Part-Aware Product Design Agent Using Deep Generative Network and Local Linear Embedding

Total Page:16

File Type:pdf, Size:1020Kb

Part-Aware Product Design Agent Using Deep Generative Network and Local Linear Embedding Proceedings of the 54th Hawaii International Conference on System Sciences | 2021 Part-Aware Product Design Agent Using Deep Generative Network and Local Linear Embedding Xingang Li Charles Xie Zhenghui Sha* University of Arkansas Institute for Future Intelligence University of Arkansas [email protected] [email protected] [email protected] Abstract as intelligent design agents, particularly in product shape design. GD is a term for a class of tools that can In this study, we present a data-driven generative generate novel yet realistic designs by leveraging design approach that can augment human creativity in computational and manufacturing capabilities [5]. product shape design with the objective of improving Deep GD models can produce a large amount of new system performance. The approach consists of two 2D or 3D data [6–9] given a set of training data, which modules: 1) a 3D mesh generative design module that has shown promises in computer graphics and can generate part-aware 3D objects using variational computer vision. In the design field, deep GD models, auto-encoder (VAE), and 2) a low-fidelity evaluation like variational auto-encoder (VAE) [10] and module that can rapidly assess the engineering generative adversarial network (GAN) [11], have been performance of 3D objects based on locally linear used to assist human designers in generating novel and embedding (LLE). This approach has two unique realistic designs [12–14] for design conceptualization. features. First, it generates 3D meshes that can better Building upon existing models, we develop a data- capture surface details (e.g., smoothness and driven GD approach in this study for product shape curvature) given individual parts’ interconnection and generation based on deep neural networks. Our constraints (i.e., part-aware), as opposed to assumption is that existing product designs (e.g., cars, generating holistic 3D shapes. Second, the LLE-based chairs, tables, etc.) on the market must have gone solver can assess the engineering performance of the through a complete design cycle, so both their generated 3D shapes to realize real-time evaluation. appearances or functionalities are optimized. Using a Our approach is applied to car design to reduce air deep GD approach with existing designs as training drag for optimal aerodynamic performance. data, it is expected that the generated design candidates would be promising ones. Also, learning- 1. Introduction and Motivation based GD methods have the potentials to reduce the high dependencies on design expertise because With advances in Artificial intelligence (AI), AI machines learn design knowledge in advance, which has shown its capabilities in many “human” jobs, like will assist the designer in realizing design automation. speech translation, customer service, and even However, realizing this idea in engineering design decision-making. Dellermann et al. [1] argue that, in is challenging. In engineering design, a product is a the following decades, AI will not replace but rather system that consists of interconnected components. collaborate with humans in most domains. They treat Traditionally, the design of such systems starts from this human-AI collaboration as hybrid intelligence, the system requirements analysis and is driven by a which leverages the complementary strengths of top-down hierarchical decomposition, followed by the human intelligence and AI. In the design field, AI has design of subsystems and components. Each also greatly facilitated human designers’ decision- component in a system is first designed separately and making in different design processes. For example, finally integrated into a complete system and validated researchers have successfully embedded intelligent against system-level requirements. Most existing GD agents into traditional computer-aided design (CAD) [15–20] are focused on generating holistic 3D shapes software (e.g., [2]) and some custom research without considering the structural dependencies or platforms (e.g., [3,4]) in support of conceptual design relations between components (e.g., a car is treated as and design optimization. This could save a large a whole piece instead of dividing it into the car body, amount of human labor, thus significantly shorten the mirrors, etc.). Even if efforts have been taken to cycle and iteration of product design and development. generate part-aware 3D shapes [6, 21, 22], they ignore Among various AI techniques, generative design the evaluation of the engineering performance of the (GD) models using deep neural networks can be used generated 3D shapes. However, assessing the * Corresponding author URI: https://hdl.handle.net/10125/71258 978-0-9981331-4-0 Page 5250 (CC BY-NC-ND 4.0) engineering performance of a product is essential in Our approach applies a deep generative model as an engineering design. intelligent agent, which learns existing designs on the Nowadays, most industries use computer-aided market to generate a large number of designs for users. engineering (CAE) tools, such as finite element analysis (FEA) and computational fluid dynamics 2.2. Deep generative models (CFD) software, to evaluate the engineering Deep generative models aim at synthesizing new performance of a preliminary design before the samples using the distribution learned from the physical prototyping and testing. Nonetheless, the existing data. The strategy of deep generative models engineering evaluation is costly. For instance, the is trying to approximate