Rainfall-Runoff Modelling Rainfall-Runoff Modelling the Primer

Total Page:16

File Type:pdf, Size:1020Kb

Rainfall-Runoff Modelling Rainfall-Runoff Modelling the Primer Rainfall-Runoff Modelling Rainfall-Runoff Modelling The Primer SECOND EDITION Keith Beven Lancaster University, UK This edition first published 2012 © 2012 by John Wiley & Sons, Ltd Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Library of Congress Cataloging-in-Publication Data Beven, K. J. Rainfall-runoff modelling : the primer / Keith Beven. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-0-470-71459-1 (cloth) 1. Runoff–Mathematical models. 2. Rain and rainfall–Mathematical models. I. Title. GB980.B48 2011 551.488–dc23 2011028243 A catalogue record for this book is available from the British Library. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Set in 10/12pt Times by Thomson Digital, Noida, India First Impression 2012 For the next generation of hydrological modellers Contents Preface to the Second Edition xiii About the Author xvii List of Figures xix 1 Down to Basics: Runoff Processes and the Modelling Process 1 1.1 Why Model? 1 1.2 How to Use This Book 3 1.3 The Modelling Process 3 1.4 Perceptual Models of Catchment Hydrology 6 1.5 Flow Processes and Geochemical Characteristics 13 1.6 Runoff Generation and Runoff Routing 15 1.7 The Problem of Choosing a Conceptual Model 16 1.8 Model Calibration and Validation Issues 18 1.9 Key Points from Chapter 1 21 Box 1.1 The Legacy of Robert Elmer Horton (1875–1945) 22 2 Evolution of Rainfall–Runoff Models: Survival of the Fittest? 25 2.1 The Starting Point: The Rational Method 25 2.2 Practical Prediction: Runoff Coefficients and Time Transformations 26 2.3 Variations on the Unit Hydrograph 33 2.4 Early Digital Computer Models: The Stanford Watershed Model and Its Descendants 36 2.5 Distributed Process Description Based Models 40 2.6 Simplified Distributed Models Based on Distribution Functions 42 2.7 Recent Developments: What is the Current State of the Art? 43 2.8 Where to Find More on the History and Variety of Rainfall–Runoff Models 43 2.9 Key Points from Chapter 2 44 Box 2.1 Linearity, Nonlinearity and Nonstationarity 45 Box 2.2 The Xinanjiang, ARNO or VIC Model 46 Box 2.3 Control Volumes and Differential Equations 49 viii Contents 3 Data for Rainfall–Runoff Modelling 51 3.1 Rainfall Data 51 3.2 Discharge Data 55 3.3 Meteorological Data and the Estimation of Interception and Evapotranspiration 56 3.4 Meteorological Data and The Estimation of Snowmelt 60 3.5 Distributing Meteorological Data within a Catchment 61 3.6 Other Hydrological Variables 61 3.7 Digital Elevation Data 61 3.8 Geographical Information and Data Management Systems 66 3.9 Remote-sensing Data 67 3.10 Tracer Data for Understanding Catchment Responses 69 3.11 Linking Model Components and Data Series 70 3.12 Key Points from Chapter 3 71 Box 3.1 The Penman–Monteith Combination Equation for Estimating Evapotranspiration Rates 72 Box 3.2 Estimating Interception Losses 76 Box 3.3 Estimating Snowmelt by the Degree-Day Method 79 4 Predicting Hydrographs Using Models Based on Data 83 4.1 Data Availability and Empirical Modelling 83 4.2 Doing Hydrology Backwards 84 4.3 Transfer Function Models 87 4.4 Case Study: DBM Modelling of the CI6 Catchment at Llyn Briane, Wales 93 4.5 Physical Derivation of Transfer Functions 95 4.6 Other Methods of Developing Inductive Rainfall–Runoff Models from Observations 99 4.7 Key Points from Chapter 4 106 Box 4.1 Linear Transfer Function Models 107 Box 4.2 Use of Transfer Functions to Infer Effective Rainfalls 112 Box 4.3 Time Variable Estimation of Transfer Function Parameters and Derivation of Catchment Nonlinearity 113 5 Predicting Hydrographs Using Distributed Models Based on Process Descriptions 119 5.1 The Physical Basis of Distributed Models 119 5.2 Physically Based Rainfall–Runoff Models at the Catchment Scale 128 5.3 Case Study: Modelling Flow Processes at Reynolds Creek, Idaho 135 5.4 Case Study: Blind Validation Test of the SHE Model on the Slapton Wood Catchment 138 5.5 Simplified Distributed