Geometry and Topology in Condensed Matter Physics

Total Page:16

File Type:pdf, Size:1020Kb

Geometry and Topology in Condensed Matter Physics Geometry and Topology in Condensed Matter Physics Raffaele Resta Istituto Officina dei Materiali, CNR, Trieste, Italy Società Italiana di Fisica, 1050 Congresso Nazionale L’Aquila, September 25th, 2019 . Outline 1 Introduction: the polarization dilemma 2 What does it mean “geometrical”? 3 Bloch orbitals & geometry in k space 4 Two paradigmatic observables: P and M 5 Observables defined modulo 2π 6 Observables exempt from 2π ambiguity 7 Geometry in r space vs. k space . Outline 1 Introduction: the polarization dilemma 2 What does it mean “geometrical”? 3 Bloch orbitals & geometry in k space 4 Two paradigmatic observables: P and M 5 Observables defined modulo 2π 6 Observables exempt from 2π ambiguity 7 Geometry in r space vs. k space . Elementary textbook definition Z d 1 P = = dr r ρ(micro)(r) V V P appears as dominated by surface contributions Phenomenologically P is a bulk property . ?? . ation of solids – p. 24/ . How is polarizationDIELECTRIC retrieved? INSIDE A CAPACITOR silicon polarization density . min max The creative role of computationsto understand the polariz Silicon in a capacitor: induced charge density How is polarization retrieved? DIELECTRIC INSIDE A CAPACITOR silicon polarization density min max min max planar average Silicon (pseudo) charge density, unperturbed planar average. How a series of computationschanged our viewof the polarization of solids – p. 24/61 Silicon (pseudo)charge density, unperturbed . planar average . How a series of computationschanged our viewof the polarization of solids – p. 24/61 Dilemma’s solution Bulk macroscopic polarization P has nothing to do with the charge density in the bulk of the material (contrary to what many texbooks pretend!) Instead, P is a geometric phase (Berry’s phase) of the ground electronic wavefunction Breakthrough due to King-Smith & Vanderbilt, 1993 An early account (in Italian): R. Resta, Che cos’è la polarizzazione dielettrica macroscopica? Il Nuovo Saggiatore 9 (5/6), 79 (1993). Dilemma’s solution Bulk macroscopic polarization P has nothing to do with the charge density in the bulk of the material (contrary to what many texbooks pretend!) Instead, P is a geometric phase (Berry’s phase) of the ground electronic wavefunction Breakthrough due to King-Smith & Vanderbilt, 1993 An early account (in Italian): R. Resta, Che cos’è la polarizzazione dielettrica macroscopica? Il Nuovo Saggiatore 9 (5/6), 79 (1993). Outline 1 Introduction: the polarization dilemma 2 What does it mean “geometrical”? 3 Bloch orbitals & geometry in k space 4 Two paradigmatic observables: P and M 5 Observables defined modulo 2π 6 Observables exempt from 2π ambiguity 7 Geometry in r space vs. k space . The simplest geometrical property: Distance Two state vectors jΨ1i and jΨ2i in the same Hilbert space 2 − jh j ij2 D12 = log Ψ1 Ψ2 2 D12 = 0 if the two quantum states coincide apart for an irrelevant phase: gauge-invariant 2 1 D12 = if the two states are orthogonal . A second geometrical property: Connection 2 − jh j ij2 − h j i − h j i D12 = log Ψ1 Ψ2 = log Ψ1 Ψ2 log Ψ2 Ψ1 The two terms are not gauge-invariant Each of the two terms is a complex number What is the meaning of Im log hΨ1jΨ2i ? i'12 hΨ1jΨ2i = jhΨ1jΨ2ije −Im log hΨ1jΨ2i = '12;'21 = −'12 The connection fixes the phase difference The connection is arbitrary Given that it is arbitrary, why bother? . A second geometrical property: Connection 2 − jh j ij2 − h j i − h j i D12 = log Ψ1 Ψ2 = log Ψ1 Ψ2 log Ψ2 Ψ1 The two terms are not gauge-invariant Each of the two terms is a complex number What is the meaning of Im log hΨ1jΨ2i ? i'12 hΨ1jΨ2i = jhΨ1jΨ2ije −Im log hΨ1jΨ2i = '12;'21 = −'12 The connection fixes the phase difference The connection is arbitrary Given that it is arbitrary, why bother? . A second geometrical