Studies of SOHO Comets Matthew M

Total Page:16

File Type:pdf, Size:1020Kb

Studies of SOHO Comets Matthew M Studies of SOHO Comets Matthew M. Knight Advisor: Michael F. A'Hearn On the cover: The image on the cover was taken on 1998 June 1 at 17:27 UT using the SOHO/LASCO C2 coronagraph with the orange filter. The upper comet is C/1998 K10 (SOHO-54) and the lower comet is C/1998 K11 (SOHO-55). These were two of the brightest comets ever seen by SOHO, and reached perihelion within ∼4 hours of each other. The horizontal line extending from the nuclear condensation of C/1998 K11 is bleeding due to saturation. The Sun is behind the occulting disc at the center of the image. The image is approximately 3.3◦ tall and 2.5◦ wide. Abstract Title of Dissertation: Studies of SOHO Comets Matthew Manning Knight, Doctor of Philosophy, 2008 Dissertation directed by: Professor Michael F. A’Hearn Department of Astronomy We present here a study of the Kreutz, Marsden, and Kracht comets observed by SOHO including photometric reductions and analysis, numerical modeling, and physical modeling. We build off the work of Biesecker et al. (2002) and analyze the results of our photometric study of more than 900 lightcurves of Kreutz comets observed by SOHO. We find that they do not have a bimodal distance of peak brightness as previously reported, but instead peak from 10.5–14 R (prior to per- ihelion), suggesting there is a continuum of compositions rather than two distinct subpopulations. The lightcurves have two rates of brightening, typically ∝r−7.3±2.0 when first observed by SOHO then rapidly transitioning to ∼r−3.8±0.7 between 20–30 R . It is unclear at what distance the steeper slope begins, but it likely does not extend much beyond the SOHO field of view. We derive nuclear sizes up to ∼50 meters in radius for the SOHO observed comets, with a cumulative size distribution of N(>R)∝R−2.2 for comets larger than 5 meters in radius. This size distribution cannot explain the six largest members of the family seen from the ground, sug- gesting that either the family is not collisionally evolved or that the distribution is not uniform around the orbit. The total mass of the distribution up to the largest expected size (∼500 meters) is ∼4×1014 g, much less than the estimated mass of the largest ground observed members. After correcting for the changing discovery circumstances, the flux of comets reaching perihelion has increased since 1996, and the increase is seen in comets of all sizes. We consider the Marsden and Kracht comets together due to their apparent dynamical linkage (e.g. Ohtsuka et al. (2003); Sekanina and Chodas (2005)). Sea- sonal effects of the viewing geometry make it impossible to build a characteristic lightcurve of either group. Many are seen to survive perihelion and most reach a peak brightness within ∼6 hours of perihelion with no preference for peaks before or after perihelion. Most are barely above the threshold for detection, and the largest is probably smaller than 30 meters in radius. Our dynamical simulations suggest that the orbital distribution of the Kracht group can be produced by low velocity fragmentation events and close approaches to Jupiter over the last 50–250 years. We construct fragmentation trees for the Marsden and Kracht groups and predict that 7–8 comets in each group may be visible on their next perihelion passage. This research was supported by NASA Planetary Atmospheres grants NAG513295 and NNG06GF29G. Studies of SOHO Comets by Matthew Manning Knight Dissertation submitted to the Faculty of the Graduate School of the University of Maryland at College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2008 Advisory Committee: Professor Michael F. A’Hearn, chair Doctor Douglas A. Biesecker Professor Douglas P. Hamilton Professor Derek C. Richardson Professor Paul D. Feldman Professor James Farquhar c Matthew Manning Knight 2008 Preface The work presented here has not been published, but has been presented as posters and talks at the 2004–2007 AAS Division of Planetary Science meetings, the 2005 Asteroids, Comets, and Meteors meeting, and the January 2008 American Astro- nomical Society meeting. It has made use of the University of Maryland’s time at Kitt Peak National Observatory and has benefited from collaboration with scien- tists from Laboratoire d’Astronomie Spatiale in Marseille, France, NASA’s Goddard Space Flight Center, and the Naval Research Laboratory. Due to the quantity of data produced, the work included herein will be published in multiple places. More than 20,000 reduced and calibrated images of Kreutz comets observed by SOHO