Die Turbellarien Ostfennoskandiens

Total Page:16

File Type:pdf, Size:1020Kb

Die Turbellarien Ostfennoskandiens SOCIETAS PRO FAUNA ET FLORA FENNICA FAUNA FENN/CA 7 DIE TURBELLARIEN OSTFENNOSKANDIENS 1. ACOELA, CATENULIDA, MACROSTOMIDA, [) LECITHOEPITHELIATA, PROLECITHOPHORA, UND PROSERIATA I:I ) VO?' ALEX. LUTHER AUS DER ZOOLOGISCHEN STATIOX T\'ÄRMINNE UND DEM ZOOLOGISCHEN I!:\STITUT DER UNIVERSITÄT IN HELSINGFORS MIT 40 ABBILDUNGEN IM TEXT UND 1 TAFEL HELSINKI - HELSINGFORS '1960 ; I ) ) GEDR'l'CKT l~ I'I"'i'L.-\':\D BEI TILGMA?')l HELSI?'KI-'HELSI:\GFORS 1960 FAUNA FENNIeA 7 3 I1\HALTSÜBERSICHT Seite Seite \ p or,vort . !1 :.\Iacrostol11u11l obtusul\1 77 Provinzkarte 7 :M. balticum .. 78 Abkürzungen.............................. 8 ~.l. hamatum . 79 Bezeichnungen der Abbildungen 8 M. lutheri .. 81 Turbellaria '10 .lVI. curvituba . 83 Bestimmungstabelle der Gruppen... 10 M. tenuicauda . 84 Acoela 12 M. tuba .. 85 H aploposthiidae M. minutum . 88 Childia groenlandica 12 Dolichomacrostomnm uniporum . 89 Anaperidae Lecithoepitheliata . 91 Anaperus tvaerminnensis 14 Pro'Yhynchidae Convolutidae Prorhynchus stagnalis . 93 Mecynostomum lutheri 15 Geocentrophora sphyrocephala . 9() M. auritnm 17 G. baltica . 98 Convoluta saliens 19 Prolecithophora. Combinata 99 C. karlingi 21 Protomonotresidae Catenuli<'la 22 Archimonotresis limophila 99 Catenulidae Prolecithophora. Separata . 101 Catenula lemnae 23 Plagiostomidae C. macrura 152 Plagiostomum lemani . 101 Suomina turgida 24 Proseriata . 105 Stenostomum.. .. ................ 27 Bothrioplanidae S. leucops .. .. 29 Bothrioplana semperi . 106 S. unicolor 36 Oto'mesostomidae S. bryophilum 43 Otomesostoma auditivum . 108 S. karlingi 46 M onocelidae S. gra1>bskogense 47 Monocelis lineata . 112 S. tuberculosum........................ 49 Paramonotus hamatus . 114 S. middendorffii........................ 51 Promonotus schultzei . 116 Myostenostomum bulbocau.datum 52 Archilopsis unipunctata . 118 M. tauricum 58 l'vlinona baltica . '121 Rhynchoscolex simplex 59 Otoplanidae ;,Hacrostomida.............................. 60 Bothriomolus balticus . 125 Microstomidae Philosyrtis fennica . 133 Microstomum lineare.................. 61 Pseudosyrtis subterranea . 135 M acrostomidae Coelogynoporidae :Macrostomum.......... 66 Coelogynopora . 135 M. hystricinum 67 C. biarmata . 138 M. rostratum........................... 71 C. schulzii .. 140 M. finlandense 72 C. hangoensis . 142 M. distinguendum 73 Literaturverzeichnis . 'llJ4 ]\1. karlingi 74. Nachträge . 152 M. orthostylul1l... 75 VORWORT Vor rund 60 Jahren begann ich meine Aufmerksamkeit den Turbellarien zuzuwenden. Seitdem habe ich - wenn auch mit vielen Unterbrechungen ­ diese bis dahin in Finnland wenig beachtete Tiergruppe im Auge behalten und über sie eine Reihe von Arbeiten veröffentlicht. Einige Schüler von mir sowie ausländische Kollegen, die an der zoologischen Station Tvärminne arbei- teten, haben ferner unsere Kenntnisse von den hier lebenden Strudelwür- ) mern stark vermehrt. Es erscheint mir wünschenswert eine Zusammenstellung des bis jetzt über die Turbellarienfauna Ostfennoskandiens Bekannten zu geben, wobei auch die Resultate der russischen Forscher Beachtung finden. Das hier behandelte Gebiet »Ostfennoskandiem umfasst Finnland, rus­ sisch Karelien und die halbinsel Kola. Es handelt sich also um ein durch geographische Verhältnisse, geologische Beschaffenheit des Bodens und andere Naturverhältnisse bedingtes, von politischen Grenzen unabhängiges natur­ historisches Gebiet. Die Turbellarien der Ostseeküste Finnlands sind ein­ bezogen, dagegen nicht die marine Fauna des Eismeeres bezw. des Weissen Meeres. Es war mein Bestreben Bestimmungstabellen und Beschreibungen aller hier vorkommenden Arten zu geben, aber auch das, was ich an neuen Beob­ achtungen gesammelt hatte, zu veröffentlichen. Wo eine Spezies bereits gut