a distribution as similar to the assessment of the aerodynamic performance of a 3D true data distribution as possible by using a multi-layer car model using CFD software could take hours. of neural networks. GAN [11] and VAE [10] are the Therefore, it is impractical to evaluate every single two most widely used deep generative models. design candidate, let alone the vast number of design GAN consists of two parts: a generator and a alternatives obtained from GD models. A fast discriminator. The discriminator tries to distinguish engineering evaluation method is needed in realizing the data generated by the generator from the training GD in engineering design. data. In contrast, the generator aims to fool the To address these challenges, this study develops a discriminator with data that are highly similar to the new GD approach for engineering systems design that training data. They compete with each other in the integrates fast engineering evaluation and deep training process, driving the generator to produce data generative models that allows the generation of part- as identical to the training data as possible. GANs have aware 3D meshes. We validate and demonstrate the achieved success in 2D and 3D visualizations and effectiveness of our approach through an aerodynamic reconstructions [7,8]. However, since the car design problem. The remainder of this paper is discriminator judges the generated data based on organized as below. Section 2 gives a literature review distance metrics, the generator can synthesize of the relevant research. The details of the proposed unrealistic data (e.g., a face with a displaced mouth). approach are introduced in Section 3. Section 4 The basic idea of VAE is to find a hidden presents the results and discussion, and the paper is representation of the training data using low- concluded in Section 5, in which we also summarize dimensional latent variables. Those latent variables the closing insights and future work. contain information like specific structural and semantic properties of the training data. Compared to 2. Literature Review GANs, the training of VAEs is faster and easier via The review presented in this section is relevant to backpropagation, thus gaining increasing popularity the literature in the fields of intelligent design agents, [23]. VAEs have also been successfully applied in deep generative models, 3D shape synthesis, and data- both 2D images [9] and 3D models [6]. driven CFD evaluation methods. 2.3. 3D shape synthesis 2.1. Intelligent design agents The increasing availability of large 3D shape Rules-driven parametric design tools have datasets, like ShapeNet [24], provides a large amount introduced the generative design module to enable of training. the deep generative methods have been automatic design exploration. Users usually set the applied in object detection [25,26], classification constraints and requirements for their designs, and [27,28], and semantic segmentation [29,30]. They can those tools can then run hundreds of simulations to also generate diverse 3D objects in various generate various designs for users to select. There are representations, such as point cloud [15,16], voxels also learning-based/data-driven design platforms. For [17–19], and meshes [20,31]. Compared to point cloud example, Hu and Taylor [3] developed a CAD and voxels, meshes can better capture the geometric platform with an intelligent tutoring system. The details (e.g., smoothness, curvature) of 3D objects system can first learn all possible ways to design a 3D without consuming large storage space. So, the mesh model and then instruct users to draw 3D models. representation is more suitable for engineering design In rules-driven parametric design tools, setting applications (e.g., the representation of automobiles). proper constraints and requirements for the design However, 3D meshes from open-source datasets requires a high degree of domain expertise, which is are usually non-manifold triangles that may contain not friendly to novice designers or fast design
Recommended publications
  • Intelligent Agents
    Intelligent Agents Authors: Dr. Gerhard Weiss, SCCH GmbH, Austria Dr. Lars Braubach, University of Hamburg, Germany Dr. Paolo Giorgini, University of Trento, Italy Outline Abstract ..................................................................................................................2 Key Words ..............................................................................................................2 1 Foundations of Intelligent Agents.......................................................................... 3 2 The Intelligent Agents Perspective on Engineering .............................................. 5 2.1 Key Attributes of Agent-Oriented Engineering .................................................. 5 2.2 Summary and Challenges................................................................................ 8 3 Architectures for Intelligent Agents ...................................................................... 9 3.1 Internal Agent Architectures .......................................................................... 10 3.2 Social Agent Architectures............................................................................. 11 3.3 Summary & Challenges ................................................................................. 12 4 Development Methodologies................................................................................ 13 4.1 Overall Characterization ................................................................................ 13 4.2 Selected AO Methodologies..........................................................................