property: Connection 2 − jh j ij2 − h j i − h j i D12 = log Ψ1 Ψ2 = log Ψ1 Ψ2 log Ψ2 Ψ1 The two terms are not gauge-invariant Each of the two terms is a complex number What is the meaning of Im log hΨ1jΨ2i ? i'12 hΨ1jΨ2i = jhΨ1jΨ2ije −Im log hΨ1jΨ2i = '12;'21 = −'12 The connection fixes the phase difference The connection is arbitrary Given that it is arbitrary, why bother? . Change ofDownloaded paradigm from rspa.royalsocietypublishing.org due to onSir January Michael2, 2012 Berry Interview with Professor Sir Michael Ber… YouTube Visit Add to Collections Related images: Get help - Send feedback The connection by itself cannot have any physical meaning, but it can be used to build a gauge-invariant480 × 360 - Images may be subject to copyright. Find out more quantity Within QM, any gauge-invariant quantity is in principle Ford Colloquium - Nature's Optics and ... Plenary & Keynote Talks Sir Michael Berry Stock Photos an… Honorary Degrees | Cabot Institute ... Listen Free to Michael Berr… measurable physics.gatech.edu metaconferences.org gettyimages.co.uk bristol.ac.uk iheart.com Today, Berry’s geometric phase enters all modern quantum-mechanics texbooks . 1: Sir Michael Berry. | Dow… Sir Michael Berry - WM2014 ... 690 - Sir Michael Berry in the museum ... Sir Michael Victor Berry - … DTU Fotonik Colloquium - Sir Mic… researchgate.net youtube.com teylersmuseum.ning.com geni.com cachet.dk Michael Berry - Posts | Facebook Pictures of Famous Physic… UniKent SPS on Twitter: "Our second ... 2nd Stephen Gray Lecture:… News from ICTP 95 - Dateline — IC… facebook.com phys.bspu.by twitter.com blogs.kent.ac.uk portal.ictp.it Professor Sir Michael Berry ... How quantum physics democratised music Sir Michael Parkinson cooks up a treat ... Thank you for attending WEB 2016 | Wave ... youtube.com iop.org business-reporter.co.uk wave-engineering-bristol.uk The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. ® www.jstor.org Change ofDownloaded paradigm from rspa.royalsocietypublishing.org due to onSir January Michael2, 2012 Berry Interview with Professor Sir Michael Ber… YouTube Visit Add to Collections Related images: Get help - Send feedback The connection by itself cannot have any physical meaning, but it can be used to build a gauge-invariant480 × 360 - Images may be subject to copyright. Find out more quantity Within QM, any gauge-invariant quantity is in principle Ford Colloquium - Nature's Optics and ... Plenary & Keynote Talks Sir Michael Berry Stock Photos an… Honorary Degrees | Cabot Institute ... Listen Free to Michael Berr… measurable physics.gatech.edu metaconferences.org gettyimages.co.uk bristol.ac.uk iheart.com Today, Berry’s geometric phase enters all modern quantum-mechanics texbooks . 1: Sir Michael Berry. | Dow… Sir Michael Berry - WM2014 ... 690 - Sir Michael Berry in the museum ... Sir Michael Victor Berry - … DTU Fotonik Colloquium - Sir Mic… researchgate.net youtube.com teylersmuseum.ning.com geni.com cachet.dk Michael Berry - Posts | Facebook Pictures of Famous Physic… UniKent SPS on Twitter: "Our second ... 2nd Stephen Gray Lecture:… News from ICTP 95 - Dateline — IC… facebook.com phys.bspu.by twitter.com blogs.kent.ac.uk portal.ictp.it Professor Sir Michael Berry ... How quantum physics democratised music Sir Michael Parkinson cooks up a treat ... Thank you for attending WEB 2016 | Wave ... youtube.com iop.org business-reporter.co.uk wave-engineering-bristol.uk The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. ® www.jstor.org Change ofDownloaded paradigm from rspa.royalsocietypublishing.org due to onSir January Michael2, 2012 Berry Interview with Professor Sir Michael Ber… YouTube Visit Add to Collections Related images: Get help - Send feedback The connection by itself cannot have any physical meaning, but it can be used to build a gauge-invariant480 × 360 - Images may be subject to copyright. Find out more quantity Within QM, any gauge-invariant quantity is in principle Ford Colloquium - Nature's Optics and ... Plenary & Keynote Talks Sir Michael Berry Stock Photos an… Honorary Degrees | Cabot Institute ... Listen Free to Michael Berr… measurable physics.gatech.edu metaconferences.org gettyimages.co.uk bristol.ac.uk iheart.com Today, Berry’s geometric phase enters all modern quantum-mechanics texbooks . 