bekannt war konnte ich mich kürzer fassen, wo es nicht der Fall war musste ich ausführlicher sein. Einzelne Gruppen, wie z.B. die Catenulida, die wegen ) der Schwierigkeiten, die sie darboten, bisher hier ganz bei Seite geschoben waren, mussten der Vollständigkeit wegen mit berücksichtigt werden, trotzdem noch viel Unsicherheit bestand. So ist die Darstellung ungleichmässig geworden. Das Hauptgewicht in dieser Arbeit wurde auf die faunistische Seite gelegt. Der Verbreitung der Arten wurde deshalb grosse Aufmerksamkeit geschenkt. Bis jetzt sind die Turbellarien in unserem Gebiet nur an ganz wenigen Orten näher untersucht worden; dazu kommen zerstreute Beobachtungen während kürzerer Aufenthalte an anderen Stellen. Vor allen Dingen war es die Zoo­ logische Station Tvärminne am Ufer des Finnischen Meerbusens, die ein Zent­ rum dieser Forschungen war, von dem aus Exkursionen in verschiedenen FAUNA FENNICA 7 5 Richtungen unternommen wurden. Diese Gegend ist also relativ gut bekannt, während grosse Teile Finnlands in dieser Beziehung noch eine Terra incognita sind. Dass besonders Lappland noch manches Neue zu bieten hat konnten Dr. TOR G. KARLING, Prof. FLORIANO PAPI und ich auf einer 1950 gemeinsam unternommenen dreiv\'öchigen Rekognoszierungsfahrt feststellen. Aber auch im Süden des Landes wird noch so manches von Interesse zu finden sein, besonders wenn bisher übersehene Lebensräume in den Blickpunkt rücken und neue Untersuchungsmethoden zur Verwendung kommen. So war es als auf Anregung von A. RE1vlANE und E. SCHULZ das Küstengrundwasser in den Bereich der Forschung gezogen wurde. Beobachtungen an lebenden Turbellarien und Einsammlungen von Material wurden hauptsächlich in den Sommermonaten Juni bis Anfang September gemacht, weniger im April und Mai, während aus der kalten Jahreszeit bloss vereinzelte, mehr oder weniger zufällige Notizen vorliegen. J Die Fundorte sind, um eine Übersicht zu erleichtern, nach den von der Societas pro Fauna et Flora Fennica angenommenen naturhistorischen Pro­ vinzen geordnet, deren traditionelle abgekürzte Bezeichnungen (s. Karte) in Kursivschrift angegeben werden. - Die Verbreitung ausserhalb Fennoskan­ diens wird im allgemeinen nur kurz nach der Literatur angegeben. Wo mir aber bisher nicht veröffentlichte Fundortsangaben bekannt waren habe ich diese eingefügt. Das gilt besonders von Schweden, über dessen Turbellarien­ fauna des SÜss- und Brackwassers bisher wenig veröffentlicht wurde und von wo Dr. TOR G. KARLING und Amanuensis HARRY KINNANDER mir zahl­ reiche Originalnotizen mitgeteilt haben. Da diese im Anschluss an die Ver­ breitung in Finnland von Interesse sind wurden sie mitgenommen obgleich dadurch die Behandlung des betreffenden Abschnitts sehr ungleichmässig wurde. Mein Freund und einstiger Schüler Dr TOR G. KARLING (Stockholm) hat sich der grossen Mühe unterzogen das Manuskript durchzulesen und mir viele Verbesserungen und Komplettierungen vorgeschlagen. Er hat sich auch dadurch an der Arbeit beteiligt, dass er die Ausarbeitung in Wort und Bild der Proseriaten-Gattungen Philosyrtis, Pseudosyrtis und Coelogynopora ganz Übernahm und fÜr andere Arten Notizen und Figuren mir Überliess. FÜr diese grosse Hilfe spreche ich ihm meinen wärmsten Dank aus. Ein anderer meiner frÜheren SchÜler, Prof. Dr FLORIANO PAPI (Pisa), übergab mir ebenfalls Notizen und Abbildungen, die in dieser Arbeit zur Verwendung kommen. Auch ihm danke ich hierfür herzlichst. Bei der Beschaffung des Materials konnte ich mich der Mithilfe zahlreicher älterer und jüngerer Kollegen erfreuen. Besonderen Dank schulde ich in dieser Beziehung Dr K. J. PURASJOKI für seine langjährige, tatkräftige Unter­ stützung. 