    [Show full text]
  • Intelligent Agents - Catholijn M
    ARTIFICIAL INTELLIGENCE – Intelligent Agents - Catholijn M. Jonker and Jan Treur INTELLIGENT AGENTS Catholijn M. Jonker and Jan Treur Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam, The Netherlands Keywords: Intelligent agent, Website, Electronic Commerce Contents 1. Introduction 2. Agent Notions 2.1 Weak Notion of Agent 2.2 Other Notions of Agent 3. Primitive Agent Concepts 3.1 External primitive concepts 3.2 Internal primitive concepts 3.3. An Example Analysis 4. Business Websites 5. A Generic Multi-Agent Architecture for Intelligent Websites 6. Requirements for the Website Agents 6.1 Characteristics and Requirements for the Website Agents 6.2 Characteristics and Requirements for the Personal Assistants 7. The Internal Design of the Information Broker Agents 7.1 A Generic Information Broker Agent Architecture 7.2 The Website Agent: Internal Design 7.3 The Personal Assistant: Internal Design Glossary Bibliography Biographical Sketches Summary In this article first an introduction to the basic concepts of intelligent agents is presented. The notion of weak agent is briefly described, and a number of external and internal primitive agent concepts are introduced. Next, as an illustration, application of intelligent agents to business Websites is addressed. An agent-based architecture for intelligentUNESCO Websites is introduced. Requirements – EOLSS of the agents that play a role in this architecture are discussed. Moreover, their internal design is discussed. 1. IntroductionSAMPLE CHAPTERS The term agent has become popular, and has been used for a wide variety of applications, ranging from simple batch jobs and simple email filters, to mobile applications, to intelligent assistants, and to large, open, complex, mission critical systems (such as systems for air traffic control).
    [Show full text]
  • Multi-Agent Reinforcement Learning: an Overview∗
    Delft University of Technology Delft Center for Systems and Control Technical report 10-003 Multi-agent reinforcement learning: An overview∗ L. Bus¸oniu, R. Babuska,ˇ and B. De Schutter If you want to cite this report, please use the following reference instead: L. Bus¸oniu, R. Babuska,ˇ and B. De Schutter, “Multi-agent reinforcement learning: An overview,” Chapter 7 in Innovations in Multi-Agent Systems and Applications – 1 (D. Srinivasan and L.C. Jain, eds.), vol. 310 of Studies in Computational Intelligence, Berlin, Germany: Springer, pp. 183–221, 2010. Delft Center for Systems and Control Delft University of Technology Mekelweg 2, 2628 CD Delft The Netherlands phone: +31-15-278.24.73 (secretary) URL: https://www.dcsc.tudelft.nl ∗This report can also be downloaded via https://pub.deschutter.info/abs/10_003.html Multi-Agent Reinforcement Learning: An Overview Lucian Bus¸oniu1, Robert Babuskaˇ 2, and Bart De Schutter3 Abstract Multi-agent systems can be used to address problems in a variety of do- mains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must instead discover a solution on their own, using learning. A significant part of the research on multi-agent learn- ing concerns reinforcement learning techniques. This chapter reviews a representa- tive selection of Multi-Agent Reinforcement Learning (MARL) algorithms for fully cooperative, fully competitive, and more general (neither cooperative nor competi- tive) tasks. The benefits and challenges of MARL are described. A central challenge in the field is the formal statement of a multi-agent learning goal; this chapter re- views the learning goals proposed in the literature.
    [Show full text]
  • An Exploration in Stigmergy-Based Navigation Algorithms
    From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms عمر بهر تيری محبت ميری خدمت گر رہی ميں تری خدمت کےقابل جب هوا توچل بسی )اقبال( To my late parents with love and eternal appreciation, whom I lost during my PhD studies Örebro Studies in Technology 79 ALI ABDUL KHALIQ From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms © Ali Abdul Khaliq, 2018 Title: From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms Publisher: Örebro University 2018 www.publications.oru.se Print: Örebro University, Repro 05/2018 ISSN 1650-8580 ISBN 978-91-7529-253-3 Abstract Ali Abdul Khaliq (2018): From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms. Örebro Studies in Technology 79. Navigation is a core functionality of mobile robots. To navigate autonomously, a mobile robot typically relies on internal maps, self-localization, and path plan- ning. Reliable navigation usually comes at the cost of expensive sensors and often requires significant computational overhead. Many insects in nature perform robust, close-to-optimal goal directed naviga- tion without having the luxury of sophisticated sensors, powerful computational resources, or even an internally stored map. They do so by exploiting a simple but powerful principle called stigmergy: they use their environment as an external memory to store, read and share information. In this thesis, we explore the use of stigmergy as an alternative route to realize autonomous navigation in practical robotic systems. In our approach, we realize a stigmergic medium using RFID (Radio Frequency Identification) technology by embedding a grid of read-write RFID tags in the floor.
