators. PRP Exosomes were isolated from human PL by differential and PL contain a high concentration of growth factors ultracentrifugation, and analysed by electron microscopy (GF), cytokines and molecules that actively contribute and Western blotting.
    [Show full text]