1: Sir Michael Berry. | Dow… Sir Michael Berry - WM2014 ... 690 - Sir Michael Berry in the museum ... Sir Michael Victor Berry - … DTU Fotonik Colloquium - Sir Mic… researchgate.net youtube.com teylersmuseum.ning.com geni.com cachet.dk Michael Berry - Posts | Facebook Pictures of Famous Physic… UniKent SPS on Twitter: "Our second ... 2nd Stephen Gray Lecture:… News from ICTP 95 - Dateline — IC… facebook.com phys.bspu.by twitter.com blogs.kent.ac.uk portal.ictp.it Professor Sir Michael Berry ... How quantum physics democratised music Sir Michael Parkinson cooks up a treat ... Thank you for attending WEB 2016 | Wave ... youtube.com iop.org business-reporter.co.uk wave-engineering-bristol.uk The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. ® www.jstor.org Differential forms in quantum geometry The state vector jΨκi depends on the continuous parameter κ Quantum metric gαβ: 2 2 d D = Dκ;κ+dκ = gαβdκαdκβ Berry connection Aα: d ' = Aαdκα A − A Berry curvature Ωαβ = @κα β @κβ α d × d' = Ωαβ dκαdκβ The above list is nonexahustive: other geometrical quantities can be defined. Differential forms in quantum geometry The state vector jΨκi depends on the continuous parameter κ Quantum metric : 2 2 d D = Dκ;κ+dκ = gαβdκαdκβ 2-form Berry connection : d ' = Aαdκα 1-form Berry curvature d × d' = Ωαβ dκαdκβ 2-form The above list is nonexahustive: other geometrical quantities can be defined. Differential forms in quantum geometry The state vector jΨκi depends on the continuous parameter κ Quantum metric : 2 2 d D = Dκ;κ+dκ = gαβdκαdκβ Berry connection : d ' = Aαdκα Berry curvature d × d' = Ωαβ dκαdκβ The above list is nonexahustive: other geometrical quantities can be defined.
Recommended publications
  • The Geometrie Phase in Quantum Systems
    A. Bohm A. Mostafazadeh H. Koizumi Q. Niu J. Zwanziger The Geometrie Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics With 56 Figures Springer Table of Contents 1. Introduction 1 2. Quantal Phase Factors for Adiabatic Changes 5 2.1 Introduction 5 2.2 Adiabatic Approximation 10 2.3 Berry's Adiabatic Phase 14 2.4 Topological Phases and the Aharonov—Bohm Effect 22 Problems 29 3. Spinning Quantum System in an External Magnetic Field 31 3.1 Introduction 31 3.2 The Parameterization of the Basis Vectors 31 3.3 Mead—Berry Connection and Berry Phase for Adiabatic Evolutions Magnetic Monopole Potentials 36 3.4 The Exact Solution of the Schrödinger Equation 42 3.5 Dynamical and Geometrical Phase Factors for Non-Adiabatic Evolution 48 Problems 52 4. Quantal Phases for General Cyclic Evolution 53 4.1 Introduction 53 4.2 Aharonov—Anandan Phase 53 4.3 Exact Cyclic Evolution for Periodic Hamiltonians 60 Problems 64 5. Fiber Bundles and Gauge Theories 65 5.1 Introduction 65 5.2 From Quantal Phases to Fiber Bundles 65 5.3 An Elementary Introduction to Fiber Bundles 67 5.4 Geometry of Principal Bundles and the Concept of Holonomy 76 5.5 Gauge Theories 87 5.6 Mathematical Foundations of Gauge Theories and Geometry of Vector Bundles 95 Problems 102 XII Table of Contents 6. Mathematical Structure of the Geometric Phase I: The Abelian Phase 107 6.1 Introduction 107 6.2 Holonomy Interpretations of the Geometric Phase 107 6.3 Classification of U(1) Principal Bundles and the Relation Between the Berry—Simon and Aharonov—Anandan Interpretations of the Adiabatic Phase 113 6.4 Holonomy Interpretation of the Non-Adiabatic Phase Using a Bundle over the Parameter Space 118 6.5 Spinning Quantum System and Topological Aspects of the Geometric Phase 123 Problems 126 7.
