Print This Article

Total Page:16

File Type:pdf, Size:1020Kb

Print This Article 1 ; WILDFOWL 23 Published by the Wildfowl Trust, Slimbridge 1972 Editors: G. V. T. Matthews and M. A. Ogilvie The Wildfowl Trust, Slimbridge, Gloucester, England Cover painting by Peter Scott Line drawings by Peter Scott, Robert Gillmor, Barry A. Leach and others Price £1.75 ($5.50). Postage extra Issued free to Life Fellows, Fellows and Full Members of the Wildfowl Trust Printed for the w il d f o w l t r u s t b y THE BERKSHIRE p r in tin g CO. LTD., Reading, Berkshire, England, 1972 Index to Plates I a. Pair of Kelp Geese facing page 16 b. Female Falkland Flightless Steamer Duck and young II a. Male Kelp Goose 17 b. Female Kelp Goose I l l a. Feral Greylag Goose on nest 32 b. Feral Greylag Goose nest site IV a. Feral Greylags flying 33 b. Feral Greylag family party V a . Chilean Teal 56 b. Chilean Pintail V I a. Cereopsis Goose between pages 56-57 b. Female Cereopsis Goose and Young V II a. A pair of Andean Geese between pages 56-57 b. Pair of Greater Magellan Geese V III a. Pair of White-faced Whistling Ducks facing page 57 b. Pair of Orinoco Geese IX a. Greenland White-fronted Geese 80 b. Emperor Geese X a. Male European Pochard 81 b. Philippine Duck X I a and b. Female Musk Duck 96 X II a. Female Gadwall and Young 97 b. Black-necked Swan and young X III a and b. Hawaiian Goose and young 112 X IV a and b. Observation facilities at Eastpark Refuge 113 X V a. Immature White-winged Wood Duck 128 b. Downy young of White-winged Wood Duck X V I a. Bewick’s Swan 129 Contents page Waterfowl wintering, resting and breeding areas of the south-west Caspian lowlands. David A. Ferguson 5 Ecological studies of Falkland Islands’ waterfowl. Milton W. Weller 25 The waterfowl of the Fraser Delta, British Columbia. Barry A. Leach 45 The Grey Teal at saline drought-refuges in north Queensland. H. J. Lavery 56 Icelandic Greylag Geese wintering in Britain in 1960-1971. H. Boyd and M. A. Ogilvie 64 Breeding biology of feral Greylag Geese in south-west Scotland. John G. Young 83 Accidental poisoning of wild geese in Perthshire, November 1971. S. Bailey, P. J. Bunyan, G. A. Hamilton, D. M. Jennings and P. I. Stanley 88 Moult migration of Emperor Geese. N. G. Blurton Jones 92 Mortality and exploitation of Paradise Shelduck. Murray Williams 94 British recoveries of Mallard ringed at Borough Fen Decoy, Northampton­ shire. M. A. Ogilvie and W. A. Cook 103 Mute Swan weights in relation to breeding performance. C. M. Reynolds 111 One hundred and fifty years of Mute Swans on the Thames. Stanley Cramp 119 Research, Conservation and Education: the Wildfowl Trust’s contributions in 1971. 125 5 Waterfowl wintering, resting and breeding areas of the south-west Caspian lowlands DAVID A. FERGUSON Introduction The South Caspian region of Iran has ployed as an advisor to the Iran Game received considerable ornithological atten­ and Fish Department and later as the tion as compared with other sections of Chief of the Migratory Waterfowl Unit, the country. Misonne (1953), Schüz Division of Research and Development in (1959), Passburg (1959), Nielsen and the Department, collected data on an Speyer (1967), Nielsen (1969), and Feeny irregular time basis for the area from et al. (1968), to name only a few of the January 1967 to April 1970. Most obser­ more recent investigators, have all added vations were carried out during the to the knowledge of this area. Most of winter months, but in December 1968 a these workers, however, were only able month-by-month survey was initiated at to devote relatively short periods of time the Pahlavi lagoon and marsh situated in to the region and therefore concentrated the centre of the region. Visits were made on migrational aspects. Others described over two or three day periods at approxi­ local movements, occurrence and abun­ mately the same time each month until dance. Emphasis was almost always on April 1970. the passerines. A total of 332 observations was made on This paper describes the results of an over 100 areas throughout the south-west intensive study of the waterfowl and wet­ Caspian lowlands. Some areas were only lands in the south-west Caspian lowlands. visited once or twice to locate, study and Investigation of the area was instigated evaluate them. Others, which were usually through the interest of the Iran Game and larger and determined to be more im­ Fish Department. The entire South Cas­ portant, were visited several times to see pian region was recognised as an im­ how the situation changed from month portant wintering ground for