6 A lex. Luther: Die Turbellarien Ostfennoskandiens Herr Kustos Dr E. SCHULZ (Kiel), der im Sommer 1958 die Grundwasser­ fauna des Meeresufers bei Tvärminne studierte, übergab mir die dabei von ihm gefundenen Turbellarien zur Bestimmung und gestattete mir freundlichst dieses Material in vorliegender Arbeit zu berücksichtigen. Während meiner und meiner Arbeitsgenossen KARLING und PAPI Unter­ suchungen in Lappland 1950 hat uns Lic. BIRGER OHLSON aufs tatkräftigste geholfen; ihm und seiner verehrten Gattin sei auch an dieser Stelle mein herz­ licher Dank dargebracht. Ebenso danke ich wärmstens Herrn Dr THORILD BRANDER und seiner Gemahlin für ihre grosse Gastfreundschaft, die es mir ermöglichte die Frühlingsfauna in Urjala, Raikko kennen zu lernen. Dankbarst erwähne ich, dass die Societas Scientiarum Fennica und die Naturwissenschaftliche Kommission des Staates mir Mittel für die mit den Untersuchungen verbundenen Ausgaben bewilligten. Dank diesem Umstand konnte ich zeitweilig einen Privatassistenten für mikrotechnische Zwecke anstellen. Als solche haben Lic.phil. ]OHAN REUTER und Stud. RAINER ROSEN­ GREN gewirkt. Beim Kopieren oder Umzeichnen in Tusche einiger Abbildungen konnte ich mich der geschickten Hilfe von Herrn Kand. phil. VIKING NYSTRÖM erfreuen. Meinem Sohn, Dr HANS LUTHER, der mir beim Lesen der Korrekturbogen behilflich war, danke ich herzlich für seine grosse Mühe. Helsingfors im Mai 1960. Alex. Luther ) FAUNA FENNICA '7 7 PROVINCL\E FLORAE ET FAUNAE FENNOSCANDIAE ORIENTAI,IS, AB = Rcgio aboensis KpOR = Karelia pomorica orientalis Lv = Lapponia Varsugae AL = Alandia Ks = Regio kuusamoensis N = Nylandia IK = Isthmus kareJicus KTO~ = Karelia transonl.'gensis OA = Ostrobottnia australis KA = KareJia austraJis LI:: = Lapponia enontekiensis OB = Ostroboltnia borealis KB = Karelia borealis LI = I,apponia inarensis OK = Ostrobottnia kajanensis KK = Karelia keretina LThI = Lapponia Imandrae OM = Ostrobottnia media KL = KareJia ladogensis LK(EM) = Lapponia kemensis SA = Savonia australis KOL = Karelia olonetsensis LM(UR) = Lapponia murmanica SB = Savonia borealis KON = Karelia onegensis Lp = I,apponia ponojensis ST = Satakunta
Recommended publications
  • The Free-Living Flatworm Macrostomum Lignano
    ARTICLE IN PRESS Experimental Gerontology xxx (2009) xxx–xxx Contents lists available at ScienceDirect Experimental Gerontology journal homepage: www.elsevier.com/locate/expgero Review The free-living flatworm Macrostomum lignano: A new model organism for ageing research Stijn Mouton a,*, Maxime Willems a, Bart P. Braeckman b, Bernhard Egger c, Peter Ladurner c, Lukas Schärer d, Gaetan Borgonie a a Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium b Laboratory for Ageing Physiology and Molecular Evolution, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium c Ultrastructural Research and Evolutionary Biology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria d Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland article info abstract Article history: To study the several elements and causes of ageing, diverse model organisms and methodologies are Received 5 September 2008 required. The most frequently used models are Saccharomyces cerevisiae, Caenorhabditis elegans, Drosoph- Received in revised form 6 November 2008 ila melanogaster and rodents. All have their advantages and disadvantages and allow studying particular Accepted 28 November 2008 aspects of the ageing process. During the last few years, several ageing studies focussed on stem cells and Available online xxxx their role in tissue homeostasis. Here we present a new model organism which can study this relation where other model systems fail. The flatworm Macrostomum lignano possesses a dynamic population Keywords: of likely totipotent somatic stem cells known as neoblasts. Several characteristics qualify M. lignano as Flatworm a suitable model system for ageing studies in general and more specifically for gaining more insight in Macrostomum lignano Ageing the causal relation between stem cells, ageing and rejuvenation.