    [Show full text]
  • Flat Band Moirés
    European Physical Society Condensed Matter Division Flat Band Moirés Leni Bascones1, Dmitri Efetov2, Johannes Lischner3 1 Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC 2 Institute of Photonic Sciences ICFO 3 Imperial College London Wednesday, September, 2nd 9:30-10:10 Correlated, insulating and superconducting States in twisted bilayer graphene Below the Magic Angle. Jeanie Lau (invited). 10:10-10:30 Flat band superconductivity in twisted bilayer graphene. Tero Heikkilä, T. Peltonen, A. Julku, R. Ojajärvi, L. Long, P. Törmä. 10:30-10:50 Band structure and insulating states driven by the Coulomb interactions in twisted bilayer graphene. Tommaso Cea, F. Guinea. 10:50-11:10 Interactions in magic-angle twisted bilayer graphene. María José Calderón, E. Bascones. 11:10-11:30 Evidence of weakly dispersive bands in twisted bilayer graphene from nano-ARPES. Simone Lisi, X. Lu, T. Benschop, T. A. de Jong, P. Stepanov, J. R. Duran, Fl. Margot, I. Cucchi, E. Cappelli, A. Hunter, A. Tamai, V. Kandyba, A. Giampietri, A. Barinov, Johannes Jobst, Vincent Stalman, M. Leeuwenhoek, K. Watanabe, T. Taniguchi, L. Rademaker, S. J. van der Molen, M. Allan, D. K. Efetov, F. Baumberger. 11:30-11:50 Marginal Fermi liquid in twisted bilayer graphene José González, T. Stauber. 11:50-12:10 Inconmensurability induced sub-ballistic states in twisted bilayer graphene. Miguel de Jesús Mestre Gonçalves, H. Z. Olyaei1, B. Amorim, R. Mondaini, P. Ribeiro, E. V. Castro. 12:10-12:30 Strain induced excitonic instability in twisted bilayer graphene. Héctor Ochoa. Thursday, September 3rd 9:30-10:10 Moiré physics and symmetry breaking in magnetically encapsulated van der Waals structures.
    [Show full text]
  • Geometric Phase from Aharonov-Bohm to Pancharatnam–Berry and Beyond
    Geometric phase from Aharonov-Bohm to Pancharatnam–Berry and beyond Eliahu Cohen1,2,*, Hugo Larocque1, Frédéric Bouchard1, Farshad Nejadsattari1, Yuval Gefen3, Ebrahim Karimi1,* 1Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada 2Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel 3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel *Corresponding authors: [email protected], [email protected] Abstract: Whenever a quantum system undergoes a cycle governed by a slow change of parameters, it acquires a phase factor: the geometric phase. Its most common formulations are known as the Aharonov-Bohm, Pancharatnam and Berry phases, but both prior and later manifestations exist. Though traditionally attributed to the foundations of quantum mechanics, the geometric phase has been generalized and became increasingly influential in many areas from condensed-matter physics and optics to high energy and particle physics and from fluid mechanics to gravity and cosmology. Interestingly, the geometric phase also offers unique opportunities for quantum information and computation. In this Review we first introduce the Aharonov-Bohm effect as an important realization of the geometric phase. Then we discuss in detail the broader meaning, consequences and realizations of the geometric phase emphasizing the most important mathematical methods and experimental techniques used in the study of geometric phase, in particular those related to recent works in optics and condensed-matter physics. Published in Nature Reviews Physics 1, 437–449 (2019). DOI: 10.1038/s42254-019-0071-1 1. Introduction A charged quantum particle is moving through space.
