Using Stories to Teach Human Values to Artificial Agents

Total Page:16

File Type:pdf, Size:1020Kb

Using Stories to Teach Human Values to Artificial Agents The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence AI, Ethics, and Society: Technical Report WS-16-02 Using Stories to Teach Human Values to Artificial Agents Mark O. Riedl and Brent Harrison School of Interactive Computing, Georgia Institute of Technology Atlanta, Georgia, USA friedl, [email protected] Abstract achieve a goal without doing anything “bad.” Value align- ment is a property of an intelligent agent indicating that it Value alignment is a property of an intelligent agent in- can only pursue goals that are beneficial to humans (Soares dicating that it can only pursue goals that are beneficial to humans. Successful value alignment should ensure and Fallenstein 2014; Russell, Dewey, and Tegmark 2015). that an artificial general intelligence cannot intention- Value alignment concerns itself with the definition of “good” ally or unintentionally perform behaviors that adversely and “bad,” which can subjectively differ from human to hu- affect humans. This is problematic in practice since it man and from culture to culture. is difficult to exhaustively enumerated by human pro- Value alignment is not trivial to achieve. As argued by grammers. In order for successful value alignment, we Soares (2015) and effectively demonstrated by Asimov’s argue that values should be learned. In this paper, we Robot series of books, it is very hard to directly specify val- hypothesize that an artificial intelligence that can read ues. This is because there are infinitely many undesirable and understand stories can learn the values tacitly held by the culture from which the stories originate. We de- outcomes in an open world. Thus, a sufficiently intelligent scribe preliminary work on using stories to generate a artificial agent can violate the intent of the tenants of a set value-aligned reward signal for reinforcement learning of prescribed rules of behavior, such as Asimov’s laws of agents that prevents psychotic-appearing behavior. robotics, without explicitly violating any particular rule. If values cannot easily be enumerated by human program- mers, they can be learned. We introduce the argument that Introduction an artificial intelligence can learn human values by read- For much of the history of artificial intelligence it was suffi- ing stories. Many cultures produce a wealth of data about cient to give an intelligent agent a goal—e.g., drive to a lo- themselves in the form of written stories and, more recently, cation, cure cancer, make paperclips—without considering television and movies. Stories can be written to inform, edu- unintended consequences because agents and robots have cate, or to entertain. Regardless of their purpose, stories are been limited in their ability to directly affect humans. Re- necessarily reflections of the culture and society that they cent advances in artificial intelligence and machine learn- were produced in. Stories encode many types of sociocul- ing have lead many to speculate that artificial general in- tural knowledge: commonly shared knowledge, social proto- telligence is increasingly likely. This new, general intelli- cols, examples of proper and improper behavior, and strate- gence may be equal to or greater than human-level intelli- gies for coping with adversity. gence but also may not understand the impact that its be- We believe that a computer that can read and understand haviors will have on humans. An artificial general intel- stories, can, if given enough example stories from a given ligence, especially one that is embodied, will have much culture, “reverse engineer” the values tacitly held by the greater opportunity to affect change to the environment and culture that produced them. These values can be complete find unanticipated courses of action with undesirable side- enough that they can align the values of an intelligent entity effects. This leads to the possibility of artificial general in- with humanity. In short, we hypothesize that an intelligent telligences causing harm to humans; just as when humans entity can learn what it means to be human by immersing act with disregard for the wellbeing of others. itself in the stories it produces. Further, we believe this can Bostrom (2014), Russell et al. (2015), and others have be- be done in a way that compels an intelligent entity to adhere gun to ask whether an artificial general intelligence or super- to the values of a particular culture. intelligence (a) can be controlled and (b) can be constrained The state of the art in artificial intelligence story under- from intentionally or unintentionally performing behaviors standing is not yet ready to tackle the problem of value that would have adverse effects on humans. To mitigate the alignment. In this paper, we expand upon the argument for potential adverse effects of artificial intelligences on hu- research in story understanding toward the goal of value mans, we must take care to specify that an artificial agent alignment. We describe preliminary work on using stories Copyright c 2016, Association for the Advancement of Artificial to achieve a primitive form of value alignment, showing that Intelligence (www.aaai.org). All rights reserved. story comprehension can eliminate psychotic-appearing be- 105 havior in a reinforcement learner based virtual agent. extreme—saving the world. Protagonists exhibit the traits and virtues admired in a culture and antagonists usually dis- Background cover that their bad behavior does not pay off. Any fictional story places characters in hypothetical situations; character This section overviews the literature relevant to the ques- behavior could not be treated as literal instructions, but may tions of whether artificial general intelligences