    [Show full text]
  • R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
    RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available.
    [Show full text]
  • Tim29 Is Required for Stem Cell Activity During Regeneration in the Flatworm Macrostomum Lignano
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.123885; this version posted May 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tim29 is required for stem cell activity during regeneration in the flatworm Macrostomum lignano Stijn Mouton1*, Kirill Ustyantsev2, Frank Beltman1, Lisa Glazenburg1, Eugene Berezikov1,2* 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands. 2Institute of Cytology and Genetics SB RAS, Prospekt Lavrentjeva 10, 630090, Novosibirsk, Russia. *Co‐corresponding authors: Stijn Mouton ([email protected]), Eugene Berezikov ([email protected]). Present address: PRA Health Sciences, Amerikaweg 18, 9407 TK Assen, The Netherlands. Abstract Domain of Unknown Function (DUF) genes are broadly conserved in metazoa but have an unknown biological function. Previously, we established transcriptional profiles of the germline and stem cells of the flatworm Macrostomum lignano (Grudniewska et al., 2016). Here, we used this information to probe the function of DUF genes in M. lignano. Recently, Kang et al. (2016) found that DUF2366 is a mitochondrial inner membrane protein that interacts with the protein import complex TIM22. DUF2366 was renamed TIM29, and shown to stabilize the TIM22 complex, but its biological role remained largely unknown. We now demonstrate that DUF2366/TIM29 is dispensable in the homeostatic condition in M. lignano, but is essential to adapt to a highly proliferative state required for regeneration.
    [Show full text]
  • The Regenerative Flatworm Macrostomum Lignano, a Model
    Int. J. Dev. Biol. 62: 551-558 (2018) https://doi.org/10.1387/ijdb.180077eb www.intjdevbiol.com The regenerative flatwormMacrostomum lignano, a model organism with high experimental potential STIJN MOUTON#, JAKUB WUDARSKI#, MAGDA GRUDNIEWSKA and EUGENE BEREZIKOV* European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ABSTRACT Understanding the process of regeneration has been one of the longstanding sci- entific aims, from a fundamental biological perspective, as well as within the applied context of regenerative medicine. Because regeneration competence varies greatly between organisms, it is essential to investigate different experimental animals. The free-living marine flatworm Macros- tomum lignano is a rising model organism for this type of research, and its power stems from a unique set of biological properties combined with amenability to experimental manipulation. The biological properties of interest include production of single-cell fertilized eggs, a transparent body, small size, short generation time, ease of culture, the presence of a pluripotent stem cell popula- tion, and a large regeneration competence. These features sparked the development of molecular tools and resources for this animal, including high-quality genome and transcriptome assemblies, gene knockdown, in situ hybridization, and transgenesis. Importantly, M. lignano is currently the only flatworm species for which transgenesis methods are established. This review summarizes
    [Show full text]
  • Self-Fertilization, Sex Allocation and Spermatogenesis Kinetics in the Hypodermically Inseminating Flatworm Macrostomum Pusillum Athina Giannakara and Steven A
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1568-1577 doi:10.1242/jeb.149682 RESEARCH ARTICLE Self-fertilization, sex allocation and spermatogenesis kinetics in the hypodermically inseminating flatworm Macrostomum pusillum Athina Giannakara and Steven A. Ramm* ABSTRACT automatically be selected and thus increase in frequency when The free-living flatworm genus Macrostomum is an emerging model emerging in a primarily outcrossing population because of its higher system for studying the links between sex allocation, sexual selection transmission rate (transmission advantage hypothesis). Second, and mating system evolution, as well as the underlying from an ecological perspective, selfing can act as a reproductive developmental and physiological mechanisms responsible for wide assurance mechanism when mate availability is low (Darwin, 1876; intra- and inter-specific variability in reproductive phenotypes. Jain, 1976), as is the case for many organisms (e.g. Jarne et al., Despite compelling comparative morphological evidence of sexual 1991; Kalisz et al., 1999; Tsitrone et al., 2003b; Schjørring, 2004; diversity, detailed experimental work on reproductive behaviour and Noel et al., 2016), including the hermaphroditic flatworm physiology in Macrostomum has so far been largely limited to just two Macrostomum hystrix (Ramm et al., 2012). species, M. lignano and M. hystrix, an obligate and a preferential Contrasting these transmission and reproductive assurance outcrosser, respectively. In this study, we establish that a third advantages, the major downside of selfing is that it can result in species, M. pusillum, exhibits a combination of reproductive traits the production of offspring with lower fitness than the parental strikingly different from both of its congeners.