Models 140 5.6 Case Study: Distributed Modelling of Runoff Generation at Walnut Gulch, Arizona 148 5.7 Case Study: Modelling the R-5 Catchment at Chickasha, Oklahoma 151 5.8 Good Practice in the Application of Distributed Models 154 5.9 Discussion of Distributed Models Based on Continuum Differential Equations 155 5.10 Key Points from Chapter 5 157 Box 5.1 Descriptive Equations for Subsurface Flows 158 Contents ix Box 5.2 Estimating Infiltration Rates at the Soil Surface 160 Box 5.3 Solution of Partial Differential Equations: Some Basic Concepts 166 Box 5.4 Soil Moisture Characteristic Functions for Use in the Richards Equation 171 Box 5.5 Pedotransfer Functions 175 Box 5.6 Descriptive Equations for Surface Flows 177 Box 5.7 Derivation of the Kinematic Wave Equation 181 6 Hydrological Similarity, Distribution Functions and Semi-Distributed Rainfall–Runoff Models 185 6.1 Hydrological Similarity and Hydrological Response Units 185 6.2 The Probability Distributed Moisture (PDM) and Grid to Grid (G2G) Models 187 6.3 TOPMODEL 190 6.4 Case Study: Application of TOPMODEL to the Saeternbekken Catchment, Norway 198 6.5 TOPKAPI 203 6.6 Semi-Distributed Hydrological Response Unit (HRU) Models 204 6.7 Some Comments on the HRU Approach 207 6.8 Key Points from Chapter 6 208 Box 6.1 The Theory Underlying TOPMODEL 210 Box 6.2 The Soil and Water Assessment Tool (SWAT) Model 219 Box 6.3 The SCS Curve Number Model Revisited 224 7 Parameter Estimation and Predictive Uncertainty 231 7.1 Model Calibration or Conditioning 231 7.2 Parameter Response Surfaces and Sensitivity Analysis 233 7.3 Performance Measures and Likelihood Measures 239 7.4 Automatic Optimisation Techniques 241 7.5 Recognising Uncertainty in Models and Data: Forward Uncertainty Estimation 243 7.6 Types of Uncertainty Interval 244 7.7 Model Calibration Using Bayesian Statistical Methods 245 7.8 Dealing with Input Uncertainty in a Bayesian Framework 247 7.9 Model Calibration Using Set Theoretic Methods 249 7.10 Recognising Equifinality: The GLUE Method 252 7.11 Case Study: An Application of the GLUE Methodology in Modelling the Saeternbekken MINIFELT Catchment, Norway 258 7.12 Case Study: Application of GLUE Limits of Acceptability Approach to Evaluation in Modelling the Brue Catchment, Somerset, England 261 7.13 Other Applications of GLUE in Rainfall–Runoff Modelling 265 7.14 Comparison of GLUE and Bayesian Approaches to Uncertainty Estimation 266 7.15 Predictive Uncertainty, Risk and Decisions 267 7.16 Dynamic Parameters and Model Structural Error 268 7.17 Quality Control and Disinformation in Rainfall–Runoff Modelling 269 7.18 The Value of Data in Model Conditioning 274 7.19 Key Points from Chapter 7 274 Box 7.1 Likelihood Measures for use in Evaluating Models 276 Box 7.2 Combining Likelihood Measures 283 Box 7.3 Defining the Shape of a Response or Likelihood Surface 284 x Contents 8 Beyond the Primer: Models for Changing Risk 289 8.1 The Role of Rainfall–Runoff Models in Managing Future Risk 289 8.2 Short-Term Future Risk: Flood Forecasting 290 8.3 Data Requirements for Flood Forecasting 291 8.4 Rainfall–Runoff Modelling for Flood Forecasting 293 8.5 Case Study: Flood Forecasting in the River Eden Catchment, Cumbria, England 297 8.6 Rainfall–Runoff Modelling for Flood Frequency Estimation 299 8.7 Case Study: Modelling the Flood Frequency Characteristics on the Skalka Catchment, Czech Republic 302 8.8 Changing Risk: Catchment Change 305 8.9 Changing Risk: Climate Change 307 8.10 Key Points from Chapter 8 309 Box 8.1 Adaptive Gain Parameter Estimation for Real-Time Forecasting 311 9 Beyond the Primer: Next Generation Hydrological Models 313 9.1 Why are New Modelling Techniques Needed? 313 9.2 Representative Elementary Watershed Concepts 315 9.3 How are the REW Concepts Different from Other Hydrological
Recommended publications
  • A Statistical Vertically Mixed Runoff Model for Regions Featured