    [Show full text]
  • Expert Assessment of Stigmergy: a Report for the Department of National Defence
    Expert Assessment of Stigmergy: A Report for the Department of National Defence Contract No. W7714-040899/003/SV File No. 011 sv.W7714-040899 Client Reference No.: W7714-4-0899 Requisition No. W7714-040899 Contact Info. Tony White Associate Professor School of Computer Science Room 5302 Herzberg Building Carleton University 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 (Office) 613-520-2600 x2208 (Cell) 613-612-2708 [email protected] http://www.scs.carleton.ca/~arpwhite Expert Assessment of Stigmergy Abstract This report describes the current state of research in the area known as Swarm Intelligence. Swarm Intelligence relies upon stigmergic principles in order to solve complex problems using only simple agents. Swarm Intelligence has been receiving increasing attention over the last 10 years as a result of the acknowledgement of the success of social insect systems in solving complex problems without the need for central control or global information. In swarm- based problem solving, a solution emerges as a result of the collective action of the members of the swarm, often using principles of communication known as stigmergy. The individual behaviours of swarm members do not indicate the nature of the emergent collective behaviour and the solution process is generally very robust to the loss of individual swarm members. This report describes the general principles for swarm-based problem solving, the way in which stigmergy is employed, and presents a number of high level algorithms that have proven utility in solving hard optimization and control problems. Useful tools for the modelling and investigation of swarm-based systems are then briefly described.
    [Show full text]
  • Intelligent Agent
    INTELLIGENT AGENT INTELLIGENT AGENT By, P.V. Raja Shekar & CH. Madhuri MRITS MCA FINAL YEAR. INTRODUCTION 1 | P a g e INTELLIGENT AGENT 1 What is artificial intelligence? 2 Branches of artificial intelligence. 3 Introduction to intelligence agent. 4 What is an agent. 5 What is a rational agent. 6 Common attributes of intelligent agent 7 What is bounded rationality. 8 What is an environment and different types of them. 9 Different agent architectures. 10 Applications . 11 Limitations . 12 Conclusion . Artificial Intelligence(AI) Artificial intelligence (AI) is both the intelligence of machines and the branch of computer science which aims to create it. Artificial Intelligence is a combination of cognitive science, linguistics, ontology, physiology, psychology, philosophy, operations research, economics, control theory, neuroscience, computer science, probability, optimization and logic. AI is a very 2 | P a g e INTELLIGENT AGENT large subject-matter. It consists of many different fields, from machine vision to expert systems. The aim of all the fields is the creation of machines that can "think". Researches hope that AI machines will be capable of reasoning, knowledge, learning, communication, planning, perception and the ability to move and manipulate objects. What's it all about? Artificial Intelligence (AI) is the science and engineering of creating intelligent machines and computer programs. It is related to similar tasks of using computers to understand human intelligence but AI does not only have to confine itself to methods that are biologically observable. The interest in AI has commonly increased since years and some classical sub- disciplines like robotics, language processing, or natural computing have produced reliable solutions Intelligence is prediction Intelligence is the ability to predict what comes next, even when faced with incomplete knowledge.
    [Show full text]
  • A Systematic Approach to Artificial Agents
    A Systematic Approach to Artificial Agents Mark Burgin1 and Gordana Dodig-Crnkovic2 1 Department of Mathematics, University of California, Los Angeles, California, USA, 2 School of Innovation, Design and Engineering, Mälardalen University, Sweden, Abstract. Agents and agent systems are becoming more and more important in the development of a variety of fields such as ubiquitous computing, ambient intelligence, autonomous computing, intelligent systems and intelligent robotics. The need for improvement of our basic knowledge on agents is very essential. We take a systematic approach and present extended classification of artificial agents which can be useful for understanding of what artificial agents are and what they can be in the future. The aim of this classification is to give us insights in what kind of agents can be created and what type of problems demand a specific kind of agents for their solution. Keywords: Artificial agents, classification, perception, reasoning, evaluation, mobility 1 Introduction Agents are advanced tools people use to achieve different goals and to various problems. The main difference between ordinary tools and agents is that agents can function more or less independently from those who delegated agency to the agents. For a long time people used only other people and sometimes animals as their agents. Developments in information processing technology, computers and their networks, have made possible to build and use artificial agents. Now the most popular approach in artificial intelligence is based on agents. Intelligent agents form a basis for many kinds of advanced software systems that incorporate varying methodologies, diverse sources of domain knowledge, and a variety of data types.