    [Show full text]
  • Genome and Transcriptome of the Regeneration- Competent Flatworm, Macrostomum Lignano
    Genome and transcriptome of the regeneration- competent flatworm, Macrostomum lignano Kaja Wasika,1, James Gurtowskia,1, Xin Zhoua,b, Olivia Mendivil Ramosa, M. Joaquina Delása,c, Giorgia Battistonia,c, Osama El Demerdasha, Ilaria Falciatoria,c, Dita B. Vizosod, Andrew D. Smithe, Peter Ladurnerf, Lukas Schärerd, W. Richard McCombiea, Gregory J. Hannona,c,2, and Michael Schatza,2 aWatson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; bMolecular and Cellular Biology Graduate Program, Stony Brook University, NY 11794; cCancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; dDepartment of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland; eDepartment of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089; and fDepartment of Evolutionary Biology, Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria Contributed by Gregory J. Hannon, August 23, 2015 (sent for review June 25, 2015; reviewed by Ian Korf and Robert E. Steele) The free-living flatworm, Macrostomum lignano has an impressive of all cells (15), and have a very high proliferation rate (16, 17). Of regenerative capacity. Following injury, it can regenerate almost M. lignano neoblasts, 89% enter S-phase every 24 h (18). This high an entirely new organism because of the presence of an abundant mitotic activity results in a continuous stream of progenitors, somatic stem cell population, the neoblasts. This set of unique replacing tissues that are likely devoid of long-lasting, differentiated properties makes many flatworms attractive organisms for study- cell types (18). This makes M.
    [Show full text]
  • RNA-Seq of Three Free-Living Flatworm Species Suggests Rapid Evolution of Reproduction-Related Genes Jeremias N
    Brand et al. BMC Genomics (2020) 21:462 https://doi.org/10.1186/s12864-020-06862-x RESEARCH ARTICLE Open Access RNA-Seq of three free-living flatworm species suggests rapid evolution of reproduction-related genes Jeremias N. Brand1* , R. Axel W. Wiberg1, Robert Pjeta2, Philip Bertemes2, Christian Beisel3, Peter Ladurner2 and Lukas Schärer1 Abstract Background: The genus Macrostomum consists of small free-living flatworms and contains Macrostomum lignano, which has been used in investigations of ageing, stem cell biology, bioadhesion, karyology, and sexual selection in hermaphrodites. Two types of mating behaviour occur within this genus. Some species, including M. lignano, mate via reciprocal copulation, where, in a single mating, both partners insert their male copulatory organ into the female storage organ and simultaneously donate and receive sperm. Other species mate via hypodermic insemination, where worms use a needle-like copulatory organ to inject sperm into the tissue of the partner. These contrasting mating behaviours are associated with striking differences in sperm and copulatory organ morphology. Here we expand the genomic resources within the genus to representatives of both behaviour types and investigate whether genes vary in their rate of evolution depending on their putative function. Results: We present de novo assembled transcriptomes of three Macrostomum species, namely M. hystrix,aclose relative of M. lignano that mates via hypodermic insemination, M. spirale, a more distantly related species that mates via reciprocal copulation, and finally M. pusillum, which represents a clade that is only distantly related to the other three species and also mates via hypodermic insemination. We infer 23,764 sets of homologous genes and annotate them using experimental evidence from M.
