Suggested Plant Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EC06-1255 List and Description of Named Cultivars in the Genus Penstemon Dale T
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Historical Materials from University of Nebraska- Extension Lincoln Extension 2006 EC06-1255 List and Description of Named Cultivars in the Genus Penstemon Dale T. Lindgren University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/extensionhist Lindgren, Dale T., "EC06-1255 List and Description of Named Cultivars in the Genus Penstemon" (2006). Historical Materials from University of Nebraska-Lincoln Extension. 4802. https://digitalcommons.unl.edu/extensionhist/4802 This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. - CYT vert . File NeBrasKa s Lincoln EXTENSION 85 EC1255 E 'Z oro n~ 1255 ('r'lnV 1 List and Description of Named Cultivars in the Genus Penstemon (2006) Cooperative Extension Service Extension .circular Received on: 01- 24-07 University of Nebraska, Lincoln - - Libraries Dale T. Lindgren University of Nebraska-Lincoln 00IANR This is a joint publication of the American Penstemon Society and the University of Nebraska-Lincoln Extension. We are grateful to the American Penstemon Society for providing the funding for the printing of this publication. ~)The Board of Regents oft he Univcrsit y of Nebraska. All rights reserved. Table -
APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program
APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program Midtown Alliance launched the Tree Well Adoption program with the primary goal of enriching the experience of Midtown’s workers and residents while encouraging sustainability through the use of low-water, urban tolerant plant species. This list of plants was created to aid individuals and organizations in selecting plant material to plant in their adopted tree wells. This plant list is intended to encourage individual character in the tree wells, rather than restrict creativity in the selection of plants. The plants on the approved list were selected based on the following criteria: • Perennial. All plants listed are perennial, meaning they last for two or more growing seasons. Once established, these plants will require less water to maintain than annuals. • Heat tolerant. Plants in tree wells are exposed to high temperatures caused by vehicles and heat reflected from surrounding buildings, asphalt, and other urban surfaces. They must also be tolerant to high daytime temperatures, typical of Atlanta’s summer months, and cold hardy in the winter months. Atlanta is located in USDA Plant Hardiness Zone 7b/8a. • Water wise. Urban tree wells are surrounded by impervious surfaces and thus, are highly susceptible to periods of drought. Suitable plants must be able to survive periods of low rainfall. • Pollution tolerant. Vehicle exhaust may leave deposits and pollutants on plant foliage, which can kill sensitive plants. • Encourage wildlife. Flowering plants attract insects such as butterflies while others provide food sources for birds and other wildlife. • Grown locally. Many of the plants listed are native to the Atlanta area, and all can be found at local nurseries. -
Overlooked Hybrids of Prunella L. in Croatian Flora
NAT. CROAT. VOL. 18 No 2 287–294 ZAGREB December 31, 2009 original scientific paper / izvorni znanstveni rad OVERLOOKED HYBRIDS OF PRUNELLA L. IN CROATIAN FLORA VEDRAN [EGOTA,ANTUN ALEGRO &VLADIMIR HR[AK Department of Botany, Faculty of Science, University of Zagreb, Maruli}ev trg 20/II, Zagreb, Croatia (e-mail: [email protected], [email protected]) [egota, V., Alegro, A. & Hr{ak, V.: Overlooked hybrids of Prunella L. in Croatian flora. Nat. Croat., Vol. 18, No. 2, 287–294, 2009, Zagreb. Presence of poorly known hybrids Prunella x dissecta and Prunella x intermedia is confirmed for Croatian flora. Distribution data were collected from literature, herbaria revision and field observa- tions. Diagnostic characters of all hybrids and determination key are presented. Key words: Prunella x dissecta, Prunella x intermedia, distribution in Croatia, flora, hybrids [egota, V., Alegro, A. & Hr{ak, V.: Zanemareni hibridi roda Prunella (Lamiaceae) u hrvatskoj flori. Nat. Croat., Vol. 18, No. 2, 287–294, 2009, Zagreb. Prisutnost slabo poznatih hibrida Prunella x dissecta i Prunella x intermedia potvr|ena je za floru Hrvatske. Podaci o rasprostranjenosti sakupljeni su iz literature, revidiranog herbarskog materijala i terenskih opa`anja. Navedena su dijagnosti~ka svojstva svih hibrida kao i determinacijski klju~. Klju~ne rije~i: Prunella x dissecta, Prunella x intermedia, rasprostranjenost u Hrvatskoj, flora, hibridi INTRODUCTION The genus Prunella L. (Lamiaceae) consists of six (HEß et al., 1972) to eight (GREUTER et al., 1986) species, with centre of its distribution in South Europe. In European flora the genus is represented by four (SMITH, 1972), and in Croatian flora by three species (Prunella vulgaris L., P. -
Plant Guide for Rocky Mountain Penstemon
Natural Resources Conservation Service Plant Guide ROCKY MOUNTAIN Ornamental: The beautiful flowers and evergreen basal leaves of Rocky Mountain penstemon make it attractive PENSTEMON for ornamental and landscape planting (Smith, et. al., 2009). Rocky Mountain penstemon has been identified as Penstemon strictus Benth. a compatible and beneficial companion plant to grow Plant Symbol = PEST2 along with several paintbrush (Castilleja) species for ornamental applications (Nelson, 2005). Paintbrush plants require a companion plant to serve as host for its semi-parasitic needs. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description General: Rocky Mountain penstemon, a member of the Figwort family (Schrophulariaceae) is a semi-evergreen, native, perennial forb with fibrous roots and is 35-70 cm tall. Plants are mostly glabrous and the leaves are entire. Basal and lower leaves are 5-15 cm long, 5-16 mm wide, narrowly oblanceolate, rounded at the tip and tapering to the base. The upper leaves are 4-10 cm long, 2-7 mm wide, linear and often folded. The flower stalks have a whorl of 1 or 2 flowers (sometimes 4) at each node. The sepals are 3-5 mm long, glabrous and ovate or rounded to obtuse and are glabrous. The petals are 24-32 mm long and the flower tube is 6-10 mm long, deep blue in color with a whitish color at the opening and often with red- violet lines inside the throat and sparsely bearded to sometimes glabrous. -
Partybells™ Penstemon Culture Guide Penstemon Hartwegii
Partybells™ Red Penstemon Partybells™ Penstemon Culture Guide Penstemon hartwegii • Naturally dwarf habit required little to no PGRs • Easier to grow for mass market, high density production • Compact habit with short flower spike allows for cart racking and shipping efficiencies • This regional perennial known for its incredible flower power that thrives in hot, dry conditions is best for California, southern and Sunbelt states • Attracts loads of hummingbirds and butterflies Partybells™ Violet Penstemon with its bright colors and nectar-rich blooms! Container size: Quarts, gallons, 2 gallons Moisture level: Saturated (level 5) for days 1–7 or until radicle emergence. Habit: Upright mounding Recommended tray size: 288-cell tray Selling Season: Late spring to summer Seeds per cell: 1 Vernalization: Not required; first-year flowering Garden Specifications Young Plant Production Garden height: 14–18" TEMPERATURE: Garden width: 8–12" Day: 64–68 °F (18–20 °C) Light: Full sun Night: 64–68 °F (18–20 °C) Natural blooming season: Summer LIGHTING: USDA Hardiness Zone: 6–9 Recommended day length: Long days AHS Heat Zone: 9–1 Light intensity: 2,000–3,000 foot candles (400–600 Product use: Landscape beds, containers micro mols) Day length response: Facultative long day Germination Daily light integral: Greater than 10 mols/day Media pH: 5.4–5.8 Germination time: 5–7 days Media EC: 0.5–1.0 mS/cm (saturated media extract) Media temperature: 68–73 °F (20–23 °C) Fertilizer: 50–100 ppm nitrogen Chamber: Optional Pinching: No Light: Not required for germination Moisture level: After radical emergence, alternate media Seed cover: Seeds may be covered with a thin layer of between wet (level 4) and moist (level 3). -
Draft Plant Propagation Protocol