    [Show full text]
  • Adversarial Attack and Defense in Reinforcement Learning-From AI Security View Tong Chen , Jiqiang Liu, Yingxiao Xiang, Wenjia Niu*, Endong Tong and Zhen Han
    Chen et al. Cybersecurity (2019) 2:11 Cybersecurity https://doi.org/10.1186/s42400-019-0027-x SURVEY Open Access Adversarial attack and defense in reinforcement learning-from AI security view Tong Chen , Jiqiang Liu, Yingxiao Xiang, Wenjia Niu*, Endong Tong and Zhen Han Abstract Reinforcement learning is a core technology for modern artificial intelligence, and it has become a workhorse for AI applications ranging from Atrai Game to Connected and Automated Vehicle System (CAV). Therefore, a reliable RL system is the foundation for the security critical applications in AI, which has attracted a concern that is more critical than ever. However, recent studies discover that the interesting attack mode adversarial attack also be effective when targeting neural network policies in the context of reinforcement learning, which has inspired innovative researches in this direction. Hence, in this paper, we give the very first attempt to conduct a comprehensive survey on adversarial attacks in reinforcement learning under AI security. Moreover, we give briefly introduction on the most representative defense technologies against existing adversarial attacks. Keywords: Reinforcement learning, Artificial intelligence, Security, Adversarial attack, Adversarial example, Defense Introduction best moves with reinforcement learning from games of Artificial intelligence (AI) is providing major break- self-play. Meanwhile, for Atari game, Mnih et al. (2013) throughs in solving the problems that have withstood presented the first deep learning model to learn con- many attempts of natural language understanding, speech trol policies directly from high-dimensional sensory input recognition, image understanding and so on. The latest using reinforcement learning. Moreover, Liang et al. (Guo studies (He et al.
    [Show full text]
  • Extending Universal Intelligence Models with Formal Notion of Representation
    Extending Universal Intelligence Models with Formal Notion of Representation Alexey Potapov, Sergey Rodionov AIDEUS, Russia {potapov,rodionov}@aideus.com Abstract. Solomonoff induction is known to be universal, but incomputable. Its approximations, namely, the Minimum Description (or Message) Length (MDL) principles, are adopted in practice in the efficient, but non-universal form. Recent attempts to bridge this gap leaded to development of the Repre- sentational MDL principle that originates from formal decomposition of the task of induction. In this paper, possible extension of the RMDL principle in the context of universal intelligence agents is considered, for which introduction of representations is shown to be an unavoidable meta-heuristic and a step toward efficient general intelligence. Hierarchical representations and model optimiza- tion with the use of information-theoretic interpretation of the adaptive reso- nance are also discussed. Key words: Universal Agents, Kolmogorov Complexity, Minimum Descrip- tion Length Principle, Representations 1 Introduction The idea of universal induction and prediction on the basis of algorithmic information theory was invented a long time ago [1]. In theory, it eliminates the fundamental problem of prior probabilities, incorrect solutions of which result in such negative practical effects as overlearning, overfitting, oversegmentation, and so on. It would be rather natural to try to develop some models of universal intelligence on this basis. However, the corresponding detailed models were published only relatively recently (e.g. [2]). Moreover, the theory of universal induction was not popular even in ma- chine learning. The reason is quite obvious – it offers incomputable methods, which additionally require training sets of large sizes in order to make good predictions.