have been submitted to the Planetary Data System for archiving and will be made public after passing peer review. Later updates will include the Kreutz comets observed since 2005 and the non-Kreutz comets. The photometry discussed here will be published in International Comet Quarterly and the Planetary Data System. The analysis of the Kreutz comets will be submitted to Icarus shortly, and the analysis of the Marsden and Kracht comets will be submitted to Icarus either independently or jointly with the Marseille group. ii To my parents, John and Nancy Knight, whose support and encouragement have allowed me to follow my dreams and made me who I am today. iii Acknowledgements Thanks to my advisor, Michael A’Hearn for helping me reach my po- tential as a scientist. He has encouraged me to explore my scientific in- terests, indulged my desires to travel, and allowed me to make mistakes along the way. He has matched deep insight with a quick wit to keep me terrified of disappointing him for the better part of a decade. I can’t tell you how many times I’ve been proud of myself for coming up with some great idea only to flip through my notebook and find a suggestion from Mike 10 months ago that told me to do just that. Thanks also to Doug Hamilton and Doug Biesecker for serving as co-advisors and helping me with the occasional topics Mike doesn’t know everything about. I am indebted to the many planetary scientists who have taken me un- der their wings and helped me to feel like I am among friends at confer- ences and telescopes. These include Beatrice M¨uller,Nalin Samarasinha, Yan Fernandez, Laura Woodney, Tony Farnham, Lucy McFadden, Casey Lisse, Derek Richardson, Donna Pierce, Jianyang Li, Dennis Wellnitz, iv Olivier Groussin, and Amy Lovell. Astronomy is immensely more re- warding when you work with friends. Thanks to the graduate students, postdocs, professors, and staff who have made all these years of graduate school so much more fun than I thought they’d be. I couldn’t possibly name everyone, but the following people deserve special notice: Nicholas Chapman, Kevin Walsh, Rahul Shetty, Rob Piontek, Vanessa Lauburg, Stephanie Zonak, Franziska Koeck- ert, Lisa Wei, John Vernaleo, Claudia Knez, David Garofalo, Ke Zhang, David Rupke, Cole Miller, Kayhan G¨ultekin,Glen Petitpas, Chul Gwon, Ji Hoon Kim, Woong-Tae Kim, and Nikolas Volgenau. Special thanks to all the Dirty Snowballs past, present, and future for indulging my sports star fantasies. We may never have won an IM title, but I hope you all had as much fun as I did. Thanks to Aung, Kyaw, and everyone at Mandalay. I am already longing for chicken 11 and I haven’t even moved away yet! Thanks to all the teachers who inspired and challenged me along the way, most notably Miss Robertson, Mr. Kreisa, Mr. Lynch, Mr. Wallace, Professor Deaver, and Professor Elzinga. Thanks to my family for their love, encouragment, hot meals, and free laundry. I am particularly grateful to my uncle Don Manning for all those free tickets and for his longstanding offer to proofread my papers. I also wish to remember my late grandfather, Bus Knight, from whom I apparently inherited the only bit of science genes in the family. I have found that lying on the floor in the sun next to a purring cat makes all of life’s troubles less important. Thanks to all those cats who v have given me a new perspective on life. Finally, thanks to my wife, Stacy Teng. She has put up with my being “No Fun Matthew” for months on end and has managed to make me smile whenever I’ve needed it. vi Contents List of Tables x List of Figures xi 1 Introduction 1 1.1 A Brief History of Sungrazing Comets . 1 1.2 The Importance of Studying Sungrazing Comets . 6 1.2.1 Sungrazers: Probing the Extremes of the Solar System . 6 1.2.2 Sungrazers: An Abundant Collection of Fragmented Comets . 8 2 Photometric Reductions 12 2.1 Overview of SOHO/LASCO . 12 2.1.1 LASCO . 14 2.1.2 LASCO Observing Sequences . 15 2.1.3 SOHO Mission Interruptions . 16 2.2 Calibrating Images . 17 2.3 Aperture Photometry . 20 2.3.1 Aperture Size . 21 2.3.2 Conversion to Visual Magnitudes . 23 2.3.3 Normalization of the Magnitude . 23 2.3.4 Estimating the Error . 28 3 Kreutz Comets 31 3.1 Overview . 31 3.2 Orbital Elements . 33 3.3 Temporal Clustering . 39 3.4 Lightcurves . 43 3.4.1 Peak Distance and the “Universal Curves” . 43 3.4.2 Brightening and Fading . 49 3.4.3 Orange – Clear Magnitude Difference . 52 3.4.4 Size Distribution . 54 3.4.5 The Effect of Normalizing the Photometry . 56 vii 3.5 Population . 62 3.5.1 Yearly Detection Rate . 62 3.5.2 Seasonal Variability . 65 3.5.3 True Arrival Rate .