Palaearctic to month. Due to the number of areas waterfowl which provided an abundant and observations the information in this supply of food for a well-established wild- paper is necessarily summarised. fowling industry (Savage 1963). However, The area of study consists of the south­ little information was available on the west Caspian lowlands extending from the kinds and abundance of species, the border in the north with the U.S.S.R. number, size, and type of habitats, effects at Astara, south and east to an arbitrary of hunting, as well as many other aspects point near the present town of Rudsar that would affect the status of the popu­ where the plain narrows between the lation as a whole. The Department was Alborz Mountains and the Caspian Sea primarily interested in the factors affecting (Figure 1). The arbitrary demarcation was management of the waterfowl, but were due in the north to political boundaries also concerned with the overall ecology and in the south-east to physical limits of the region. of extensive wetland habitat other than The author of this paper, while em­ the shore of the Caspian itself. 6 Wildfowl Figure 1. The south-west Caspian lowlands. Waterfowl of the south-west Caspian 7 AREA AND STRUCTURE 187 cm. (there was an exception in 1942 Physical geography, geology and when a minor rise was experienced, but geomorphology this was followed by a greater fall in 1944). Zenkevitch further reports that the 1 Caspian Sea conformity between fluctuations of the The Alborz Mountains (the western por­ Caspian Sea level and those of the inflow tion is known as the Talesh section) of the Volga River which supplies about extend eastward from the border with the 75.6% of the total water supply of all U.S.S.R. in the north-west, in a shallow the rivers, is so close that direct influence arc (maximum width of 130 km. and an has been established. He states that the average of under 95 km.) along the great drop in the Caspian level from 1930 southern end of the Caspian Sea for over to 1943 was caused by the considerable 1,000 km. Included in this chain, and decrease of river inflow, particularly the lying approximately in the centre, is the Volga, but that this has now been volcanic cone of Mount Demavand stabilised. (5,774 metres) which is higher than any Almost all the reports since then in­ peak to the west of it in Asia or Europe. dicate the contrary; that the Caspian con­ Because of its restricted width, the system tinues to fall. However, the same reports is extremely steep, especially the give values for the level of the sea which northern slopes. These rise directly from lead to a great deal of confusion. For the below sea level coastal plain of the example, Vladykov (1964) states that the Caspian. level of the Caspian in 1955 was about Water runoff has furrowed these slopes 28 metres below the level of the Atlantic with deeply-cut valleys and deposited the Ocean (in effect, a further drop from debris in the forelands in great alluvial 1946). Savage (1958) reports this level for fans and wide deltas. However, drainage 1956-57. Fisher (1968a), on the other to the South Caspian is by no means hand, writes : ‘The Caspian Sea at restricted to the northern slopes of the present is some 85 feet (25.91 m.) below Talesh and Alborz Mountains. mean sea level, and is slowly shrinking The outwash and deposition of sedi­ in size, with an average annual fall in ments from erosion of the northern up­ level of about 8 inches (20.32 cm.)’. If lands, accompanied by a lowering of the all the readings were correct it would level of the Caspian, has succeeded in mean a drop from 1946 to 1957, and then creating a narrow coastal plain some 650 a two metre rise from 1957 to 1968! It kilometres in overall length but varying is doubtful that such is the case. in width from 30 kilometres to less than It is known, however, that the Caspian two. shows great seasonal fluctuation with According to Zenkevitch (1963) the highest levels occurring during the first lowering of the Caspian is characteristic half of summer, after floods, the lowest of the whole Quaternary Period. Savage levels at the beginning of winter. There (1958) indicates that since the area is in are no real tides, but sporadic seiche a great earthquake region, following any movements are produced as a result of movement of the earth’s crust there must sustained wind action. Definite currents be some settlement in the great depth of exist; mainly from west to east, as regards unconsolidated gravels which are known the southern end. The sea has no outlet to underlie the Caspian.