    [Show full text]
  • The Quantum Geometric Phase As a Transformation Invariant
    PRAMANA © Printed in India Vol. 49, No. 1, --journal of July 1997 physics pp. 33--40 The quantum geometric phase as a transformation invariant N MUKUNDA* Centre for Theoretical Studies and Department of Physics, Indian Institute of Science, Bangalore 560012, India * Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India Abstract. The kinematic approach to the theory of the geometric phase is outlined. This phase is shown to be the simplest invariant under natural groups of transformations on curves in Hilbert space. The connection to the Bargmann invariant is brought out, and the case of group representations described. Keywords. Geometric phase; Bargmann invariant. PACS No. 03.65 1. Introduction Ever since Berry's important work of 1984 [1], the geometric phase in quantum mechanics has been extensively studied by many authors. It was soon realised that there were notable precursors to this work, such as Rytov, Vladimirskii and Pancharatnam [2]. Considerable activity followed in various groups in India too, notably the Raman Research Institute, the Bose Institute, Hyderabad University, Delhi University, the Institute of Mathematical Sciences to name a few. IIn the account to follow, a brief review of Berry's work and its extensions will be given [3]. We then turn to a description of a new approach which seems to succeed in reducing the geometric phase to its bare essentials, and which is currently being applied in various situations [4]. Its main characteristic is that one deals basically only with quantum kinematics. We define certain simple geometrical objects, or configurations of vectors, in the Hilbert space of quantum mechanics, and two natural groups of transformations acting on them.
    [Show full text]
  • Geometry in Quantum Mechanics: Basic Training in Condensed Matter Physics
    Geometry in Quantum Mechanics: Basic Training in Condensed Matter Physics Erich Mueller Lecture Notes: Spring 2014 Preface About Basic Training Basic Training in Condensed Matter physics is a modular team taught course offered by the theorists in the Cornell Physics department. It is designed to expose our graduate students to a broad range of topics. Each module runs 2-4 weeks, and require a range of preparations. This module, \Geometry in Quantum Mechanics," is designed for students who have completed a standard one semester graduate quantum mechanics course. Prior Topics 2006 Random Matrix Theory (Piet Brouwer) Quantized Hall Effect (Chris Henley) Disordered Systems, Computational Complexity, and Information Theory (James Sethna) Asymptotic Methods (Veit Elser) 2007 Superfluidity in Bose and Fermi Systems (Erich Mueller) Applications of Many-Body Theory (Tomas Arias) Rigidity (James Sethna) Asymptotic Analysis for Differential Equations (Veit Elser) 2008 Constrained Problems (Veit Elser) Quantum Optics (Erich Mueller) Quantum Antiferromagnets (Chris Henley) Luttinger Liquids (Piet Brouwer) 2009 Continuum Theories of Crystal Defects (James Sethna) Probes of Cold Atoms (Erich Mueller) Competing Ferroic Orders: the Magnetoelectric Effect (Craig Fennie) Quantum Criticality (Eun-Ah Kim) i 2010 Equation of Motion Approach to Many-Body Physics (Erich Mueller) Dynamics of Infectious Diseases (Chris Myers) The Theory of Density Functional Theory: Electronic, Liquid, and Joint (Tomas Arias) Nonlinear Fits to Data: Sloppiness, Differential Geometry
    [Show full text]
  • 1 Geometric Phases in Quantum Mechanics Y.BEN-ARYEH Physics
    Geometric phases in Quantum Mechanics Y.BEN-ARYEH Physics Department , Technion-Israel Institute of Technology , Haifa 32000, Israel Email: [email protected] Various phenomena related to geometric phases in quantum mechanics are reviewed and explained by analyzing some examples. The concepts of 'parallelisms', 'connections' and 'curvatures' are applied to Aharonov-Bohm (AB) effect, to U(1) phase rotation, to SU (2) phase rotation and to holonomic quantum computation (HQC). The connections in Schrodinger equation are treated by two alternative approaches. Implementation of HQC is demonstrated by the use of 'dark states' including detailed calculations with the connections, for implementing quantum gates. 'Anyons' are related to the symmetries of the wave functions, in a two-dimensional space, and the use of this concept is demonstrated by analyzing an example taken from the field of Quantum Hall effects. 1.Introduction There are various books treating advanced topics of geometric phases [1-3]. The solutions for certain problems in this field remain , however, not always clear. The purpose of the present article is to explain various phemomena related to geometric phases and demonstrate the explanations by analyzing some examples. In a previous Review [4] the use of geometric phases related to U(1) phase rotation [5] has been described. The geometric phases have been related to topological effects [6], and an enormous amount of works has been reviewed, including both theoretical and experimental results. The aim of the present article is to extend the previous treatment [4] so that it will include now more fields , in which concepts of geometric phases are applied.