Plant Propagation Protocol for Penstemon davidsonii ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/PEDA2.pdf Source: (Douglas et al., 1999)4 TAXONOMY Plant Family Scientific Name Scrophulariaceae18 [Newly listed in Plantaginaceae]2, 3 Common Name Figwort Family18 [Plantain Family] 2, 3 Species Scientific Name Scientific Name Penstemon davidsonii Greene18 Varieties Penstemon davidsonii Greene var. davidsonii Penstemon davidsonii Greene var. menziesii (D.D. Keck) Cronquist Penstemon davidsonii Greene var. praeteritus Cronquist18 Sub-species None18 Cultivar ‘Albus’ compact form of var. menziesii, white flowers ‘Broken Top’ 4”x18”, spreading, layering, purple flowers ‘Microphyllus’ form of var. menziesii with small round leaves and violet-blue flowers ‘Minnie’ floriferous form of var. menziesii, blue flowers ‘Parma’ trailing form of var. menziesii with glaucous, toothed leaves and dark purple flowers. ‘Serpyllifolius’ prostrate form of var. menziesii with toothed leaf margins and lilac colored flowers ‘Mt. Adams Dwarf’ smaller form of type variety9 Common Synonym(s) None Common Name(s) Davidson’s Penstemon, Davidson’s Beardtongue, Creeping Penstemon10, 21 Species Code (as per USDA PEDA218 Plants database) GENERAL INFORMATION Geographical range Native to British Columbia, Washington, Oregon, California and Nevada. See maps below for distribution. Source: (USDA, 2018)18 Source: (Burke Museum, 2018)2 Ecological distribution This species is commonly found grasping to the surface of cliffs, rocky -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
A New Eudesmane Sesquiterpene Glucoside from Liriope Muscari Fibrous Roots
Molecules 2011, 16, 9017-9024; doi:10.3390/molecules16119017 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article A New Eudesmane Sesquiterpene Glucoside from Liriope muscari Fibrous Roots Hai Ming Zhang 1, Gang Li Wang 2, Chun Qi Bai 3, Peng Liu 4, Zi Mu Liu 1, Qi Zhi Liu 3, Yong Yan Wang 1, Zhi Long Liu 3,*, Shu Shan Du 1,* and Zhi Wei Deng 4 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China 2 National Institutes for Food and Drug Control, Beijing 100050, China 3 Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China 4 Analytical and Testing Center, Beijing Normal University, Beijing 100875, China * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Z.L.L.); [email protected] (S.S.D.); Tel.: +86-10-62732800; Fax: +86-10-62208032. Received: 16 September 2011; in revised form: 20 October 2011 / Accepted: 24 October 2011 / Published: 26 October 2011 Abstract: The screening of several Chinese medicinal herbs for nematocidal properties showed that the ethanol extract of Liriope muscari fibrous roots possessed significant nematocidal activity against the pine wood nematode (Bursaphelenchus xylophilus). From the ethanol extract, a new constituent (1,4-epoxy-cis-eudesm-6-O-β-D-glucopyranoside) and three known glycosides [1β,6α-dihydroxy-cis-eudesm-3-ene-6-O-β-D-glucopyranoside (liriopeoside A), 1β,6β-dihydroxy-cis-eudesm-3-ene-6-O-β-D-glucopyranoside, and 1α,6β- dihydroxy-5,10-bis-epi-eudesm-4(15)-ene-6-O-β-D-glucopyranoside] were isolated by bioassay-guided fractionation. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Powder Denim Sky Teal Midnight Cerulean Navy Turquoise Cornflower Periwinkle Royal Opal Cmg 08458 Cmg 1 26 27 3 4 6 29 30 31 2 32 33
MARCH 2010 House Beautiful sp ring ALL COLO | A BOUT issue BLUE POWDER DENIM SKY TEAL MIDNIGHT CERULEAN NAVY TURQUOISE CORNFLOWER PERIWINKLE ROYAL OPAL CMG 08458 1 26 27 3 4 6 29 30 31 2 32 33 5 28 34 7 8 36 10 11 9 50 BLUE FABRICS 35 14 12 13 15 37 38 41 40 19 39 47 17 43 44 45 18 46 16 20 42 23 24 25 49 21 48 22 50 1 CLOQUE DE COTON 6 ARIPEKA 10 STRIATE IN AQUA. KaTE 14 CHRISSY IN DENIM. ViCTOria 18 FORMIA 22 DJEBEL 26 GASTAAD PLAID IN CaPri. 31 LA GAROUPE 35 LUCE 39 JUPON BOUQUET 43 OcELOT IN AZUL. KaT BURKI 47 KHAN CASHMERE IN COLOR 8. DOMINIQUE KIEffER IN HYdraNGEA. ROGERS GabriEL THROUGH STUdiO HaGAN HOME COLLECTION: IN RUSCELLO. DECORTEX IN GaLET. LELIEVRE THROUGH EriC COHLER FOR LEE JOfa: IN INdiGO. RALPH LaUREN IN NaVY. MadELINE WEINrib IN AZURE BLUE COLLECTION FOR IN BLUE MIX. HOLLAND BY RUBELLI THROUGH & GOffiGON: 203-532-8068. FOUR NYC: 212-475-4414. 212-888-3241. THROUGH BRUNSCHWIG STarK fabriC: 212-355-7186. 800-453-3563. HOME : 888-743-7470. ATELIER: 212-473-3000, X780. AND WarM WHITE. FORTUNY: STarK fabriC: 212-355-7186. & SHErrY: 212-355-6241. BERGAMO: 914-665-0800. & FILS: 914-684-5800. 212-753-7153. 7 MYRSINI 11 SIERRA MADRE 15 TANZANIA IN BLUE. CHarLES 23 CHEVRON BAR 27 VIOLETTA N IN MOONLIGHT. 32 WOOL SATEEN 36 AlTAI IN BLUETTE. 44 HINSON SUEDE 48 BARODA II IN INdiGO ON 2 FIORI IN ATLANTIC ON SEA MIST. -