    [Show full text]
  • The Macrostomum Lignano EST Database As a Molecular Resource for Studying Platyhelminth Development and Phylogeny
    Dev Genes Evol (2006) 216: 695–707 DOI 10.1007/s00427-006-0098-z ORIGINAL ARTICLE Joshua Morris . Peter Ladurner . Reinhard Rieger . Daniela Pfister . Maria Del Mar De Miguel-Bonet . David Jacobs . Volker Hartenstein The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny Received: 31 March 2006 / Accepted: 20 June 2006 / Published online: 5 October 2006 # Springer-Verlag 2006 Abstract We report the development of an Expressed obtained with potential neural and sensory function. From Sequence Tag (EST) resource for the flatworm Macro- these data, an annotated searchable database of the stomumlignano. This taxon is of interest due to its basal Macrostomum EST collection has been made available placement within the flatworms. As such, it provides a on the web. A major objective was to obtain genes that useful comparative model for understanding the develop- would allow reconstruction of embryogenesis, and in ment of neural and sensory organization. It was anticipated particular neurogenesis, in a basal platyhelminth. The on the basis of previous studies [e.g., Sánchez-Alvarado et sequences recovered will serve as probes with which the al., Development, 129:5659–5665, (2002)] that a wide origin and morphogenesis of lineages and tissues can be range of developmental markers would be expressed in followed. To this end, we demonstrate a protocol for later-stage macrostomids, and this proved to be the case, combined immunohistochemistry and in situ hybridization permitting recovery of a range of gene sequences important labeling in juvenile Macrostomum, employing homologs in development. To this end, an adult Macrostomum cDNA of lin11/lim1 and six3/optix.
    [Show full text]
  • Genome and Transcriptome of the Regeneration- Competent Flatworm, Macrostomum Lignano
    Genome and transcriptome of the regeneration- competent flatworm, Macrostomum lignano Kaja Wasika,1, James Gurtowskia,1, Xin Zhoua,b, Olivia Mendivil Ramosa, M. Joaquina Delása,c, Giorgia Battistonia,c, Osama El Demerdasha, Ilaria Falciatoria,c, Dita B. Vizosod, Andrew D. Smithe, Peter Ladurnerf, Lukas Schärerd, W. Richard McCombiea, Gregory J. Hannona,c,2, and Michael Schatza,2 aWatson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; bMolecular and Cellular Biology Graduate Program, Stony Brook University, NY 11794; cCancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; dDepartment of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland; eDepartment of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089; and fDepartment of Evolutionary Biology, Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria Contributed by Gregory J. Hannon, August 23, 2015 (sent for review June 25, 2015; reviewed by Ian Korf and Robert E. Steele) The free-living flatworm, Macrostomum lignano has an impressive of all cells (15), and have a very high proliferation rate (16, 17). Of regenerative capacity. Following injury, it can regenerate almost M. lignano neoblasts, 89% enter S-phase every 24 h (18). This high an entirely new organism because of the presence of an abundant mitotic activity results in a continuous stream of progenitors, somatic stem cell population, the neoblasts. This set of unique replacing tissues that are likely devoid of long-lasting, differentiated properties makes many flatworms attractive organisms for study- cell types (18). This makes M.
    [Show full text]
  • Documento Completo Descargar Archivo
    UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO Trabajo de Tesis Doctoral, para optar al título de Doctor en Ciencias Naturales Biodiversidad de turbelarios (Platyhelminthes) de la cuenca del Plata Francisco Brusa Director: Dr. Alberto Rodrigues Capítulo Co-director: Dra. María Cristina Damborenea Agradecimientos: Quisiera agradecer a las siguientes personas e instituciones sin las cuales no habría podido llevar adelante este trabajo de Tesis. A mi madre. A la Dra. Cristina Damborenea, primeramente por despertar mi interés en este grupo apasionante de organismos desconocido por mí hasta que comenzara con dicho trabajo. Por darme la posibilidad de incrementar mi conocimiento en el tema con especialistas extranjeros. También le quiero agradecer por su colaboración en los muestreos, en la identificación de las especies y por sus enriquecedoras correcciones de este trabajo, sin las cuales no sería lo que es. Al Dr. Alberto Rodrigues Capítulo por sus valiosas correcciones de este trabajo, principalmente en la sección de diversidad y comparación de la taxocenosis. A la Dra. Carolina Noreña sobre todo por recibirme en su lugar de trabajo del Museo Nacional de Ciencias Naturales (MNCN) de Madrid. También por enseñarme las técnicas para el trabajo con este tipo de ejemplares y por la provisión de bibliografía, laboratorios, material óptico, drogas, etc. Al Dr. Pablo Dellapé por sus comentarios enriquecedores sobre este trabajo. Al Lic. Diego Gutiérrez Gregoric, la Dra. Alejandra Rumi y la Lic. Verónica Nuñez por su colaboración en algunos de los muestreos. Al Dr. Gustavo Darrigran por colaborar en algún muestreo y por proveer bibliografía. A la Dra.
