Evolution of Reproductive Traits in Sharks and Rays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however, -
Genital Morphology Linked to Social Status in the Bank Vole (Myodes Glareolus)
Behav Ecol Sociobiol (2012) 66:97–105 DOI 10.1007/s00265-011-1257-4 ORIGINAL PAPER Genital morphology linked to social status in the bank vole (Myodes glareolus) Jean-François Lemaître & Steven A. Ramm & Nicola Jennings & Paula Stockley Received: 29 September 2010 /Revised: 29 August 2011 /Accepted: 30 August 2011 /Published online: 13 September 2011 # Springer-Verlag 2011 Abstract Since genital morphology can influence the spinosity did not differ according to male social status or outcome of post-copulatory sexual selection, differences in show evidence of positive allometry. We conclude that the genitalia of dominant and subordinate males could be a dominant male bank voles may benefit from an enlarged factor contributing to the fertilisation advantage of domi- baculum under sperm competition and/or cryptic female nant males under sperm competition. Here we investigate choice and that differences in penile morphology for the first time if penile morphology differs according to according to male social status might be important but male social status in a promiscuous mammal, the bank vole as yet largely unexplored source of variation in male (Myodes glareolus). In this species, dominant males reproductive success. typically achieve higher reproductive success than subordi- nates in post-copulatory sexual selection, and male genital Keywords Allometry. Baculum . Genitalia . Penile spines . morphology is complex, including both a baculum (os Sexual selection . Social dominance . Sperm competition penis) and penile spines. Our results show that despite no difference in body size associated with male social status, baculum width is significantly larger in dominant male Introduction bank voles than in subordinates. We also found evidence of positive allometry and a relatively high coefficient of Understanding the causes of variation in male reproductive phenotypic variation in the baculum width of male bank success is a key goal of sexual selection research. -
Sharks and Rays Back in the North Sea!
SHARKS AND RAYS BACK IN THE NORTH SEA! © Peter Verhoog Juvenile thornback rays ABOUT SHARKS AND RAYS Important for the marine ecosystem Long before we humans walked this earth, beautiful sharks and rays were swimming in the world’s oceans. These apex predators have been at the top of the food chain for 450 million years, where they fulfil a vital role in the ecosystem of the oceans. They ‘maintain’ coral reefs, they ensure the ecological balance between species and they contribute to healthy populations of other animals by eating the weaker individuals. Largescale overfishing of sharks and rays affects the entire food chain and thus the health of the oceans. Low reproductive capacity Sharks and rays are characterized by a low reproductive capacity; many species are only sexually mature after more than 10 years. Most shark species develop their eggs inside the body of the female. Baby sharks are born fully developed. Most sharks have 1 to 20 pups per year. The reproductive biology of sharks is therefore more akin to that of marine mammals than fish. The Dutch North Sea is the habitat of several egg-laying shark species and rays: both the small-spotted catshark and the greater spotted dogfish or nursehound lay 18 to 20 eggs per year. The eggs take 7 to 10 months to hatch. The empty cases often wash up on beaches. Most Dutch bottom-dwelling rays lay eggs, from 20 to 140 eggs per year. Due to their low reproduction cycles, sharks and rays are vulnerable for overfishing, as the recovery of populations is very slow. -
Sperm Competition and Male Social Dominance in the Bank Vole (Myodes Glareolus)
SPERM COMPETITION AND MALE SOCIAL DOMINANCE IN THE BANK VOLE (MYODES GLAREOLUS) Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Jean-Fran^ois Lemaitre 1 Table of contents List of Tables.......................................................................................................................................6 List of Figures.....................................................................................................................................8 Declaration of work conducted.................................................................................................... 10 Abstract ......................................................................................................................................13 Chapter 1: General introduction............................................................................................... 15 1.1 Chapter overview........................................................................................................... 15 1.2 Sexual selection..... .......................................................................................................... 15 (a) Sexual selection............................................................................................................... 15 (b) Sexual selection and sex-roles........................................................................................16 (c) Pre-copulatory sexual selection......................................................................................18 -