Recommended publications
  • On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko
    On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko Martin Rubin, Cécile Engrand, Colin Snodgrass, Paul Weissman, Kathrin Altwegg, Henner Busemann, Alessandro Morbidelli, Michael Mumma To cite this version: Martin Rubin, Cécile Engrand, Colin Snodgrass, Paul Weissman, Kathrin Altwegg, et al.. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. Space Sci.Rev., 2020, 216 (5), pp.102. 10.1007/s11214-020-00718-2. hal-02911974 HAL Id: hal-02911974 https://hal.archives-ouvertes.fr/hal-02911974 Submitted on 9 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Space Sci Rev (2020) 216:102 https://doi.org/10.1007/s11214-020-00718-2 On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko Martin Rubin1 · Cécile Engrand2 · Colin Snodgrass3 · Paul Weissman4 · Kathrin Altwegg1 · Henner Busemann5 · Alessandro Morbidelli6 · Michael Mumma7 Received: 9 September 2019 / Accepted: 3 July 2020 / Published online: 30 July 2020 © The Author(s) 2020 Abstract Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes.
    [Show full text]
  • Measuring and Modelling Forward Light Scattering in the Human Eye
    MEASURING AND MODELLING FORWARD LIGHT SCATTERING IN THE HUMAN EYE A thesis submitted to The University of Manchester, for the degree of Doctor of Philosophy, in the Faculty of Life Sciences. 2015 Pablo Benito López Optometry THESIS CONTENT THESIS CONTENT ...................................................................................................................... 2 LIST OF FIGURES ....................................................................................................................... 5 LIST OF TABLES ........................................................................................................................ 10 LIST OF EQUATIONS ............................................................................................................... 11 ABBREVIATIONS LIST ........................................................................................................... 12 ABSTRACT ................................................................................................................................... 13 DECLARATION .......................................................................................................................... 14 THESIS FORMAT ....................................................................................................................... 14 COPYRIGHT STATEMENT .................................................................................................... 15 ACKNOWLEDGEMENTS ......................................................................................................
    [Show full text]
  • Comet C/2018 V1 (Machholz-Fujikawa-Iwamoto): Data Ulate About Past Visits of Interstellar Comets on the Basis of Available Using a 0.47-M Reflector, D
    MNRAS 000, 1–11 (2019) Preprint 30 August 2019 Compiled using MNRAS LATEX style file v3.0 Comet C/2018 V1 (Machholz-Fujikawa-Iwamoto): dislodged from the Oort Cloud or coming from interstellar space? C. de la Fuente Marcos1⋆ and R. de la Fuente Marcos2 1 Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain 2AEGORA Research Group, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain Accepted 2019 August 3. Received 2019 July 26; in original form 2019 February 17 ABSTRACT The chance discovery of the first interstellar minor body, 1I/2017 U1 (‘Oumuamua), indicates that we may have been visited by such objects in the past and that these events may repeat in the future. Unfortunately, minor bodies following nearly parabolic or hyperbolic paths tend to receive little attention: over 3/4 of those known have data-arcs shorter than 30 d and, con- sistently, rather uncertain orbit determinations. This fact suggests that we may have observed interstellar interlopers in the past, but failed to recognize them as such due to insufficient data. Early identification of promising candidates by using N-body simulations may help in improv- ing this situation, triggering follow-up observations before they leave the Solar system. Here, we use this technique to investigate the pre- and post-perihelion dynamical evolution of the slightly hyperbolic comet C/2018 V1 (Machholz-Fujikawa-Iwamoto) to understand its origin and relevance within the context of known parabolic and hyperbolic minor bodies. Based on the available data, our calculations suggest that although C/2018 V1 may be a former mem- ber of the Oort Cloud, an origin beyond the Solar system cannot be excluded.
    [Show full text]
  • CYANOGEN JETS and the ROTATION STATE of COMET MACHHOLZ (C/2004 Q2) Tony L
    The Astronomical Journal, 133:2001Y2007, 2007 May # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. CYANOGEN JETS AND THE ROTATION STATE OF COMET MACHHOLZ (C/2004 Q2) Tony L. Farnham1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA; [email protected] Nalin H. Samarasinha2 National Optical Astronomy Observatory, Tucson, AZ 85719, USA; and Planetary Science Institute, Tucson, AZ 85719, USA Be´atrice E. A. Mueller1 Planetary Science Institute, Tucson, AZ 85719, USA and Matthew M. Knight1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Received 2006 June 16; accepted 2007 January 25 ABSTRACT Extensive observations of Comet Machholz (C/2004 Q2) from 2005 February, March, and April were used to derive a number of the properties of the comet’s nucleus. Images were obtained using narrowband comet filters to isolate the CN morphology. The images revealed two jets that pointed in roughly opposite directions relative to the nucleus and changed on hourly timescales. The morphology repeated itself in a periodic manner, and this fact was used to determine a rotation period for the nucleus of 17:60 Æ 0:05 hr. The morphology was also used to estimate a pole orientation of R:A: ¼ 50,decl: ¼þ35, and the jet source locations were found to be on opposite hemispheres at mid- latitudes. The longitudes are also about 180 apart, although this is not well constrained. The CN features were mea- sured to be moving at about 0.8 km sÀ1, which is close to the canonical value typically quoted for gas outflow.