    [Show full text]
  • New Insights Into the Karyotype Evolution of the Free-Living Flatworm Macrostomum Lignano
    www.nature.com/scientificreports OPEN New insights into the karyotype evolution of the free-living fatworm Macrostomum lignano Received: 8 March 2017 Accepted: 13 June 2017 (Platyhelminthes, Turbellaria) Published online: 20 July 2017 Kira S. Zadesenets1, Lukas Schärer2 & Nikolay B. Rubtsov1,3 The free-living fatworm Macrostomum lignano is a model organism for evolutionary and developmental biology studies. Recently, an unusual karyotypic diversity was revealed in this species. Specifcally, worms are either ‘normal’ 2n = 8, or they are aneuploid with one or two additional large chromosome(s) (i.e. 2n = 9 or 2n = 10, respectively). Aneuploid worms did not show visible behavioral or morphological abnormalities and were successful in reproduction. In this study, we generated microdissected DNA probes from chromosome 1 (further called MLI1), chromosome 2 (MLI2), and a pair of similar-sized smaller chromosomes (MLI3, MLI4). FISH using these probes revealed that MLI1 consists of contiguous regions homologous to MLI2-MLI4, suggesting that MLI1 arose due to the whole genome duplication and subsequent fusion of one full chromosome set into one large metacentric chromosome. Therefore, one presumably full haploid genome was packed into MLI1, leading to hidden tetraploidy in the M. lignano genome. The study of Macrostomum sp. 8 — a sibling species of M. lignano — revealed that it usually has one additional pair of large chromosomes (2n = 10) showing a high homology to MLI1, thus suggesting hidden hexaploidy in its genome. Possible evolutionary scenarios for the emergence of the M. lignano and Macrostomum sp. 8 genomes are discussed. Te genomes of many extant species show evidence of past whole genome duplications (WGDs).
    [Show full text]
  • Is the Initiation of Selfing Linked to a Hermaphrodite's Female Or Male
    Behavioral Ecology and Sociobiology (2020) 74:41 https://doi.org/10.1007/s00265-020-2816-3 ORIGINAL ARTICLE Is the initiation of selfing linked to a hermaphrodite’s female or male reproductive function? Philipp Kaufmann1,2 & Lukas Schärer 1 Received: 30 July 2019 /Revised: 11 February 2020 /Accepted: 24 February 2020 # The Author(s) 2020 Abstract There is an ongoing debate about whether simultaneous hermaphrodites capable of selfing should prefer selfing over outcrossing or vice versa. While many theoretical models predict a transmission advantage for alleles that favour selfing, empirical studies often reveal low selfing rates. Despite these considerations, the underlying mechanisms that determine reproductive strategies in simultaneously hermaphroditic animals are poorly understood. In our study on the facultatively selfing free-living flatworm, Macrostomum hystrix, we ask whether the initiation of selfing, as inferred from the differential spatial distribution of received sperm, is linked to an individual’s female or male reproductive function. Specifically, the initiation of selfing could (i) be linked to the male function, when an individual is unable to donate sperm to others and hence donates sperm to self, or it could (ii) be linked to the female function, when an individual fails to receive sperm from others—and hence is unable to fertilize its eggs via outcrossing—thus inducing it to self-fertilize. We experimentally created a social environment that allowed focals to outcross via sperm donation, but simultaneously prevented them from receiving sperm—by pairing them with a partner lacking the male copulatory organ—so that fertilization of the focal’s eggs was restricted to selfing.
    [Show full text]