Recommended publications
  • Basking Habitat Characteristics of Blanding's Turtles in Natural And
    Basking Habitat Characteristics of Blanding’s Turtles in Natural and Constructed Wetlands in Southeastern New York Tanessa Hartwig, Erik Kiviat, and Gretchen Stevens Hudsonia Ltd., Annandale, NY Presentation 2008 Tanessa Hartwig Emys blandingii : NYS Threatened Species Threats in Dutchess County, NY: • roads, construction, farm equipment • habitat degradation and loss • landscape fragmentation and sprawl • subsidized predators • collecting BlandingBlanding ’’ss TurtleTurtle HabitatsHabitats inin DutchessDutchess CountyCounty Core Wetland Habitat: Deep-flooding shrub swamps with organic soil, near gravelly glacial outwash Associated Wetland Habitats: Drought Refuge: Vernal (woodland) pools, flooded swamps, Spring-fed natural or artificial ponds, or beaver ponds, other flooded wetlands deep pools in wetlands Estivation Habitat: Wetland sediments, upland woods under logs or in shrub thickets, stream pools ConstructedConstructed Habitats,Habitats, 19961996 --19971997 Moving Wetland Sods Loading sods on truck Spatula for cutting sods Sods and organic soil Placing sods in basin Inspiration for sod technique: Munro Ecological Services MethodsMethods • Turtle-centered plots May to September, 2000-2002, in constructed and natural wetlands • Turtles trapped and radios attached; turtles radiotracked to exact location • Vegetation, water temperature, and water depth recorded in a 3 x 3 m plot centered on the turtle • Vegetation surveyed in permanent random 3 x 3 m plots each September GeneralGeneral AssociationsAssociations • Shallow water depths
    [Show full text]
  • The Importance of Context Dependence for Understanding the Effects of Low-flow Events on fish
    The importance of context dependence for understanding the effects of low-flow events on fish Annika W. Walters1,2 1US Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, 1000 East University Avenue, University of Wyoming, Laramie, Wyoming 82071 USA Abstract: The natural hydrology of streams and rivers has been extensively altered by dam construction, water diversion, and climate change. An increased frequency of low-flow events will affect fish by changing habitat availability, resource availability, and reproductive cues. I reviewed the literature to characterize the approaches taken to assess low-flow events and fish, the main effects of low-flow events on fish, and the associated mechanistic drivers. Most studies are focused on temperate streams and are comparative in nature. Decreased stream flow is associated with decreased survival, growth, and abundance of fish populations and shifts in community composition, but effects are variable. This variability in effects is probably caused by context dependence. I propose 3 main sources of context dependence that drive the variation in fish responses to low-flow events: attributes of the low-flow event, attributes of the habitat, and attributes of the fish. Awareness of these sources of context dependence can help managers interpret and explain data, predict vulnerability of fish communities, and prioritize appropriate management actions. Key words: drought, disturbance, hydrology, prioritization, stream flow, variability Low-flow events are increasing in frequency because of associated mechanistic drivers. The objective is to provide human alteration of streamflow regimes through dams insight into why previous investigators have had difficulty and water diversion and natural and human-induced cli- finding general transferrable relationships between de- mate shifts (Barnett et al.
    [Show full text]
  • Wetlands Australia: National Wetlands Update 2009
    Wetlands Australia NATIONAL WETLANDS UPDATE 2009 Issue No. 17 ANNUAL UPDATE FOR AUSTRALIA’S WETLAND COMMUNITY Australia’s largest aerial survey of wetland health Indigenous rangers fill knowledge gaps on Gulf of Carpentaria plains Australia’s northern tropical rivers: Determining assets and threats River Murray floodplain: Prioritisation and environmental watering Contents Ministers’ foreword 3 National aerial wetland survey 4 Water for the Future, the Australian Government’s water sustainability plan 5 Indigenous rangers survey Gulf of Carpentaria wetlands, Queensland 6 Assets and threats to Australia’s northern tropical rivers 8 River Murray floodplain prioritisation and environmental watering plans, SA 10 Restoring environmental flow to Mulcra Island, River Murray, Victoria 12 Extent, condition and threat to coastal saltmarshes, Victoria 13 Recovering the Macquarie Marshes and Gwydir Wetlands, NSW 14 Worldwide decline of migratory shorebirds 16 Traditional fire management in Kakadu Wetlands, NT 18 Saving the Southern Bell Frog, NSW 20 Rediscovery of endangered species in Ballina Shire, NSW 22 Conserving Sydney’s Whites Creek Wetlands, NSW 23 Providing drought refuge to water-dependent flora and fauna, Victoria 24 Assessing ecological condition of Fleurieu Peninsula wetlands, SA 26 Risk of eutrophication to coastal wetlands, NSW 28 New fishway at Loudoun Weir, Queensland 29 Rapid assessment of significant wetlands, WA 30 Salvaging Lower Murray-Darling wetlands from inundation, NSW 31 Restoring a natural cycle to Margooya Lagoon, Victoria