Evolution of the P53-MDM2 Pathway Emma Åberg1, Fulvio Saccoccia1, Manfred Grabherr1, Wai Ying Josefin Ore1, Per Jemth1* and Greta Hultqvist1,2*
Åberg et al. BMC Evolutionary Biology (2017) 17:177 DOI 10.1186/s12862-017-1023-y RESEARCH ARTICLE Open Access Evolution of the p53-MDM2 pathway Emma Åberg1, Fulvio Saccoccia1, Manfred Grabherr1, Wai Ying Josefin Ore1, Per Jemth1* and Greta Hultqvist1,2* Abstract Background: The p53 signalling pathway, which controls cell fate, has been extensively studied due to its prominent role in tumor development. The pathway includes the tumor supressor protein p53, its vertebrate paralogs p63 and p73, and their negative regulators MDM2 and MDM4. The p53/p63/p73-MDM system is ancient and can be traced in all extant animal phyla. Despite this, correct phylogenetic trees including both vertebrate and invertebrate species of the p53/p63/p73 and MDM families have not been published. Results: Here, we have examined the evolution of the p53/p63/p73 protein family with particular focus on the p53/ p63/p73 transactivation domain (TAD) and its co-evolution with the p53/p63/p73-binding domain (p53/p63/p73BD) of MDM2. We found that the TAD and p53/p63/p73BD share a strong evolutionary connection. If one of the domains of the protein is lost in a phylum, then it seems very likely to be followed by loss of function by the other domain as well, and due to the loss of function it is likely to eventually disappear. By focusing our phylogenetic analysis to p53/p63/ p73 and MDM proteins from phyla that retain the interaction domains TAD and p53/p63/p73BD, we built phylogenetic trees of p53/p63/p73 and MDM based on both vertebrate and invertebrate species. -
Searching the Evolutionary Origin of Epithelial Mucus Protein Components—Mucins and FCGBP Article Open Access
Searching the Evolutionary Origin of Epithelial Mucus Protein Components—Mucins and FCGBP Tiange Lang1,2, Sofia Klasson1, Erik Larsson1, Malin E. V. Johansson1, Gunnar C. Hansson1, and Tore Samuelsson*,1 1Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden 2Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China *Corresponding author: E-mail: [email protected] Associate editor: Katja Nowick Abstract The gel-forming mucins are large glycosylated proteins that are essential components of the mucus layers covering epithelial cells. Using novel methods of identifying mucins based on profile hidden Markov models, we have found a large number of such proteins in Metazoa, aiding in their classification and allowing evolutionary studies. Most vertebrates have 5–6 gel-forming mucin genes and the genomic arrangement of these genes is well conserved throughout verte- brates. An exception is the frog Xenopus tropicalis with an expanded repertoire of at least 26 mucins of this type. Furthermore, we found that the ovomucin protein, originally identified in chicken, is characteristic of reptiles, birds, and amphibians. Muc6 is absent in teleost fish, but we now show that it is present in animals such as ghost sharks, dem- onstrating an early origin in vertebrate evolution. Public RNA-Seq data were analyzed with respect to mucins in zebrafish, frog, and chicken, thus allowing comparison in regard of tissue and developmental specificity. Analyses of invertebrate proteins reveal that gel-forming-mucin type of proteins is widely distributed also in this group. Their presence in Cnidaria, Porifera, and in Ctenophora (comb jellies) shows that these proteins were present early in metazoan evolution. -
Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families. -
The Free-Living Flatworm Macrostomum Lignano