    water Article A Statistical Vertically Mixed Runoff Model for Regions Featured by Complex Runoff Generation Process Peng Lin 1,2, Pengfei Shi 1,2,*, Tao Yang 1,2,*, Chong-Yu Xu 3, Zhenya Li 1 and Xiaoyan Wang 1 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; [email protected] (P.L.); [email protected] (Z.L.); [email protected] (X.W.) 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China 3 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (T.Y.) Received: 6 June 2020; Accepted: 11 August 2020; Published: 19 August 2020 Abstract: Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood.
    [Show full text]
  • Geographies of Ageing and Disaster: Older People’S Experiences of Post- Disaster Recovery in Christchurch, New Zealand
    Geographies of ageing and disaster: older people’s experiences of post- disaster recovery in Christchurch, New Zealand Submitted by Sarah Tupper to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Geography In April 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. Abstract It was 12:51pm on Tuesday the 22nd of February when a 6.2 magnitude earthquake struck the Canterbury region in New Zealand’s South Island. This earthquake devastatingly took the lives of 185 people and caused widespread damage across Christchurch and the Canterbury region. Since the February earthquake there has been 15,832 quakes in the Canterbury region. The impact of the earthquakes has resulted in ongoing social, material and political change which has shaped how everyday life is experienced. While the Christchurch earthquakes have been investigated in relation to a number of different angles and agendas, to date there has been a notable absence on how older people in Christchurch are experiencing post-disaster recovery. This PhD research attends to this omission and by drawing upon geographical scholarship on disasters and ageing to better understand the everyday experiences of post-disaster recovery for older people. This thesis identifies a lack of geographical attention to the emotional, affective and embodied experience of disaster.
    [Show full text]
  • Estimation of Daily Class a Pan Evaporation from Meteorological Data Madan Bahadur Basnyat Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Estimation of daily Class A pan evaporation from meteorological data Madan Bahadur Basnyat Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Basnyat, Madan Bahadur, "Estimation of daily Class A pan evaporation from meteorological data " (1987). Retrospective Theses and Dissertations. 8511. https://lib.dr.iastate.edu/rtd/8511 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted, f or example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, eind charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Remote Sensing Solutions for Estimating Runoff and Recharge in Arid Environments
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-2008 Remote Sensing Solutions for Estimating Runoff and Recharge in Arid Environments Adam M. Milewski Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Geology Commons Recommended Citation Milewski, Adam M., "Remote Sensing Solutions for Estimating Runoff and Recharge in Arid Environments" (2008). Dissertations. 3378. https://scholarworks.wmich.edu/dissertations/3378 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. REMOTE SENSING SOLUTIONS FOR ESTIMATING RUNOFF AND RECHARGE IN ARID ENVIRONMENTS by Adam M. Milewski A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillmentof the requirements forthe Degree of Doctor of Philosophy Department of Geosciences Dr. Mohamed Sultan, Advisor WesternMichigan University Kalamazoo, Michigan June 2008 Copyright by Adam M. Milewski 2008 ACKNOWLEDGMENTS Just like any great accomplishment in life, they are often completed with the help of many friends and family. I have been blessed to have relentless support from my friends and family on all aspects of my education. Though I would like to thank everyone who has shaped my life and future, I cannot, and therefore for those individuals and groups of people that I do not specifically mention, I say thank you. First and foremost I would like to thank my advisor, Mohamed Sultan, whose advice and mentorship has been tireless, fair, and of the highest standard.