    [Show full text]
  • Geologic Grazing Refuges and Grassland Diversity: a Shortgrass Steppe Study
    J. Range Manage. 57:141 -147 March 2004 Geologic grazing refuges and grassland diversity: A shortgrass steppe study DANIEL G. MILCHUNAS, AND IMANUEL NOY -MEIR Authors are Research Scientist, Forest, Range, and Watershed Stewardship Department and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colo. 80523, USA; and Professor, Department of Agricultural Botany, Institute of Plant Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, P.O.B. 12, Rehovot 76100, Israel. Abstract Resumen Geologically isolated, natural grazing refuges that have never Geológicamente aislados, los refugios naturales frente al pas- been grazed by domestic livestock can be foci of diversity for rare toreo que no han sido nunca pastados por el ganado domÈstico species. This study compared refuges protected from grazing by pueden ser focos de diversidad de especies raras. Este estudio ravines to adjacent grazed sites in an uncommon grassland type comparó refugios protegidos frente al pastoreo debido a barran- in eastern Colorado. We also tested whether differences between cos con lugares adyacentes pastados en un pastizal poco com. n refuge and grazed sites were due to protection from grazing ver- en el Este de Colorado. sus abiotic conditions, based on temporary caging of little También comprobamos si las diferencias entre los refugios y bluestem plants (Schizachyrium scoparium [Michaux] Nash). los lugares pastados fueron debidas a la protección del pastoreo Regionally rare species were not exclusive to refuges, buto a las condiciones abióticas, utilizando para ello la protección occurred also on adjacent grazed sites. However, refuges showedtemporal de plantas de "little bluestem" Schizachyrium scopari- greater species richness, as well as greater abundance of several um [ Michaux] Nash).
    [Show full text]
  • Wetlands Australia © Commonwealth of Australia, 2017
    Wetlands Australia © Commonwealth of Australia, 2017. Wetlands Australia is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 International licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/4.0/au/ This report should be attributed as ‘Wetlands Australia, Commonwealth of Australia 2017’. The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Energy. ii / Wetlands Australia Contents Introduction 1 Wetlands and climate change: impacts and building resilience to natural hazards. Working together for the Great Barrier Reef 2 Ridding the river of blackberries: revegetation for climate change resilience 3 Climate risk and adaptation strategies at a coastal Ramsar wetland 5 Managing coastal wetlands under climate change 7 Inland wetland rehabilitation to mitigate climate change impacts 9 Constructed wetlands for drought disaster mitigation 11 Wetland management tools: science, modelling and assessment. Our northern wetlands: science to support a sustainable future 13 Predicting the occurrence of seasonal herbaceous wetlands in south east Australia 15 Models of wetland connectivity: Supporting a landscape scale approach to wetland management 17 Lake Eyre Basin Condition Assessment 2016 19 “Where are the wetlands in NSW?” A new semi-automated method for mapping wetlands 20 Method for the long-term monitoring of wetlands in Victoria 22 Muir-Byenup Ramsar wetlands: Are they changing? 24 Looking below the surface of the Vasse Wonnerup wetlands 26 Indigenous values and connection to wetlands.
    [Show full text]
  • Toward a Better Understanding of Freshwater Fish Responses to An
    Rev Fish Biol Fisheries (2019) 29:71–92 https://doi.org/10.1007/s11160-018-09545-9 (0123456789().,-volV)( 0123456789().,-volV) REVIEWS Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world Robert J. Lennox . David A. Crook . Peter B. Moyle . Daniel P. Struthers . Steven J. Cooke Received: 20 July 2018 / Accepted: 13 December 2018 / Published online: 8 January 2019 Ó Springer Nature Switzerland AG 2019 Abstract Drought is a constant and important con- consequences of drought to fishes? (7) How does sequence of natural climatic processes and most climate change affect drought-fish interactions? (8) freshwater fishes have adaptations to counter its How does drought influence fisheries? Our limited effects. However, a changing global climate coupled ability to provide answers to these questions indicates with increasing human demand for water is reducing that fish diversity and abundance worldwide is threat- the availability of fresh water to fishes and contribut- ened by drought. Planning, including collection of ing to more frequent and intense drought around the long-term data, is necessary so that conservation and globe. A clear understanding of how fishes, fish water re-allocation strategies can be implemented in a habitat, and fisheries are affected by extended drought timely manner to maintain habitats necessary to is needed to help resolve conflicts over water. We support biodiversity during drought periods. Without therefore identify key questions and research themes increased understanding of physiological and beha- to promote the conservation of freshwater fishes as vioural factors that determine the tolerance of fishes to drought increases in length, frequency and severity.