can be be generalized. Many fictional stories also provide windows aligned with human values, the use of reinforcement learn- into the thinking and internal monologues of characters. ing to control agent behavior, and computational reasoning about narratives. Reinforcement Learning Value Learning Reinforcement learning (RL) is the problem of learning how to act in a world so as to maximize a reward signal. More A culture is defined by the shared beliefs, customs, and prod- formally, a reinforcement learning problem is defined as ucts (artistic and otherwise) of a particular group of individ- hS; A; P; Ri, where S is a set of states, A is a set of ac- uals. There is no user manual for being human, or for how tions/effectors the agent can perform, P : fS × A × Sg ! to belong to a society or a culture. Humans learn sociocul- [0; 1] is a transition function, and R : S ! R is a re- tural values by being immersed within a society and a cul- ward function. The solution to a RL problem is a policy ture. While not all humans act morally all the time, humans π : S ! A. An optimal policy ensures that the agent re- seem to adhere to social and cultural norms more often than ceives maximal long-term expected reward. The reward sig- not without receiving an explicitly written down set of moral nal formalize the notion of a goal, as the agent will learn a codes. policy that drives the agent toward achieving certain states. In its absence of a user manual, an intelligent entity must Reinforcement learning has been demonstrated to be an learn to align its values with that of humans. One solution to effective technique for problem solving and long-term ac- value alignment is to raise an intelligent entity from “child- tivity in stochastic environments. Because of this, many be- hood” within a sociocultural context. While promising in the lieve RL, especially when combined with deep neural net- long run, this strategy—as most parents of human children works to predict the long-term value of actions, may be part have experienced first-hand—is costly in terms of time and of a framework for artificial general intelligence. For exam- other resources. It requires the intelligent entity to be em- ple, deep reinforcement learning has been demonstrated to bodied in humanoid form even though we would not expect achieve human-level performance on Atari games (Mnih et all future artificial intelligences to be embodied. And while al. 2015) using only pixel-level inputs. Deep reinforcement we might one day envision artificial intelligences raising learning is now being applied to robotics for reasoning and other artificial intelligences, this opens the possibility that acting in the real world. values to drift away from those of humans. Reinforcement learning agents are driven by pre-learned If intelligent entities cannot practically be embodied and policies and thus are single-mindedly focused on choosing participate fully in human society and culture, another so- actions that maximize long-term reward. Thus reinforce- lution is to enable intelligences to observe human behavior ment learning provides one level of control over an artificial and learn from observation. This strategy would require un- intelligence because the intelligent entity will be compelled precedented equipping of the world with sensors, including to achieve the given goal, as encoded in the form of the re- areas currently valued for their privacy. Further, the prefer- ward signal. However, control in the positive does not guar- ences of humans many not necessarily be easily inferred by antee that the solution an intelligent agent finds will not have observations (Soares 2015). the side effect of changing the world in a way that is adverse While we do not have a user manual from which to to humans. Value alignment can be thought of as the con- write down an exhaustive set of values for a culture, we struction of a reward signal that cannot be maximized if an do have the collected stories told by those belonging to dif- intelligent agent takes actions that change the world in a way ferent cultures. Storytelling is a strategy for communicating that is adverse or undesirable to humans in a given culture.
Recommended publications
  • Intelligent Agents
    Intelligent Agents Authors: Dr. Gerhard Weiss, SCCH GmbH, Austria Dr. Lars Braubach, University of Hamburg, Germany Dr. Paolo Giorgini, University of Trento, Italy Outline Abstract ..................................................................................................................2 Key Words ..............................................................................................................2 1 Foundations of Intelligent Agents.......................................................................... 3 2 The Intelligent Agents Perspective on Engineering .............................................. 5 2.1 Key Attributes of Agent-Oriented Engineering .................................................. 5 2.2 Summary and Challenges................................................................................ 8 3 Architectures for Intelligent Agents ...................................................................... 9 3.1 Internal Agent Architectures .......................................................................... 10 3.2 Social Agent Architectures............................................................................. 11 3.3 Summary & Challenges ................................................................................. 12 4 Development Methodologies................................................................................ 13 4.1 Overall Characterization ................................................................................ 13 4.2 Selected AO Methodologies..........................................................................
