Quantum Adiabatic Theorem and Berry's Phase Factor Page Tyler Department of Physics, Drexel University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Geometrie Phase in Quantum Systems
A. Bohm A. Mostafazadeh H. Koizumi Q. Niu J. Zwanziger The Geometrie Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics With 56 Figures Springer Table of Contents 1. Introduction 1 2. Quantal Phase Factors for Adiabatic Changes 5 2.1 Introduction 5 2.2 Adiabatic Approximation 10 2.3 Berry's Adiabatic Phase 14 2.4 Topological Phases and the Aharonov—Bohm Effect 22 Problems 29 3. Spinning Quantum System in an External Magnetic Field 31 3.1 Introduction 31 3.2 The Parameterization of the Basis Vectors 31 3.3 Mead—Berry Connection and Berry Phase for Adiabatic Evolutions Magnetic Monopole Potentials 36 3.4 The Exact Solution of the Schrödinger Equation 42 3.5 Dynamical and Geometrical Phase Factors for Non-Adiabatic Evolution 48 Problems 52 4. Quantal Phases for General Cyclic Evolution 53 4.1 Introduction 53 4.2 Aharonov—Anandan Phase 53 4.3 Exact Cyclic Evolution for Periodic Hamiltonians 60 Problems 64 5. Fiber Bundles and Gauge Theories 65 5.1 Introduction 65 5.2 From Quantal Phases to Fiber Bundles 65 5.3 An Elementary Introduction to Fiber Bundles 67 5.4 Geometry of Principal Bundles and the Concept of Holonomy 76 5.5 Gauge Theories 87 5.6 Mathematical Foundations of Gauge Theories and Geometry of Vector Bundles 95 Problems 102 XII Table of Contents 6. Mathematical Structure of the Geometric Phase I: The Abelian Phase 107 6.1 Introduction 107 6.2 Holonomy Interpretations of the Geometric Phase 107 6.3 Classification of U(1) Principal Bundles and the Relation Between the Berry—Simon and Aharonov—Anandan Interpretations of the Adiabatic Phase 113 6.4 Holonomy Interpretation of the Non-Adiabatic Phase Using a Bundle over the Parameter Space 118 6.5 Spinning Quantum System and Topological Aspects of the Geometric Phase 123 Problems 126 7. -
Geometric Phase from Aharonov-Bohm to Pancharatnam–Berry and Beyond
Geometric phase from Aharonov-Bohm to Pancharatnam–Berry and beyond Eliahu Cohen1,2,*, Hugo Larocque1, Frédéric Bouchard1, Farshad Nejadsattari1, Yuval Gefen3, Ebrahim Karimi1,* 1Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada 2Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel 3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel *Corresponding authors: [email protected], [email protected] Abstract: Whenever a quantum system undergoes a cycle governed by a slow change of parameters, it acquires a phase factor: the geometric phase. Its most common formulations are known as the Aharonov-Bohm, Pancharatnam and Berry phases, but both prior and later manifestations exist. Though traditionally attributed to the foundations of quantum mechanics, the geometric phase has been generalized and became increasingly influential in many areas from condensed-matter physics and optics to high energy and particle physics and from fluid mechanics to gravity and cosmology. Interestingly, the geometric phase also offers unique opportunities for quantum information and computation. In this Review we first introduce the Aharonov-Bohm effect as an important realization of the geometric phase. Then we discuss in detail the broader meaning, consequences and realizations of the geometric phase emphasizing the most important mathematical methods and experimental techniques used in the study of geometric phase, in particular those related to recent works in optics and condensed-matter physics. Published in Nature Reviews Physics 1, 437–449 (2019). DOI: 10.1038/s42254-019-0071-1 1. Introduction A charged quantum particle is moving through space. -
Quantum-Classical Correspondence of Shortcuts to Adiabaticity”
Quantum-Classical Correspondence of Shortcuts to Adiabaticity Manaka Okuyama and Kazutaka Takahashi Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan (Dated: September 1, 2018) We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg–de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton–Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems. Shortcuts to adiabaticity (STA) is a method control- formulations will allow us to make a link between two ling dynamical systems. The implementation of the theorems. In this letter, we develop the theory of the method results in dynamics that are free from nona- classical STA. First, we formulate the classical STA in a diabatic transitions for an arbitrary choice of time- general way so that the counterdiabatic term can be cal- dependent parameters in a reference Hamiltonian. It was culated, in principle, from the derived formula. Second, developed in quantum systems [1–4] and its applications we show that the adiabatic theorem holds exactly in the have been studied in various fields of physics and engi- classical STA and the adiabatic invariant is obtained di- neering [5]. It is important to notice that this method, rectly from the nonperiodic trajectory. -