ARTICLE IN PRESS Experimental Gerontology xxx (2009) xxx–xxx Contents lists available at ScienceDirect Experimental Gerontology journal homepage: www.elsevier.com/locate/expgero Review The free-living flatworm Macrostomum lignano: A new model organism for ageing research Stijn Mouton a,*, Maxime Willems a, Bart P. Braeckman b, Bernhard Egger c, Peter Ladurner c, Lukas Schärer d, Gaetan Borgonie a a Nematology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium b Laboratory for Ageing Physiology and Molecular Evolution, Department of Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium c Ultrastructural Research and Evolutionary Biology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria d Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland article info abstract Article history: To study the several elements and causes of ageing, diverse model organisms and methodologies are Received 5 September 2008 required. The most frequently used models are Saccharomyces cerevisiae, Caenorhabditis elegans, Drosoph- Received in revised form 6 November 2008 ila melanogaster and rodents. All have their advantages and disadvantages and allow studying particular Accepted 28 November 2008 aspects of the ageing process. During the last few years, several ageing studies focussed on stem cells and Available online xxxx their role in tissue homeostasis. Here we present a new model organism which can study this relation where other model systems fail. The flatworm Macrostomum lignano possesses a dynamic population Keywords: of likely totipotent somatic stem cells known as neoblasts. Several characteristics qualify M. lignano as Flatworm a suitable model system for ageing studies in general and more specifically for gaining more insight in Macrostomum lignano Ageing the causal relation between stem cells, ageing and rejuvenation. -
View/Download
CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name -
News 106 Prototyp
2 NEWS 107 Inhalt Impressum Once again: Dwarf cichlids from Lake Malawi 3 Preview: Herausgeber: Wolfgang Glaser News No 108 Chefredakteur: Dipl. -Biol. Frank Schäfer Two of the best algae eaters..... will appear on KW 37/38 2013 Redaktionsbeirat: Thorsten Holtmann but who knows their names? 4 Volker Ennenbach Dont miss it! Dr. med. vet. Markus Biffar Sea water: As useful as lovely 9 Thorsten Reuter Tropheus sp. Kasanga 13 Levin Locke Manuela Sauer Golden fishes 16 Dipl.- Biol. Klaus Diehl Layout: Bärbel Waldeyer The Neon Tetra 20 Chinese Softshell Turtles 39 Übersetzungen: Mary Bailey Water chemistry (4) 26 New characins from South Ame - Gestaltung: Aqualog animalbook GmbH Frederik Templin A weather-forecasting frog 30 rica 43 Titelgestaltung: Petra Appel, Steffen Kabisch Red runners with little collars 34 Druck: Bechtle Druck&Service, Esslingen Gedruckt am: 22.4.2013 Anzeigendisposition: Aqualog animalbook GmbH Wollen Sie keine Ausgabe der News versäumen ? und Verlag Liebigstraße 1, D-63110 Rodgau Tel: 49 (0) 61 06 - 697977 Werden Sie Abonnent(in) und füllen Sie einfach den Abonnenten-Abschnitt aus Fax: 49 (0) 61 06 - 697983 und schicken ihn an: Aqualog Animalbook GmbH, Liebigstr.1, D- 63110 Rodgau e-mail: [email protected] http://www.aqualog.de Hiermit abonniere ich die Ausgaben 106-109 (2013) zum Preis von €12 ,- für 4 Ausgaben, (außerhalb Deutschlands € 19,90) inkl. Porto und Verpackung. All rights reserved. The publishers do not accept liability for unsolicited manuscripts or photographs. Articles written by named authors do not necessarily represent the editors’ Name opinion. Anschrift ISSN 1430-9610 Land I PLZ I Wohnort Ich möchte folgendermaßen bezahlen: auf Rechnung Visa I Mastercard Prüf.- Nr.: Kartennummer: gültig bis: Name des Karteninhabers (falls nicht identisch mit dem Namen des Abonnenten) Wie und wo erhalten Sie die News ? Jeder Zoofachhändler, jede Tierarztpraxis und jeder Zoologische Garten kann beim Aqualog-Verlag ein Kontingent der NEWS anfordern und als Kundenzeitschrift auslegen. -
A Comparative Genomic and Transcriptional Survey Providing Novel Insights Into Bone Morphogenetic Protein 2 (Bmp2) in Fishes
International Journal of Molecular Sciences Article A Comparative Genomic and Transcriptional Survey Providing Novel Insights into Bone Morphogenetic Protein 2 (bmp2) in Fishes Guang Yang 1,2, Zhendong Qin 1, Hongyan Kou 1, Rishen Liang 1, Lijuan Zhao 1, Shoujia Jiang 3, Li Lin 1,* and Kai Zhang 1,4,* 1 Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; [email protected] (G.Y.); [email protected] (Z.Q.); [email protected] (H.K.); [email protected] (R.L.); [email protected] (L.Z.) 2 Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China 3 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; [email protected] 4 Division of Life Science, Hong Kong University of Science and Technology, Hong Kong 93117, China * Correspondence: [email protected] (L.L.); [email protected] (K.Z.); Tel.: +86-133-4280-5517 (L.L.); +86-185-9810-9029 (K.Z.) Received: 12 November 2019; Accepted: 3 December 2019; Published: 5 December 2019 Abstract: Intermuscular bones (IBs) are only found in the muscles of fish. Bone morphogenetic protein 2 (bmp2) is considered to be the most active single osteogenesis factor. It promotes cell proliferation and differentiation during bone repair, as well as inducing the formation of bones and cartilages in vivo.