    [Show full text]
  • Herschel Images of Fomalhaut. an Extrasolar Kuiper Belt at the Height
    Astronomy & Astrophysics manuscript no. acke c ESO 2018 November 7, 2018 Herschel images of Fomalhaut⋆ An extrasolar Kuiper Belt at the height of its dynamical activity B. Acke1,⋆⋆, M. Min2,3, C. Dominik3,4, B. Vandenbussche1 , B. Sibthorpe5, C. Waelkens1, G. Olofsson6, P. Degroote1, K. Smolders1,⋆⋆⋆, E. Pantin7, M. J. Barlow8, J. A. D. L. Blommaert1, A. Brandeker6, W. De Meester1, W. R. F. Dent9, K. Exter1, J. Di Francesco10, M. Fridlund11, W. K. Gear12, A. M. Glauser5,13, J. S. Greaves14, P. M. Harvey15, Th. Henning16, M. R. Hogerheijde17, W. S. Holland5, R. Huygen1, R. J. Ivison5,18, C. Jean1, R. Liseau19, D. A. Naylor20, G. L. Pilbratt11, E. T. Polehampton20,21, S. Regibo1, P. Royer1, A. Sicilia-Aguilar16,22, and B.M. Swinyard21 (Affiliations can be found after the references) Received ; accepted ABSTRACT 8 Context. Fomalhaut is a young (2 ± 1 × 10 years), nearby (7.7 pc), 2 M⊙ star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7′′ and 36.7′′ at wave- lengths between 70 µm and 500 µm. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system.
    [Show full text]
  • Comet Section Observing Guide
    Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................
    [Show full text]
  • Dust Near the Sun
    Dust Near The Sun Ingrid Mann and Hiroshi Kimura Institut f¨urPlanetologie, Westf¨alischeWilhelms-Universit¨at,M¨unster,Germany Douglas A. Biesecker NOAA, Space Environment Center, Boulder, CO, USA Bruce T. Tsurutani Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Eberhard Gr¨un∗ Max-Planck-Institut f¨urKernphysik, Heidelberg, Germany Bruce McKibben Department of Physics and Space Science Center, University of New Hampshire, Durham, NH, USA Jer-Chyi Liou Lockheed Martin Space Operations, Houston, TX, USA Robert M. MacQueen Rhodes College, Memphis, TN, USA Tadashi Mukai† Graduate School of Science and Technology, Kobe University, Kobe, Japan Lika Guhathakurta NASA Headquarters, Washington D.C., USA Philippe Lamy Laboratoire d’Astrophysique Marseille, France Abstract. We review the current knowledge and understanding of dust in the inner solar system. The major sources of the dust population in the inner solar system are comets and asteroids, but the relative contributions of these sources are not quantified. The production processes inward from 1 AU are: Poynting- Robertson deceleration of particles outside of 1 AU, fragmentation into dust due to particle-particle collisions, and direct dust production from comets. The loss processes are: dust collisional fragmentation, sublimation, radiation pressure acceler- ation, sputtering, and rotational bursting. These loss processes as well as dust surface processes release dust compounds in the ambient interplanetary medium. Between 1 and 0.1 AU the dust number densities and fluxes can be described by inward extrapolation of 1 AU measurements, assuming radial dependences that describe particles in close to circular orbits. Observations have confirmed the general accuracy of these assumptions for regions within 30◦ latitude of the ecliptic plane.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight.