    [Show full text]
  • Understanding of and Response to Severe Flash Flooding
    Understanding of and response to severe flash flooding Science Report: SC070021 Product code: SCHO0509BQAP-E-P The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned by the Environment Agency’s Science Department and funded by the joint Environment Agency/ Defra Flood and Coastal Erosion Risk Management Research and Development Programme. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Ben Cave, Liza Cragg, Jo Gray, Prof Dennis Parker, Aztec West, Almondsbury, Bristol, BS32 4UD Katherine Pygott, Sue Tapsell Tel: 01454 624400 Fax: 01454 624409 www.environment-agency.gov.uk Dissemination Status: Publicly available ISBN: 978-1-84911-054-9 Keywords: © Environment Agency June 2009 Flash floods, rapid response catchment, public understanding, response, flood warning All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Research Contractor: Halcrow Group Ltd, Burderop Park, Swindon, The views and statements expressed in this report are Wiltshire. SN4 0QD those of the author alone. The views or statements expressed in this publication do not necessarily Environment Agency’s Project Manager: represent the views of the Environment Agency and the Jacqui Cotton, Flood Risk Science Environment Agency cannot accept any responsibility for such views or statements.
    [Show full text]
  • State Standard for Hydrologic Modeling Guidelines
    ARIZONA DEPARTMENT OF WATER RESOURCES FLOOD MITIGATION SECTION State Standard For Hydrologic Modeling Guidelines Under the authority outlined in ARS 48-3605(A) the Director of the Arizona Department of Water Resources establishes the following standard for Hydrologic Modeling Guidelines in Arizona. State Standard for Hydrologic Modeling, or “guidelines for the experienced modeler”, has been developed to address hydrologic conditions for a variety of statewide watersheds. Included are problems and situations identified by the State Standard Work Group (SSWG) and floodplain managers. The intended audience is statewide; engineers, professionals and Floodplain Administrators. The following topics are included: • Hydrologic Model comparison and recommendation • Guidelines and parameters • Model application for specific situations, and associated hydrologic parameters • Precipitation values (NOAA 14) • Storm duration • Unique conditions, such as wildfire burn, overgrazing, logging, drought, rapid snowmelt, urbanization. The State Standard includes examples addressing the above key issues. This requirement is effective August, 2007. Copies of this State Standard and the State Standard Technical Supplement can be obtained by contacting the Department’s Water Engineering Section at (602) 771-8652. SS10-07 1 August 2007 TABLE OF CONTENTS 1.0 Introduction.......................................................................................................5 1.1 Purpose and Background .......................................................................5
    [Show full text]
  • Models for Analyzing Agricultural Nonpoint-Source Pollution
    MODELS FOR ANALYZING AGRICULTURAL NONPOINT-SOURCE POLLUTION Douglas A. Hairh Cornell University, Ithaca, New York, USA RR-82-17 April 1982 INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS Laxenburg, Austria International Standard Book Number 3-7045-0037-2 Research Reports, which record research conducted at IIASA, are independently reviewed before publication. However, the views and opinions they express are not necessarily those of the Institute or the National Member Organizations that support it. Copyright O 1982 International Institute for Applied Systems Analysis All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher. FOREWORD The International Institute for Applied Systems Analysis is conducting research on the environmental problems of agriculture. One of the objectives of this research is to evaluate the existing mathematical models describing the interactions between agriculture and the environment. Part of the work toward this objective has been led at IIASA by G.N. Golubev and part has involved collaboration with several other institutions and scientists. During the past two years the work has paid particular attention to the problems of pollution from nonpoint sources. This report reviews and classifies the mathematical models currently available in this field, taking into account their different time and spatial scales, as well as the prob- lems that may call for their use. Although the last decade has witnessed the rapid development of nonpoint-source pollution models, much remains to be done. Haith addresses this matter; however, his comments about research needs go beyond the art and science of modeling.