    [Show full text]
  • Quantum Adiabatic Theorem and Berry's Phase Factor Page Tyler Department of Physics, Drexel University
    Quantum Adiabatic Theorem and Berry's Phase Factor Page Tyler Department of Physics, Drexel University Abstract A study is presented of Michael Berry's observation of quantum mechanical systems transported along a closed, adiabatic path. In this case, a topological phase factor arises along with the dynamical phase factor predicted by the adiabatic theorem. 1 Introduction In 1984, Michael Berry pointed out a feature of quantum mechanics (known as Berry's Phase) that had been overlooked for 60 years at that time. In retrospect, it seems astonishing that this result escaped notice for so long. It is most likely because our classical preconceptions can often be misleading in quantum mechanics. After all, we are accustomed to thinking that the phases of a wave functions are somewhat arbitrary. Physical quantities will involve Ψ 2 so the phase factors cancel out. It was Berry's insight that if you move the Hamiltonian around a closed, adiabatic loop, the relative phase at the beginning and at the end of the process is not arbitrary, and can be determined. There is a good, classical analogy used to develop the notion of an adiabatic transport that uses something like a Foucault pendulum. Or rather a pendulum whose support is moved about a loop on the surface of the Earth to return it to its exact initial state or one parallel to it. For the process to be adiabatic, the support must move slow and steady along its path and the period of oscillation for the pendulum must be much smaller than that of the Earth's.
    [Show full text]
  • Relativistic Theory of Laser-Induced Magnetization Dynamics
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1558 Relativistic theory of laser-induced magnetization dynamics RITWIK MONDAL ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0070-2 UPPSALA urn:nbn:se:uu:diva-315247 2017 Dissertation presented at Uppsala University to be publicly examined in Polhemsalen, Lägerhyddsvägen 1, Uppsala, Friday, 27 October 2017 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Paul- Antoine Hervieux (Université de Strasbourg). Abstract Mondal, R. 2017. Relativistic theory of laser-induced magnetization dynamics. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1558. 115 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0070-2. Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin- orbit interaction (gauge invariant and Hermitian).
    [Show full text]
  • Geometric Phases Without Geometry
    Geometric phases without geometry Amar Vutha∗ and David DeMille Department of Physics, Yale University, New Haven, CT 06520, USA Geometric phases arise in a number of physical situations and often lead to systematic shifts in frequencies or phases measured in precision experiments. We describe, by working through some simple examples, a method to calculate geometric phases that relies only on standard quantum mechanical calculations of energy level shifts. This connection between geometric phases and off- resonant energy shifts simplifies calculation of the effect in certain situations. More generally, it also provides a way to understand and calculate geometric phases without recourse to topology. PACS numbers: 03.65.Vf, 32.60.+i I. INTRODUCTION A geometric phase, often also referred to as an adiabatic phase or Berry's phase, is a real, physical phase shift that can lead to measurable effects in experiments ([1, 2, 3] are some examples). In the classic version of this effect, the state of a particle with a magnetic moment is modified under the influence of a magnetic field which undergoes a slow change in its direction. The motion of the field leads to a phase shift accumulated between the quantum states of the particle, in addition to the dynamical phase due to the Larmor precession of the magnetic moment around the magnetic field. This extra phase is termed a geometric phase because it has a simple interpretation in terms of the geometry traced out by the system's Hamiltonian as it evolves in its parameter space. We point the interested reader to [4] and references within for an excellent account of the geometric approach to calculating geometric phases, and its various connections with the topology of the parameter space.