    [Show full text]
  • Science for Saving Species Research Findings Factsheet Project 4.4
    Science for Saving Species Research findings factsheet Project 4.4 Persistence through tough times: Fixed and shifting refuges in threatened species conservation In brief Unburnt landscapes as shifting refuges Refuges are vital to the conservation But sometimes the most vital Patches of vegetation that have of Australia’s threatened species. refuges shift across the landscape. remained unburned for many years – They are places that species may This makes sense when you consider sometimes decades – can be important retreat to during tough times, until that Australia is a vast land of refuges for many species living in conditions ease and they can expand droughts, flooding rains and highly the arid and semi-arid zones. once more into their range. Refuges variable weather. Refuges can also can work either by reducing the shift for reasons of becoming the Many native birds, mammals and intensity of stressors like drought, last place where an animal can reptiles are more vulnerable to fire, heatwaves or disease, or by avoid a predator or a disease. predation in recently burnt areas, providing safety from predators and as cats are highly efficient hunters Australia’s national parks and reserves other enemies. This may be for a day in places where most of the vegetation often capture these important or a week, or for years, decades and cover has been burnt away. places. However, our research even centuries. Understanding where For example, endangered birds shows that the often-shifting nature refuges are, and how to protect such as the mallee emu-wren of refuges means we need to also or even create them is therefore (Stipiturus mallee), Carpentarian think about places in the broader essential if we are to prevent grasswren (Amytornis dorotheae) and landscape that will help threatened extinctions of imperilled species.
    [Show full text]
  • The Importance of Western Australia's Waterways
    The Importance of Western Australia's Waterways There are 208 major waterways in Western Australia with a combined length of more than 25000 km. Forty-eight have been identified as 'wild rivers' due to their near pristine condition. Waterways and their fringing vegetation have important ecological, economic and cultural values. They provide habitat for birds, frogs, reptiles, native fish and macroinvertebrates and form important wildlife corridors between patches of remnant bush. Estuaries, where river and ocean waters mix, connect the land to the sea and have their own unique array of aquatic and terrestrial flora and fauna. Waterways, and water, have important spiritual and cultural significance for Aboriginal people. Many waterbodies such as rivers, soaks, springs, rock holes and billabongs have Aboriginal sites associated with them. Waterways became a focal point for explorers and settlers with many of the State’s towns located near them. Waterways supply us with food and drinking water, irrigation for agriculture and water for aquaculture and horticulture. They are valuable assets for tourism and An impacted south-west river section - salinisation and erosion on the upper Frankland River. Photo are prized recreational areas. S. Neville ECOTONES. Many are internationally recognised and protected for their ecological values, such as breeding grounds and migration stopovers for birds. WA has several Ramsar sites including lakes Gore and Warden on the south coast, the Ord River floodplain in the Kimberley and the Peel Harvey Estuarine system, which is the largest Ramsar site in the south west of WA. Some waterways are protected within national parks for their ecosystem values and beauty.