    [Show full text]
  • Reference-Evapotranspiration-Report
    BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS C.P. Webb FEBRUARY 2010 ABBREVIATIONS ADAM Australian Data Archive for Meteorology ASCE American Society of Civil Engineers AWS Automatic Weather Station BoM Bureau of Meteorology CAHMDA Catchment-scale Hydrological Modelling and Data Assimilation CRCIF Cooperative Research Centre for Irrigation Futures FAO56-PM equation United Nations Food and Agriculture Organisation’s adapted Penman-Monteith equation recommended in Irrigation and Drainage Paper No. 56 (Allen et al. 1998) ETo Reference Evapotranspiration QLDCSC Queensland Climate Services Centre of the BoM SACSC South Australian Climate Services Centre of the BoM VICCSC Victorian Climate Services Centre of the BoM ii CONTENTS Page Abbreviations ii Contents iii Tables iv Abstract 1 Introduction 1 The FAO56-PM equation 2 Input Data 6 Missing Data 10 Pan Evaporation Data 10 References 14 Glossary 16 iii TABLES I. Accuracies of BoM weather station sensors. II. Input data required to compute parameters of the FAO56-PM equation. III. Correlation between daily evaporation data and daily ETo data. iv BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS C. P. Webb Climate Services Centre, Queensland Regional Office, Bureau of Meteorology ABSTRACT Reference evapotranspiration (ETo) data is valuable for a range of users, including farmers, hydrologists, agronomists, meteorologists, irrigation engineers, project managers, consultants and students. Daily ETo data for 399 locations in Australia will become publicly available on the Bureau of Meteorology’s (BoM’s) website (www.bom.gov.au) in 2010. A computer program developed in the South Australian Climate Services Centre of the BoM (SACSC) is used to calculate these figures daily. Calculations are made using the adapted Penman-Monteith equation recommended by the United Nations Food and Agriculture Organisation (FAO56-PM equation).
    [Show full text]
  • Erosion and Sediment Transport Modelling in Shallow Waters: a Review on Approaches, Models and Applications
    International Journal of Environmental Research and Public Health Review Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications Mohammad Hajigholizadeh 1,* ID , Assefa M. Melesse 2 ID and Hector R. Fuentes 3 1 Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC3781, Miami, FL 33174, USA 2 Department of Earth and Environment, Florida International University, AHC-5-390, 11200 SW 8th Street Miami, FL 33199, USA; melessea@fiu.edu 3 Department of Civil Engineering and Environmental Engineering, Florida International University, 10555 W Flagler Street, Miami, FL 33174, USA; fuentes@fiu.edu * Correspondence: mhaji002@fiu.edu; Tel.: +1-305-905-3409 Received: 16 January 2018; Accepted: 10 March 2018; Published: 14 March 2018 Abstract: The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters.
    [Show full text]
  • Members of the Council 2004
    MEMBERS OF THE COUNCIL 2013 - 2014 North Ward Councillor Paul Howard Whitaker, Glendale, 59 Grassington Road, Skipton, BD23 1LL Tel: 01756 709531 Councillor John Dawson, 42 Gainsborough Court, Skipton, BD23 1QG Tel: 01756 700151 Councillor Roland Wohlrapp, Thorncroft, 60 Raikeswood Drive, Skipton, BD23 1LY Tel: 01756 798643 Councillor Calvin Dow, The Castle Inn, 2 Mill Bridge, Skipton, BD23 1NJ. Tel: 01756 796304 East Ward Councillor Pamela Heseltine, 10 Nelson Street, Skipton, BD23 2DT Tel: 01756 700165 Councillor Eric Jaquin, 11 Grassington Road, Skipton, BD23 1LL. Tel: 01756 799684 Councillor Christopher Harbron, 20 Long Meadow, Skipton, BD23 1BH Tel: 01756 790758 Councillor Wendy Clark, 28 Regent Crescent, Skipton, BD23 1BG Tel: 01756 798077 South Ward Councillor Robert Geoffrey Heseltine, The Ginnel Place, Newmarket Street, Skipton, BD23 2JA Tel: 01756 701243 Councillor Martin Emmerson, 4 Greatwood Avenue, Skipton, BD23 2RU Tel: 01756 701304 Councillor Karen McIntyre, 52 Roughaw Road, Skipton, BD23 2QA Councillor Gordon Bell, 39 Western Road, Skipton, BD23 2RU Tel: 01756 790155 West Ward Councillor Paul Albert English, 98 Burnside Avenue, Skipton, BD23 2DB Tel: 01756 790287 Councillor David Walsh, 38 Western Road, Skipton, BD23 2RU Tel: 01756 797238 Councillor Bernard Clarke, 21 Park Avenue, Skipton, BD23 1PN Tel: 07922 277852 OFFICERS Chief Officer Mr Dave Parker e-mail: [email protected] Project Manager Mr Les Chandler e-mail: [email protected] Administration and Finance Officer Mrs Jill Peacock e-mail: [email protected] Civic Administration Assistant Mrs Wendy Allsopp e-mail: [email protected] Administration Assistant Mrs Elaine Rushworth e-mail: [email protected] Office 2nd Floor, Barclays Bank Chambers, 49 High Street, Skipton BD23 1DT Tel: 01756 700553 Members of Skipton Town Council since re-organisation of Local Government.