    [Show full text]
  • Polarimetry of Comets: Observational Results and Problems
    POLARIMETRY OF COMETS: OBSERVATIONAL RESULTS AND PROBLEMS N. Kiselev & V. Rosenbush Main Astronomical Observatory of National Academy of Sciences of Ukraine 1st WG meeting in Warsaw, Poland, 7-9 May 2012 Outline of presentation Linear polarization of comets. Problems with the interpretation of diversity in the maximum polarization of comets. Circular polarization of comets. Next task Polarimetric data for comets up to the mid 1970s (Kiselev, 1981; Dobrovolsky et al.,1986) The polarization of molecular emissions was explained as being due to resonance fluorescence (Öhman, 1941; Le Borgne et al., 1986) 2 P90 sin P() 2 , where P90 = 0.077 1 P90 cos Curve (2) is polarization phase dependence for the resonance fluorescence according to Öhman’s formula. Curve (1) is a fit of polarization data in continuum according to Öhman’s formula. There are no observations of comets at phase angles smaller than 40 until 1975. Open questions: •What is polarization phase curve for dust near opposition ? •What is the maximum of polarization? •Is there a diversity in comet polarization? Comets: negative polarization branch Discovery of the NPB gave impetus to development of new optical mechanisms Observations of comet West to explain its origin. Among them, the revealed a negative branch of scattering of light by particles with aggregate structure. linear polarization at phase angles 22. (Kiselev&Chernova, 1976) Phase angle dependence of polarization for comets in the blue and red continuum (Kiselev, 2003) The observed difference in the All comets polarization of the two groups of comets is apparent. Why is this? There are three points of view: •The polarization of each comet is an individual (Perrin&Lamy, 1986).
    [Show full text]
  • Downloaded Freely from the Google Play Portal (
    1 2 Spiral Galaxy M51. Herrero, E. Image from Montsec Astronomical Observatory (OAdM) 3 4 5 CONTENTS The Institute 6 Board of trustees 8 Scientific advisory board 9 Board of Directors 9 Staff 10 Scientific Research 16 Scientific results 25 Publications SCI 31 Papers in which only one institute is participating 31 Papers published by two institutes in collaboration 39 Papers published by three institutes in collaboration 40 Publications non SCI 40 Papers in which only one institute is participating 40 Papers published by two institutes in collaboration 46 Books edited 47 Courses 47 Contribution to conferences and seminars 48 Contribution to conferences 48 Seminars 59 Internal seminars 59 External seminars 59 Theses 61 Finished Theses 61 PhD Theses 61 Master theses 62 On going theses 62 PhD Theses 62 Master theses 62 Visiting scientists 64 Technological development activities 65 Technical reports and documents 65 Technical reports and documents developed by only one institute 65 Technical reports and documents developed by three institutes in collaboration 69 Technological development activities 69 Finished activities 69 Ongoing activities 69 Projects managed by the IEEC 69 Finished projects 69 Ongoing projects 70 Other scientific activities 72 Space missions 73 Mission proposals 82 Ground instrument projects 89 Montsec Astronomical Observatoyy (OAdM) 95 European Projects 99 Workshops organized by the IEEC 103 Outreach activities 107 Objectives, indicators and achievement 114 6 IEEC ▪ THE INSTITUTE The Institute of Space Studies of Catalonia (IEEC) was founded in February of 1996 as an initiative of the Fundació Catalana per a la Recerca (FCR), in collaboration with the University of Barcelona (UB), the Autonomous University of Barcelona (UAB), the Polytechnic University of Catalonia (UPC) and the Spanish Research Council (CSIC) with the objective of creating a multi-disciplinary and multi-institutional institute devoted to space research and their applications.
    [Show full text]
  • The Composition of Cometary Volatiles 391
    Bockelée-Morvan et al.: The Composition of Cometary Volatiles 391 The Composition of Cometary Volatiles D. Bockelée-Morvan and J. Crovisier Observatoire de Paris M. J. Mumma NASA Goddard Space Flight Center H. A. Weaver The Johns Hopkins University Applied Physics Laboratory The composition of cometary ices provides key information on the chemical and physical properties of the outer solar nebula where comets formed, 4.6 G.y. ago. This chapter summa- rizes our current knowledge of the volatile composition of cometary nuclei, based on spectro- scopic observations and in situ measurements of parent molecules and noble gases in cometary comae. The processes that govern the excitation and emission of parent molecules in the radio, infrared (IR), and ultraviolet (UV) wavelength regions are reviewed. The techniques used to convert line or band fluxes into molecular production rates are described. More than two dozen parent molecules have been identified, and we describe how each is investigated. The spatial distribution of some of these molecules has been studied by in situ measurements, long-slit IR and UV spectroscopy, and millimeter wave mapping, including interferometry. The spatial dis- tributions of CO, H2CO, and OCS differ from that expected during direct sublimation from the nucleus, which suggests that these species are produced, at least partly, from extended sources in the coma. Abundance determinations for parent molecules are reviewed, and the evidence for chemical diversity among comets is discussed. 1. INTRODUCTION ucts are called daughter products. Although there have been in situ measurements of some parent molecules in the coma Much of the scientific interest in comets stems from their of 1P/Halley using mass spectrometers, the majority of re- potential role in elucidating the processes responsible for the sults on the parent molecules have been derived from remote formation and evolution of the solar system.
    [Show full text]