Bougainvillea Greenthread Madagascar Periwinkle Desert Willow
TOP TEN PLANTS FOR A DESERT ISLAND Page 1 of 1 American Beautyberry Purple Trailing Lantana Callicarpa americana Lantana montevidensis 'Purple' from article in Rockport Pilot by from Dr. Michael Womack: This Ernie Edmundson: Early spring is tough plant not only blossoms most the time to cut them down before of the year, but it is also drought and they put on their new spring growth. sun hardy. The most effective use They can be trimmed back almost to of these plants is often mass the ground, however unpruned plantings in sunny areas with well- plants will develop a weeping effect drained soils. [The smaller the leaf, . with purple, or in some cases, the smaller the plant will be]. The white berries in the fall. shortest varieties of lantana commonly are called trailing lantana. Bougainvillea Madagascar Periwinkle Bougainvillea sp. Catharanthus roseus Hummingbirds are attracted to from www.wikipedia.com: It is noted bougainvillea but cannot use it for for its long flowering period, an energy source. Be careful throughout the year in tropical around play areas because of the conditions, and from spring to late thorns. Great vine for large autumn in warm temperate climates. containers to decorate hot patios Tolerates wind, bushy, thrives in and plazas. It can be trained as a humid heat. The alkaloids shrub or clipped into shapes. vincristine and vinblastine from its sap have been shown to be an effective treatment for leukaemia. Esperanza Turk's Cap Drummondii Tecoma stans Malvaviscus arboreus 'Drummondii' LARVAL HOST for: Plebeian Primary food source for migrating sphinx moth (Paratrea plebeja). -
2003Session3.Pdf
THE SITUATION OF GRAPEVINE YELLOWS AND CURRENT RESEARCH DIRECTIONS: DISTRIBUTION, DIVERSITY, VECTORS, DIFFUSION AND CONTROL E. Boudon-Padieu Biologie et écologie des phytoplasmes, UMR 1088 Plante Microbe Environnement, INRA – Université de Bourgogne, Domaine d’Epoisses, BP 86510 – 21065 Dijon Cedex France Grapevine yellows (GY) are known now for 50 years. After the first appearance of Flavescence dorée (FD) in West-South France in the 1950’s, similar diseases have been observed in vineyards of other regions or countries (22) in Europe, North-America, Asia Minor and Australia. Typical symptoms are leaf rolling and discoloration of veins and laminae, uneven or total lack of lignification of canes, flower abortion or berry withering. Eventually, severe decline and death occur with sensitive varieties or with particular GY diseases. All these diseases have been associated with phytoplasmas. Phytoplasmas, discovered in 1967, are wall-less intracellular bacterias restricted to phloem sieve tubes and transmitted only by vector insects in which they multiply and circulate. Recently, comparisons of conserved regions in their genomic DNA, have permitted to classify all known phytoplasmas into about 20 groups and subgroups within a monophyletic clade in the Class Mollicutes, closest to the Acholeplasma clade (57, 78). Numerous DNA probes have been designed that permit diagnosis and identification of phytoplasmas in plant tissues and in insects. This, together with transmission assays, has also permitted the recent identification of new phytoplasma vectors. Though Koch’s postulate cannot be fully satisfied with non-culturable pathogen agents, it is now considered that phytoplasmas are responsible for typical GY symptoms. These conclusions have been reached because of transmission experiments with natural vectors in the case of Flavescence dorée (FD) and Bois noir (BN), of the similarity of symptoms caused world wide by GY diseases on numerous grapevine cultivars and of consistent detection of phytoplasmas in affected grapevines and in infective insect vectors.