    [Show full text]
  • In the Town of Beekman, Dutchess County, New York
    SIGNIFICANT HABITATS IN THE TOWN OF BEEKMAN, DUTCHESS COUNTY, NEW YORK Photo: Nava Tabak Report to the Town of Beekman By Jamie Deppen, Nava Tabak, Gretchen Stevens, and Kristen Bell December 2009 Hudsonia Ltd. P.O. Box 66 Red Hook, NY 12571 SIGNIFICANT HABITATS IN THE TOWN OF BEEKMAN CONTENTS - I - CONTENTS Page EXECUTIVE SUMMARY..................................................................................1 INTRODUCTION Background........................................................................................................3 What is Biodiversity? ........................................................................................5 What are Ecologically Significant Habitats?.....................................................5 Study Area.........................................................................................................6 METHODS Gathering Information & Predicting Habitats .................................................10 Preliminary Habitat Mapping & Field Verification ........................................12 Defining Habitat Types ...................................................................................13 Final Mapping & Presentation of Data............................................................14 RESULTS Overview .........................................................................................................15 Habitat Descriptions: Upland Habitats Upland Forests...........................................................................................19 Red Cedar Woodland
    [Show full text]
  • The Study on Integrated Water Resources Management for Sefidrud River Basin in the Islamic Republic of Iran
    WATER RESOURCES MANAGEMENT COMPANY THE MINISTRY OF ENERGY THE ISLAMIC REPUBLIC OF IRAN THE STUDY ON INTEGRATED WATER RESOURCES MANAGEMENT FOR SEFIDRUD RIVER BASIN IN THE ISLAMIC REPUBLIC OF IRAN Final Report Volume I Main Report November 2010 JAPAN INTERNATIONAL COOPERATION AGENCY GED JR 10-121 WATER RESOURCES MANAGEMENT COMPANY THE MINISTRY OF ENERGY THE ISLAMIC REPUBLIC OF IRAN THE STUDY ON INTEGRATED WATER RESOURCES MANAGEMENT FOR SEFIDRUD RIVER BASIN IN THE ISLAMIC REPUBLIC OF IRAN Final Report Volume I Main Report November 2010 JAPAN INTERNATIONAL COOPERATION AGENCY THE STUDY ON INTEGRATED WATER RESOURCES MANAGEMENT FOR SEFIDRUD RIVER BASIN IN THE ISLAMIC REPUBLIC OF IRAN COMPOSITION OF FINAL REPORT Volume I : Main Report Volume II : Summary Volume III : Supporting Report Currency Exchange Rates used in this Report: USD 1.00 = RIAL 9,553.59 = JPY 105.10 JPY 1.00 = RIAL 90.91 EURO 1.00 = RIAL 14,890.33 (As of 31 May 2008) The Study on Integrated Water Resources Management Executive Summary for Sefidrud River Basin in the Islamic Republic of Iran WATER RESOURCES POTENTIAL AND ITS DEVELOPMENT PLAN IN THE SEFIDRUD RIVER BASIN 1 ISSUES OF WATER RESOURCES MANAGEMENT IN THE BASIN The Islamic Republic of Iran (hereinafter "Iran") is characterized by its extremely unequally distributed water resources: Annual mean precipitation is 250 mm while available per capita water resources is 1,900 m3/year, which is about a quarter of the world mean value. On the other hand, the water demands have been increasing due to a rapid growth of industries, agriculture and the population. About 55 % of water supply depends on the groundwater located deeper than 100 meters in some cases.
    [Show full text]
  • Francis Marion National Forest Draft Forest Plan Assessment
    United States Department of Agriculture Forest Service Francis Marion National Forest Draft Forest Plan Assessment Francis Marion National Forest, Berkeley and Charleston Counties, South Carolina 2.1 Terrestrial Ecosystems, Aquatic Ecosystems, and Watersheds December 2013 The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found on-line at www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found on-line at www.ascr.usda.gov/ complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S.
    [Show full text]
  • Significant Habitats in the Town of Clinton, Dutchess County, New York
    SIGNIFICANT HABITATS IN THE TOWN OF CLINTON, DUTCHESS COUNTY, NEW YORK C. Graham © 2012 Report to the Town of Clinton, the Hudson River Estuary Program, the Millbrook Tribute Garden, and the Dutchess Land Conservancy By Christopher Graham, Kristen Bell Travis, and Gretchen Stevens December 2012 Hudsonia Ltd. P.O. Box 5000 Annandale, NY 12504 SIGNIFICANT HABITATS IN THE TOWN OF CLINTON CONTENTS ‐ I ‐ CONTENTS Page EXECUTIVE SUMMARY ....................................................................................1 INTRODUCTION Background........................................................................................................3 What is Biodiversity? ........................................................................................5 What are Ecologically Significant Habitats?.....................................................6 Study Area.........................................................................................................6 METHODS Gathering Information & Predicting Habitats .................................................11 Preliminary Habitat Mapping & Field Verification ........................................13 Defining Habitat Types ...................................................................................13 Final Mapping & Presentation of Data............................................................14 RESULTS Overview .........................................................................................................17 Habitat Descriptions: Upland Habitats Upland Forest ............................................................................................21
    [Show full text]