    [Show full text]
  • Intelligent Agents - Catholijn M
    ARTIFICIAL INTELLIGENCE – Intelligent Agents - Catholijn M. Jonker and Jan Treur INTELLIGENT AGENTS Catholijn M. Jonker and Jan Treur Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam, The Netherlands Keywords: Intelligent agent, Website, Electronic Commerce Contents 1. Introduction 2. Agent Notions 2.1 Weak Notion of Agent 2.2 Other Notions of Agent 3. Primitive Agent Concepts 3.1 External primitive concepts 3.2 Internal primitive concepts 3.3. An Example Analysis 4. Business Websites 5. A Generic Multi-Agent Architecture for Intelligent Websites 6. Requirements for the Website Agents 6.1 Characteristics and Requirements for the Website Agents 6.2 Characteristics and Requirements for the Personal Assistants 7. The Internal Design of the Information Broker Agents 7.1 A Generic Information Broker Agent Architecture 7.2 The Website Agent: Internal Design 7.3 The Personal Assistant: Internal Design Glossary Bibliography Biographical Sketches Summary In this article first an introduction to the basic concepts of intelligent agents is presented. The notion of weak agent is briefly described, and a number of external and internal primitive agent concepts are introduced. Next, as an illustration, application of intelligent agents to business Websites is addressed. An agent-based architecture for intelligentUNESCO Websites is introduced. Requirements – EOLSS of the agents that play a role in this architecture are discussed. Moreover, their internal design is discussed. 1. IntroductionSAMPLE CHAPTERS The term agent has become popular, and has been used for a wide variety of applications, ranging from simple batch jobs and simple email filters, to mobile applications, to intelligent assistants, and to large, open, complex, mission critical systems (such as systems for air traffic control).
    [Show full text]
  • Multi-Agent Reinforcement Learning: an Overview∗
    Delft University of Technology Delft Center for Systems and Control Technical report 10-003 Multi-agent reinforcement learning: An overview∗ L. Bus¸oniu, R. Babuska,ˇ and B. De Schutter If you want to cite this report, please use the following reference instead: L. Bus¸oniu, R. Babuska,ˇ and B. De Schutter, “Multi-agent reinforcement learning: An overview,” Chapter 7 in Innovations in Multi-Agent Systems and Applications – 1 (D. Srinivasan and L.C. Jain, eds.), vol. 310 of Studies in Computational Intelligence, Berlin, Germany: Springer, pp. 183–221, 2010. Delft Center for Systems and Control Delft University of Technology Mekelweg 2, 2628 CD Delft The Netherlands phone: +31-15-278.24.73 (secretary) URL: https://www.dcsc.tudelft.nl ∗This report can also be downloaded via https://pub.deschutter.info/abs/10_003.html Multi-Agent Reinforcement Learning: An Overview Lucian Bus¸oniu1, Robert Babuskaˇ 2, and Bart De Schutter3 Abstract Multi-agent systems can be used to address problems in a variety of do- mains, including robotics, distributed control, telecommunications, and economics. The complexity of many tasks arising in these domains makes them difficult to solve with preprogrammed agent behaviors. The agents must instead discover a solution on their own, using learning. A significant part of the research on multi-agent learn- ing concerns reinforcement learning techniques. This chapter reviews a representa- tive selection of Multi-Agent Reinforcement Learning (MARL) algorithms for fully cooperative, fully competitive, and more general (neither cooperative nor competi- tive) tasks. The benefits and challenges of MARL are described. A central challenge in the field is the formal statement of a multi-agent learning goal; this chapter re- views the learning goals proposed in the literature.
    [Show full text]
  • An Exploration in Stigmergy-Based Navigation Algorithms
    From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms عمر بهر تيری محبت ميری خدمت گر رہی ميں تری خدمت کےقابل جب هوا توچل بسی )اقبال( To my late parents with love and eternal appreciation, whom I lost during my PhD studies Örebro Studies in Technology 79 ALI ABDUL KHALIQ From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms © Ali Abdul Khaliq, 2018 Title: From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms Publisher: Örebro University 2018 www.publications.oru.se Print: Örebro University, Repro 05/2018 ISSN 1650-8580 ISBN 978-91-7529-253-3 Abstract Ali Abdul Khaliq (2018): From Ants to Service Robots: an Exploration in Stigmergy-Based Navigation Algorithms. Örebro Studies in Technology 79. Navigation is a core functionality of mobile robots. To navigate autonomously, a mobile robot typically relies on internal maps, self-localization, and path plan- ning. Reliable navigation usually comes at the cost of expensive sensors and often requires significant computational overhead. Many insects in nature perform robust, close-to-optimal goal directed naviga- tion without having the luxury of sophisticated sensors, powerful computational resources, or even an internally stored map. They do so by exploiting a simple but powerful principle called stigmergy: they use their environment as an external memory to store, read and share information. In this thesis, we explore the use of stigmergy as an alternative route to realize autonomous navigation in practical robotic systems. In our approach, we realize a stigmergic medium using RFID (Radio Frequency Identification) technology by embedding a grid of read-write RFID tags in the floor.