    [Show full text]
  • Arxiv:1607.08289V4 [Cs.AI] 21 Jan 2019 Keywords: USA CA [email protected] Francisco, San FPC, Vicarious Hay J
    1 Mammalian Value Systems Gopal P. Sarma School of Medicine, Emory University, Atlanta, GA USA [email protected] Nick J. Hay Vicarious FPC, San Francisco, CA USA [email protected] Keywords: Friendly AI, value alignment, human values, biologically inspired AI, human-mimetic AI Characterizing human values is a topic deeply interwoven with the sciences, humanities, political philosophy, art, and many other human endeavors. In recent years, a number of thinkers have argued that accelerating trends in computer science, cognitive science, and related disciplines foreshadow the creation of intelligent machines which meet and ultimately surpass the cognitive abilities of human beings, thereby entangling an understanding of human values with future technological development. Contemporary research accomplishments suggest increasingly sophisticated AI systems becoming widespread and responsible for managing many aspects of the modern world, from preemptively planning users’ travel schedules and logistics, to fully autonomous vehicles, to domestic robots assisting in daily living. The extrapolation of these trends has been most forcefully described in the context of a hypothetical “intelligence explosion,” in which the capabilities of an intelligent software agent would rapidly increase due to the presence of feedback loops unavailable to biological organisms. The possibility of super- intelligent agents, or simply the widespread deployment of sophisticated, autonomous AI systems, highlights an important theoretical problem: the need to separate
    [Show full text]
  • Intelligent Agents Web-Mining Agents
    Intelligent Agents Web-Mining Agents Prof. Dr. Ralf Möller Dr. Tanya Braun Universität zu Lübeck Institut für Informationssysteme Acknowledgements • Some slides have been designed by PD Dr. Özgür Özcep. Since Özgür works in my group, those slides are not explicitly marked. Thank you nevertheless, Özgür. • Other slides have been take from lecture material provided by researchers on the web. I hope this material is indicated appropriately. Thank you all. 2 Artificial Intelligence and Intelligent Agents • Artificial intelligence (AI) is the science of systematic synthesis and analysis of computational agents that act intelligently – Agents are central to AI (and vice versa) – Intelligent agent = computational agent that acts intelligently – Talking about AI w/o talking about agents misses the point (and vice versa) • Need to technically define the notion of “acting intelligently” • AI = Science of Intelligent Systems – Systems are called computational agents in AI, or agents for short 3 Literature http://aima.cs.berkeley.edu (AIMA, 1st edition 1995) http://artint.info st (AIFCA, 1 edition 2010) 4 Literature 5 Literature 6 What is an Agent? • Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators [AIMA-Def] Sensors Percepts ? Environment Agent Actions – Human agent Actuators eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators – Robotic agent cameras and infrared range finders for sensors; various motors for actuators – Software agent interfaces, data integration, interpretation, data manipulation/output 7 Abstractions: Agents and Environments Sensors Percepts ? Environment Agent Actions Actuators • The agent function maps from percept histories to actions: [f: P* à A] • The agent program runs on Really insist on functional a physical architecture to produce f behavior? • Agent = architecture + program 8 Reactive vs.
    [Show full text]
  • Using Stories to Teach Human Values to Artificial Agents
    The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence AI, Ethics, and Society: Technical Report WS-16-02 Using Stories to Teach Human Values to Artificial Agents Mark O. Riedl and Brent Harrison School of Interactive Computing, Georgia Institute of Technology Atlanta, Georgia, USA friedl, [email protected] Abstract achieve a goal without doing anything “bad.” Value align- ment is a property of an intelligent agent indicating that it Value alignment is a property of an intelligent agent in- can only pursue goals that are beneficial to humans (Soares dicating that it can only pursue goals that are beneficial to humans. Successful value alignment should ensure and Fallenstein 2014; Russell, Dewey, and Tegmark 2015). that an artificial general intelligence cannot intention- Value alignment concerns itself with the definition of “good” ally or unintentionally perform behaviors that adversely and “bad,” which can subjectively differ from human to hu- affect humans. This is problematic in practice since it man and from culture to culture. is difficult to exhaustively enumerated by human pro- Value alignment is not trivial to achieve. As argued by grammers. In order for successful value alignment, we Soares (2015) and effectively demonstrated by Asimov’s argue that values should be learned. In this paper, we Robot series of books, it is very hard to directly specify val- hypothesize that an artificial intelligence that can read ues. This is because there are infinitely many undesirable and understand stories can learn the values tacitly held by the culture from which the stories originate. We de- outcomes in an open world.
    [Show full text]