The Quantum Geometric Phase As a Transformation Invariant
PRAMANA © Printed in India Vol. 49, No. 1, --journal of July 1997 physics pp. 33--40 The quantum geometric phase as a transformation invariant N MUKUNDA* Centre for Theoretical Studies and Department of Physics, Indian Institute of Science, Bangalore 560012, India * Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India Abstract. The kinematic approach to the theory of the geometric phase is outlined. This phase is shown to be the simplest invariant under natural groups of transformations on curves in Hilbert space. The connection to the Bargmann invariant is brought out, and the case of group representations described. Keywords. Geometric phase; Bargmann invariant. PACS No. 03.65 1. Introduction Ever since Berry's important work of 1984 [1], the geometric phase in quantum mechanics has been extensively studied by many authors. It was soon realised that there were notable precursors to this work, such as Rytov, Vladimirskii and Pancharatnam [2]. Considerable activity followed in various groups in India too, notably the Raman Research Institute, the Bose Institute, Hyderabad University, Delhi University, the Institute of Mathematical Sciences to name a few. IIn the account to follow, a brief review of Berry's work and its extensions will be given [3]. We then turn to a description of a new approach which seems to succeed in reducing the geometric phase to its bare essentials, and which is currently being applied in various situations [4]. Its main characteristic is that one deals basically only with quantum kinematics. We define certain simple geometrical objects, or configurations of vectors, in the Hilbert space of quantum mechanics, and two natural groups of transformations acting on them. -
The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems
THE ADIABATIC THEOREM AND LINEAR RESPONSE THEORY FOR EXTENDED QUANTUM SYSTEMS SVEN BACHMANN, WOJCIECH DE ROECK, AND MARTIN FRAAS Abstract. The adiabatic theorem refers to a setup where an evolution equation contains a time- dependent parameter whose change is very slow, measured by a vanishing parameter . Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instanta- neous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One im- portant application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect. 1. Introduction 1.1. Adiabatic Theorems. The adiabatic theorem stands for a rather broad principle that can be described as follows. Consider an equation giving the evolution in time t of some '(t) 2 B, with B some Banach space: d (1.1) '(t) = L('(t); α ); dt t where L : B × R ! B is a smooth function and αt is a parameter depending parametrically on time. Now, assume that for αt = α frozen in time, the equation exhibits some tendency towards a fixpoint 1 R T 'α, as expressed, for example, by convergence in Cesaro mean T 0 '(t)dt ! 'α, as T ! 1 for any initial '(0). -
Westfälische-Wilhelms-Universität Adiabatic Approximation and Berry
Westfälische-Wilhelms-Universität Seminar zur Theorie der Atome, Kerne und kondensierten Materie Adiabatic Approximation and Berry Phase with regard to the Derivation Thomas Grottke [email protected] WS 14\15 21st January, 2015 Contents 1 Adiabatic Approximation 1 1.1 Motivation . 1 1.2 Derivation of the Adiabatic Theorem . 3 2 Berry Phase 5 2.1 Nonholonomic System . 5 2.2 Derivation of the Berry Phase . 5 2.3 Berry Potential and Berry Curvature . 6 2.4 Summary . 7 Thomas Grottke 1 ADIABATIC APPROXIMATION 1 Adiabatic Approximation 1.1 Motivation Figure 1: Mathematical pendulum with the mass m, the length l and the deflection ϕ To give a short motivation let us have a look at the mathematical pendulum (c.f. Figure 1) with the mass m, the length l and the deflection ϕ. The differential equation is given by g ϕ(t) + ϕ(t) = 0 (1.1) l where g is the acceleration of gravity. Solving this equation leads us to the period T with s l T = 2π . (1.2) g If we move the pendulum from a location A to a location B we can consider two ways doing this. If the pendulum is moved fast it will execute a complicated oscillation not easy to be described. But if the motion is slow enough, the pendulum remains in its oscillation. This motion is a good example for an adiabatic process which means that the conditions respectively the environment are changed slowly. Oscillation is also well known in quantum mechanics systems. A good example is the potential well (c.f. -
Geometry in Quantum Mechanics: Basic Training in Condensed Matter Physics