    [Show full text]
  • Expert Assessment of Stigmergy: a Report for the Department of National Defence
    Expert Assessment of Stigmergy: A Report for the Department of National Defence Contract No. W7714-040899/003/SV File No. 011 sv.W7714-040899 Client Reference No.: W7714-4-0899 Requisition No. W7714-040899 Contact Info. Tony White Associate Professor School of Computer Science Room 5302 Herzberg Building Carleton University 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 (Office) 613-520-2600 x2208 (Cell) 613-612-2708 [email protected] http://www.scs.carleton.ca/~arpwhite Expert Assessment of Stigmergy Abstract This report describes the current state of research in the area known as Swarm Intelligence. Swarm Intelligence relies upon stigmergic principles in order to solve complex problems using only simple agents. Swarm Intelligence has been receiving increasing attention over the last 10 years as a result of the acknowledgement of the success of social insect systems in solving complex problems without the need for central control or global information. In swarm- based problem solving, a solution emerges as a result of the collective action of the members of the swarm, often using principles of communication known as stigmergy. The individual behaviours of swarm members do not indicate the nature of the emergent collective behaviour and the solution process is generally very robust to the loss of individual swarm members. This report describes the general principles for swarm-based problem solving, the way in which stigmergy is employed, and presents a number of high level algorithms that have proven utility in solving hard optimization and control problems. Useful tools for the modelling and investigation of swarm-based systems are then briefly described.
    [Show full text]
  • Intelligent Agent
    INTELLIGENT AGENT INTELLIGENT AGENT By, P.V. Raja Shekar & CH. Madhuri MRITS MCA FINAL YEAR. INTRODUCTION 1 | P a g e INTELLIGENT AGENT 1 What is artificial intelligence? 2 Branches of artificial intelligence. 3 Introduction to intelligence agent. 4 What is an agent. 5 What is a rational agent. 6 Common attributes of intelligent agent 7 What is bounded rationality. 8 What is an environment and different types of them. 9 Different agent architectures. 10 Applications . 11 Limitations . 12 Conclusion . Artificial Intelligence(AI) Artificial intelligence (AI) is both the intelligence of machines and the branch of computer science which aims to create it. Artificial Intelligence is a combination of cognitive science, linguistics, ontology, physiology, psychology, philosophy, operations research, economics, control theory, neuroscience, computer science, probability, optimization and logic. AI is a very 2 | P a g e INTELLIGENT AGENT large subject-matter. It consists of many different fields, from machine vision to expert systems. The aim of all the fields is the creation of machines that can "think". Researches hope that AI machines will be capable of reasoning, knowledge, learning, communication, planning, perception and the ability to move and manipulate objects. What's it all about? Artificial Intelligence (AI) is the science and engineering of creating intelligent machines and computer programs. It is related to similar tasks of using computers to understand human intelligence but AI does not only have to confine itself to methods that are biologically observable. The interest in AI has commonly increased since years and some classical sub- disciplines like robotics, language processing, or natural computing have produced reliable solutions Intelligence is prediction Intelligence is the ability to predict what comes next, even when faced with incomplete knowledge.