    [Show full text]
  • Anticipations of the Geometric Phase
    ANTICIPATIONS OF THE GEOMETRIC PHASE The notion that a quantum system's wovefunction may not return to its original phase after its parameters cycle slowly around a circuit had many precursors—in polarized light, radio waves, molecules, matrices and curved surfaces. Michael Berry In science we like to emphasize the novelty and originality A physical example of this "global change without of our ideas. This is harmless enough, provided it does not local change" is the Foucault pendulum (figure 1), whose blind us to the fact that concepts rarely arise out of direction of swing, described by a unit vector e, is slaved to nowhere. There is always a historical context, in which the local vertical, described by the radial unit vector r. isolated precursors of the idea have already appeared. The slaving law is parallel transport, which means that What we call "discovery" sometimes looks, in retrospect, the direction of swing does not rotate about the vertical— more like emergence into the air from subterranean that is, e has no component of angular velocity along r. intellectual currents. However, in spite of never being rotated, e does not return The geometric phase, whose discovery I reported early to its original value when, after a day, r has completed a in 1983, is no exception to this rule.1 The paper was about circuit C (here a circle of latitude). The anholonomy is the quantum systems forced round a cycle by a slow circuit of angle between the initial and final swing directions e, and parameters that govern them; it gave rise to a number of is equal to the solid angle subtended at the Earth's center applications and several generalizations, documented in a byC.
    [Show full text]
  • Topological Transition in Measurement-Induced Geometric Phases
    Topological transition in measurement-induced geometric phases Valentin Gebharta,b,1, Kyrylo Snizhko b,1 , Thomas Wellensa, Andreas Buchleitnera, Alessandro Romitoc, and Yuval Gefenb,2 aPhysikalisches Institut, Albert-Ludwigs-Universitat¨ Freiburg, 79104 Freiburg, Germany; bDepartment of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel; and cDepartment of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom Edited by Yakir Aharonov, Chapman University, Orange, CA, and approved February 4, 2020 (received for review July 10, 2019) The state of a quantum system, adiabatically driven in a cycle, may the Pancharatnam phase is equal to the Berry phase associated acquire a measurable phase depending only on the closed trajec- with the trajectory that connects the states j k i by the shortest tory in parameter space. Such geometric phases are ubiquitous geodesics in Hilbert space (6, 16). and also underline the physics of robust topological phenom- The Pancharatnam phase can quite naturally be interpreted ena such as the quantum Hall effect. Equivalently, a geometric as a result of a sequence of strong (projective) measurements phase may be induced through a cyclic sequence of quantum acting on the system and yielding specific measurement read- measurements. We show that the application of a sequence of outs (17). This interpretation is valid for optical experiments weak measurements renders the closed trajectories, hence the observing the Pancharatnam phase induced with sequences of geometric phase, stochastic. We study the concomitant probabil- polarizers (18). Such a phase can be consistently defined despite ity distribution and show that, when varying the measurement the fact that measurements (typically considered an incoher- strength, the mapping between the measurement sequence and ent process) are involved.
    [Show full text]
  • Arxiv:2012.08750V3 [Cond-Mat.Mes-Hall] 3 Jan 2021 Evaluated in the Bloch Representation
    Adiabatically Induced Orbital Magnetization Cong Xiao, Yafei Ren, and Bangguo Xiong Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA A semiclassical theory for the orbital magnetization due to adiabatic evolutions of Bloch electronic states is proposed. It renders a unified theory for the periodic-evolution pumped orbital magnetiza- tion and the orbital magnetoelectric response in insulators by revealing that these two phenomena are the only instances where the induced magnetization is gauge invariant. This theory also accounts for the electric-field induced intrinsic orbital magnetization in two-dimensional metals and Chern insulators. We illustrate the orbital magnetization pumped by microscopic local rotations of atoms, which correspond to phonon modes with angular momentum, in toy models based on honeycomb lattice, and the results are comparable to the pumped spin magnetization via strong Rashba spin orbit coupling. We also show the vital role of the orbital magnetoelectricity in validating the Mott relation between the intrinsic nonlinear anomalous Hall and Ettingshausen effects. I. INTRODUCTION current in the second Chern form of Berry curvatures. Noticeably, the orbital magnetoelectric effect and the periodic-evolution pumped orbital magnetization emerge Understanding the orbital magnetization in crystalline as the only instances where the induced magnetization is solids is among the most important objectives of orbi- gauge invariant due to the elimination of its explicit time tronics [1{3]. Unlike its spin companion, the orbital mag- dependence. Our work thus renders a unified theory of netization of Bloch electrons in the absence of external both phenomena in insulators with vanishing Chern num- perturbations is already hard to access quantum mechan- bers.
    [Show full text]