Geometry in Quantum Mechanics: Basic Training in Condensed Matter Physics Erich Mueller Lecture Notes: Spring 2014 Preface About Basic Training Basic Training in Condensed Matter physics is a modular team taught course offered by the theorists in the Cornell Physics department. It is designed to expose our graduate students to a broad range of topics. Each module runs 2-4 weeks, and require a range of preparations. This module, \Geometry in Quantum Mechanics," is designed for students who have completed a standard one semester graduate quantum mechanics course. Prior Topics 2006 Random Matrix Theory (Piet Brouwer) Quantized Hall Effect (Chris Henley) Disordered Systems, Computational Complexity, and Information Theory (James Sethna) Asymptotic Methods (Veit Elser) 2007 Superfluidity in Bose and Fermi Systems (Erich Mueller) Applications of Many-Body Theory (Tomas Arias) Rigidity (James Sethna) Asymptotic Analysis for Differential Equations (Veit Elser) 2008 Constrained Problems (Veit Elser) Quantum Optics (Erich Mueller) Quantum Antiferromagnets (Chris Henley) Luttinger Liquids (Piet Brouwer) 2009 Continuum Theories of Crystal Defects (James Sethna) Probes of Cold Atoms (Erich Mueller) Competing Ferroic Orders: the Magnetoelectric Effect (Craig Fennie) Quantum Criticality (Eun-Ah Kim) i 2010 Equation of Motion Approach to Many-Body Physics (Erich Mueller) Dynamics of Infectious Diseases (Chris Myers) The Theory of Density Functional Theory: Electronic, Liquid, and Joint (Tomas Arias) Nonlinear Fits to Data: Sloppiness, Differential Geometry -
Get Full Text
Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied Karol Gietka, Friederike Metz, Tim Keller, and Jing Li Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan We show that the quantum Fisher information attained in an adia- batic approach to critical quantum metrology cannot lead to the Heisen- berg limit of precision and therefore regular quantum metrology under optimal settings is always superior. Furthermore, we argue that even though shortcuts to adiabaticity can arbitrarily decrease the time of preparing critical ground states, they cannot be used to achieve or over- come the Heisenberg limit for quantum parameter estimation in adia- batic critical quantum metrology. As case studies, we explore the appli- cation of counter-diabatic driving to the Landau-Zener model and the quantum Rabi model. 1 Introduction Quantum metrology [1] is concerned with harnessing quantum resources following from the quantum-mechanical framework (in particular, quantum entanglement) to increase the sensitivity of unknown parameter estimation beyond the standard quantum limit [2]. This limitation is a consequence of the central limit theorem which states that if N independent particles (such as photons or atoms) are used in the process of√ estimation of an unknown parameter θ, the error on average decreases as Var[θ] ∼ 1/ N. Taking advantage of quantum resources can further decrease the average error leading to the Heisenberg scaling of precision Var[θ] ∼ 1/N [3] which in arXiv:2103.12939v2 [quant-ph] 25 Jun 2021 the optimal case becomes the Heisenberg limit Var[θ] = 1/N. -
1 Geometric Phases in Quantum Mechanics Y.BEN-ARYEH Physics
Geometric phases in Quantum Mechanics Y.BEN-ARYEH Physics Department , Technion-Israel Institute of Technology , Haifa 32000, Israel Email: [email protected] Various phenomena related to geometric phases in quantum mechanics are reviewed and explained by analyzing some examples. The concepts of 'parallelisms', 'connections' and 'curvatures' are applied to Aharonov-Bohm (AB) effect, to U(1) phase rotation, to SU (2) phase rotation and to holonomic quantum computation (HQC). The connections in Schrodinger equation are treated by two alternative approaches. Implementation of HQC is demonstrated by the use of 'dark states' including detailed calculations with the connections, for implementing quantum gates. 'Anyons' are related to the symmetries of the wave functions, in a two-dimensional space, and the use of this concept is demonstrated by analyzing an example taken from the field of Quantum Hall effects. 1.Introduction There are various books treating advanced topics of geometric phases [1-3]. The solutions for certain problems in this field remain , however, not always clear. The purpose of the present article is to explain various phemomena related to geometric phases and demonstrate the explanations by analyzing some examples. In a previous Review [4] the use of geometric phases related to U(1) phase rotation [5] has been described. The geometric phases have been related to topological effects [6], and an enormous amount of works has been reviewed, including both theoretical and experimental results. The aim of the present article is to extend the previous treatment [4] so that it will include now more fields , in which concepts of geometric phases are applied. -
Geometric Phases Without Geometry