    [Show full text]
  • A Systematic Approach to Artificial Agents
    A Systematic Approach to Artificial Agents Mark Burgin1 and Gordana Dodig-Crnkovic2 1 Department of Mathematics, University of California, Los Angeles, California, USA, 2 School of Innovation, Design and Engineering, Mälardalen University, Sweden, Abstract. Agents and agent systems are becoming more and more important in the development of a variety of fields such as ubiquitous computing, ambient intelligence, autonomous computing, intelligent systems and intelligent robotics. The need for improvement of our basic knowledge on agents is very essential. We take a systematic approach and present extended classification of artificial agents which can be useful for understanding of what artificial agents are and what they can be in the future. The aim of this classification is to give us insights in what kind of agents can be created and what type of problems demand a specific kind of agents for their solution. Keywords: Artificial agents, classification, perception, reasoning, evaluation, mobility 1 Introduction Agents are advanced tools people use to achieve different goals and to various problems. The main difference between ordinary tools and agents is that agents can function more or less independently from those who delegated agency to the agents. For a long time people used only other people and sometimes animals as their agents. Developments in information processing technology, computers and their networks, have made possible to build and use artificial agents. Now the most popular approach in artificial intelligence is based on agents. Intelligent agents form a basis for many kinds of advanced software systems that incorporate varying methodologies, diverse sources of domain knowledge, and a variety of data types.
    [Show full text]
  • Adversarial Attack and Defense in Reinforcement Learning-From AI Security View Tong Chen , Jiqiang Liu, Yingxiao Xiang, Wenjia Niu*, Endong Tong and Zhen Han
    Chen et al. Cybersecurity (2019) 2:11 Cybersecurity https://doi.org/10.1186/s42400-019-0027-x SURVEY Open Access Adversarial attack and defense in reinforcement learning-from AI security view Tong Chen , Jiqiang Liu, Yingxiao Xiang, Wenjia Niu*, Endong Tong and Zhen Han Abstract Reinforcement learning is a core technology for modern artificial intelligence, and it has become a workhorse for AI applications ranging from Atrai Game to Connected and Automated Vehicle System (CAV). Therefore, a reliable RL system is the foundation for the security critical applications in AI, which has attracted a concern that is more critical than ever. However, recent studies discover that the interesting attack mode adversarial attack also be effective when targeting neural network policies in the context of reinforcement learning, which has inspired innovative researches in this direction. Hence, in this paper, we give the very first attempt to conduct a comprehensive survey on adversarial attacks in reinforcement learning under AI security. Moreover, we give briefly introduction on the most representative defense technologies against existing adversarial attacks. Keywords: Reinforcement learning, Artificial intelligence, Security, Adversarial attack, Adversarial example, Defense Introduction best moves with reinforcement learning from games of Artificial intelligence (AI) is providing major break- self-play. Meanwhile, for Atari game, Mnih et al. (2013) throughs in solving the problems that have withstood presented the first deep learning model to learn con- many attempts of natural language understanding, speech trol policies directly from high-dimensional sensory input recognition, image understanding and so on. The latest using reinforcement learning. Moreover, Liang et al. (Guo studies (He et al.
    [Show full text]
  • Extending Universal Intelligence Models with Formal Notion of Representation
    Extending Universal Intelligence Models with Formal Notion of Representation Alexey Potapov, Sergey Rodionov AIDEUS, Russia {potapov,rodionov}@aideus.com Abstract. Solomonoff induction is known to be universal, but incomputable. Its approximations, namely, the Minimum Description (or Message) Length (MDL) principles, are adopted in practice in the efficient, but non-universal form. Recent attempts to bridge this gap leaded to development of the Repre- sentational MDL principle that originates from formal decomposition of the task of induction. In this paper, possible extension of the RMDL principle in the context of universal intelligence agents is considered, for which introduction of representations is shown to be an unavoidable meta-heuristic and a step toward efficient general intelligence. Hierarchical representations and model optimiza- tion with the use of information-theoretic interpretation of the adaptive reso- nance are also discussed. Key words: Universal Agents, Kolmogorov Complexity, Minimum Descrip- tion Length Principle, Representations 1 Introduction The idea of universal induction and prediction on the basis of algorithmic information theory was invented a long time ago [1]. In theory, it eliminates the fundamental problem of prior probabilities, incorrect solutions of which result in such negative practical effects as overlearning, overfitting, oversegmentation, and so on. It would be rather natural to try to develop some models of universal intelligence on this basis. However, the corresponding detailed models were published only relatively recently (e.g. [2]). Moreover, the theory of universal induction was not popular even in ma- chine learning. The reason is quite obvious – it offers incomputable methods, which additionally require training sets of large sizes in order to make good predictions.