    [Show full text]
  • Battle for the Floodplains
    Battle for the Floodplains: An Institutional Analysis of Water Management and Spatial Planning in England Thesis submitted in accordance with the requirements of the for the Degree of Doctor in Philosophy by Karen Michelle Potter September 2012 Abstract Dramatic flood events witnessed from the turn of the century have renewed political attention and, it is believed, created new opportunities for the restoration of functional floodplains to alleviate the impact of flooding on urban development. For centuries, rural and urban landowning interests have dominated floodplains and water management in England, through a ‘hegemonic discourse alliance’ on land use development and flood defence. More recently, the use of structural flood defences has been attributed to the exacerbation of flood risk in towns and cities, and we are warned if water managers proceeded with ‘business as usual’ traditional scenarios, this century is predicted to see increased severe inconveniences at best and human catastrophes at worst. The novel, sustainable and integrated policy response is highly dependent upon the planning system, heavily implicated in the loss of floodplains in the past, in finding the land for restoring functioning floodplains. Planners are urged to take this as a golden opportunity to make homes and businesses safer from flood risk, but also to create an environment with green spaces and richer habitats for wildlife. Despite supportive changes in policy, there are few urban floodplain restoration schemes being implemented in practice in England, we remain entrenched in the engineered flood defence approach and the planner’s response is deemed inadequate. The key question is whether new discourses and policy instruments on sustainable, integrated water management can be put into practice, or whether they will remain ‘lip-service’ and cannot be implemented after all.
    [Show full text]
  • IAHS Newsletter NL95 December 2009
    IAHS Newsletter NL95 December 2009 Participants of the Joint International IAHS–IAH Convention in Hyderabad, India, gathered on the last day Reports from the Joint IAHS–IAH Convention in September 2009 See below and inside for overviews and reports of sessions and other events that took place in Hyderabad, pages 3–13. Hyderabad 2009 – View from Africa The prospect of travelling to Hyderabad, India, for the recently held 8th Scientific Assembly of IAHS co-hosted with the IAH, presented us with an opportunity to take a break from the demands of academic and consultancy life to visit a beautiful country. Our experiences in Hyderabad were truly remarkable in all respects. We had thought that we would miss the chance of experiencing a monsoon storm event since it was towards the end of season, but upon arrival in Mumbai we were greeted by the most intense downpour we have ever experienced. The rains lasted over 4 hours. As hydrologists Tendai Sawunyama and Evison Kapangaziwiri’s account continues on p. 8. Contents 2009 International Hydrology Prize Message from the President 2 is awarded to Keith Beven Reports from Hyderabad: 3 – Organizers 3 The International Hydrology Prize is awarded annually by IAHS, together – Young/early career hydrol’s 4 with UNESCO and the World Meteorological Organization, to an – Sessions 5 individual, in recognition of an outstanding contribution to the science. – View from Africa (cont’d) 8 Nominations for the Prize are made by IAHS National Committees and – Int. Hydrology Prize 10 considered by the Nomination Committee, i.e. the President and a Vice- – Tison Award 13 President of IAHS and representatives of UNESCO and WMO.
    [Show full text]