Geometric phases without geometry Amar Vutha∗ and David DeMille Department of Physics, Yale University, New Haven, CT 06520, USA Geometric phases arise in a number of physical situations and often lead to systematic shifts in frequencies or phases measured in precision experiments. We describe, by working through some simple examples, a method to calculate geometric phases that relies only on standard quantum mechanical calculations of energy level shifts. This connection between geometric phases and off- resonant energy shifts simplifies calculation of the effect in certain situations. More generally, it also provides a way to understand and calculate geometric phases without recourse to topology. PACS numbers: 03.65.Vf, 32.60.+i I. INTRODUCTION A geometric phase, often also referred to as an adiabatic phase or Berry's phase, is a real, physical phase shift that can lead to measurable effects in experiments ([1, 2, 3] are some examples). In the classic version of this effect, the state of a particle with a magnetic moment is modified under the influence of a magnetic field which undergoes a slow change in its direction. The motion of the field leads to a phase shift accumulated between the quantum states of the particle, in addition to the dynamical phase due to the Larmor precession of the magnetic moment around the magnetic field. This extra phase is termed a geometric phase because it has a simple interpretation in terms of the geometry traced out by the system's Hamiltonian as it evolves in its parameter space. We point the interested reader to [4] and references within for an excellent account of the geometric approach to calculating geometric phases, and its various connections with the topology of the parameter space. -
The Adiabatic Theorem in the Presence of Noise, Perturbations, and Decoherence
The Adiabatic Theorem in the Presence of Noise Michael J. O’Hara ∗ and Dianne P. O’Leary † December 27, 2013 Abstract We provide rigorous bounds for the error of the adiabatic approximation of quan- tum mechanics under four sources of experimental error: perturbations in the ini- tial condition, systematic time-dependent perturbations in the Hamiltonian, coupling to low-energy quantum systems, and decoherent time-dependent perturbations in the Hamiltonian. For decoherent perturbations, we find both upper and lower bounds on the evolution time to guarantee the adiabatic approximation performs within a pre- scribed tolerance. Our new results include explicit definitions of constants, and we apply them to the spin-1/2 particle in a rotating magnetic field, and to the supercon- ducting flux qubit. We compare the theoretical bounds on the superconducting flux qubit to simulation results. 1 Introduction Adiabatic quantum computation [7] (AQC) is a model of quantum computation equivalent to the standard model [1]. A physical system is slowly evolved from the ground state of a simple system, to one whose ground state encodes the solution to the difficult problem. By a physical principle known as the adiabatic approximation, if the evolution is done sufficiently slowly, and the minimum energy gap separating the ground state from higher states is sufficiently large, then the final state of the system should be the state encoding the solution to some arXiv:0801.3872v1 [quant-ph] 25 Jan 2008 problem. The biggest hurdles facing many potential implementations of a quantum computer are the errors due to interaction of the qubits with the environment. -
Anticipations of the Geometric Phase
ANTICIPATIONS OF THE GEOMETRIC PHASE The notion that a quantum system's wovefunction may not return to its original phase after its parameters cycle slowly around a circuit had many precursors—in polarized light, radio waves, molecules, matrices and curved surfaces. Michael Berry In science we like to emphasize the novelty and originality A physical example of this "global change without of our ideas. This is harmless enough, provided it does not local change" is the Foucault pendulum (figure 1), whose blind us to the fact that concepts rarely arise out of direction of swing, described by a unit vector e, is slaved to nowhere. There is always a historical context, in which the local vertical, described by the radial unit vector r. isolated precursors of the idea have already appeared. The slaving law is parallel transport, which means that What we call "discovery" sometimes looks, in retrospect, the direction of swing does not rotate about the vertical— more like emergence into the air from subterranean that is, e has no component of angular velocity along r. intellectual currents. However, in spite of never being rotated, e does not return The geometric phase, whose discovery I reported early to its original value when, after a day, r has completed a in 1983, is no exception to this rule.1 The paper was about circuit C (here a circle of latitude). The anholonomy is the quantum systems forced round a cycle by a slow circuit of angle between the initial and final swing directions e, and parameters that govern them; it gave rise to a number of is equal to the solid angle subtended at the Earth's center applications and several generalizations, documented in a byC.