    [Show full text]
  • Arxiv:1607.08289V4 [Cs.AI] 21 Jan 2019 Keywords: USA CA [email protected] Francisco, San FPC, Vicarious Hay J
    1 Mammalian Value Systems Gopal P. Sarma School of Medicine, Emory University, Atlanta, GA USA [email protected] Nick J. Hay Vicarious FPC, San Francisco, CA USA [email protected] Keywords: Friendly AI, value alignment, human values, biologically inspired AI, human-mimetic AI Characterizing human values is a topic deeply interwoven with the sciences, humanities, political philosophy, art, and many other human endeavors. In recent years, a number of thinkers have argued that accelerating trends in computer science, cognitive science, and related disciplines foreshadow the creation of intelligent machines which meet and ultimately surpass the cognitive abilities of human beings, thereby entangling an understanding of human values with future technological development. Contemporary research accomplishments suggest increasingly sophisticated AI systems becoming widespread and responsible for managing many aspects of the modern world, from preemptively planning users’ travel schedules and logistics, to fully autonomous vehicles, to domestic robots assisting in daily living. The extrapolation of these trends has been most forcefully described in the context of a hypothetical “intelligence explosion,” in which the capabilities of an intelligent software agent would rapidly increase due to the presence of feedback loops unavailable to biological organisms. The possibility of super- intelligent agents, or simply the widespread deployment of sophisticated, autonomous AI systems, highlights an important theoretical problem: the need to separate
    [Show full text]
  • Intelligent Agents Web-Mining Agents
    Intelligent Agents Web-Mining Agents Prof. Dr. Ralf Möller Dr. Tanya Braun Universität zu Lübeck Institut für Informationssysteme Acknowledgements • Some slides have been designed by PD Dr. Özgür Özcep. Since Özgür works in my group, those slides are not explicitly marked. Thank you nevertheless, Özgür. • Other slides have been take from lecture material provided by researchers on the web. I hope this material is indicated appropriately. Thank you all. 2 Artificial Intelligence and Intelligent Agents • Artificial intelligence (AI) is the science of systematic synthesis and analysis of computational agents that act intelligently – Agents are central to AI (and vice versa) – Intelligent agent = computational agent that acts intelligently – Talking about AI w/o talking about agents misses the point (and vice versa) • Need to technically define the notion of “acting intelligently” • AI = Science of Intelligent Systems – Systems are called computational agents in AI, or agents for short 3 Literature http://aima.cs.berkeley.edu (AIMA, 1st edition 1995) http://artint.info st (AIFCA, 1 edition 2010) 4 Literature 5 Literature 6 What is an Agent? • Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators [AIMA-Def] Sensors Percepts ? Environment Agent Actions – Human agent Actuators eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators – Robotic agent cameras and infrared range finders for sensors; various motors for actuators – Software agent interfaces, data integration, interpretation, data manipulation/output 7 Abstractions: Agents and Environments Sensors Percepts ? Environment Agent Actions Actuators • The agent function maps from percept histories to actions: [f: P* à A] • The agent program runs on Really insist on functional a physical architecture to produce f behavior? • Agent = architecture + program 8 Reactive vs.
    [Show full text]
  • A Deep Reinforcement Learning-Based Approach to Intelligent Powertrain Control for Automated Vehicles *
    2019 IEEE Intelligent Transportation Systems Conference (ITSC) Auckland, NZ, October 27-30, 2019 A Deep Reinforcement Learning-Based Approach to Intelligent Powertrain Control for Automated Vehicles * I-Ming Chen, Member, IEEE, Cong Zhao and Ching-Yao Chan, Member, IEEE Abstract—The development of a powertrain controller for automated driving systems (ADS) using a learning-based approach is presented in this paper. The goal is to create an intelligent agent to learn from driving experience and integrate the operation of each powertrain unit to benefit vehicle driving performance and efficiency. The feature of reinforcement learning (RL) that the agent interacts with environment to improve its policy mimics the learning process of a human driver. Therefore, we have adopted the RL methodology to train the agent for the intelligent powertrain control problem in this study. In this paper, a vehicle powertrain control strategist named Intelligent Powertrain Agent (IPA) based on deep Q-learning Figure. 1 Architecture for ADS technology network (DQN) is proposed. In the application for an ADS, the IPA receives trajectory maneuver demands from a The approaches for vehicle powertrain control can be decision-making module of an ADS, observes the vehicle states classified into three categories as shown in Fig. 2. Rule-based and driving environment as the inputs, and outputs the control methods use principles developed with heuristics, experiment, commands to the powertrain system. As a case study, the IPA is and analysis to formulate a control strategy with look-up applied to a parallel hybrid vehicle to demonstrate its capability. tables of previously saved parameters for real-time control.
    [Show full text]