DNA and Morphology Unite Two Species and 10 Million Year Old Fossils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Auckland Shell Club Auction Lot List - 22 October 2016 Albany Hall
Auckland Shell Club Auction Lot List - 22 October 2016 Albany Hall. Setup from 9am. Viewing from 10am. Auction starts at 12am Lot Type Reserve 1 WW Helmet medium size ex Philippines (John Hood Alexander) 2 WW Helmet medium size ex Philippines (John Hood Alexander) 3 WW Helmet really large ex Philippines, JHA 4 WW Tridacna (small) embedded in coral ex Tonga 1963 5 WW Lambis truncata sebae ex Tonga 1979 6 WW Charonia tritonis - whopper 45cm. No operc. Tongatapu 1979 7 WW Cowries - tray of 70 lots 8 WW All sorts but lots of Solemyidae 9 WW Bivalves 25 priced lots 10 WW Mixed - 50 lots 11 WW Cowries tray of 119 lots - some duplication but includes some scarcer inc. draconis from the Galapagos, scurra from Somalia, chinensis from the Solomons 12 WW Univalves tray of 50 13 WW Univalves tray of 57 with nice Fasciolaridae 14 WW Murex - (8) Chicoreus palmarosae, Pternotus bednallii, P. Acanthopterus, Ceratostoma falliarum, Siratus superbus, Naquetia annandalei, Murex nutalli and Hamalocantha zamboi 15 WW Bivalves - tray of 50 16 WW Bivalves - tray of 50 17 Book The New Zealand Sea Shore by Morton and Miller - fair condition 18 Book Australian Shells by Wilson and Gillett excellent condition apart from some fading on slipcase 19 Book Shells of the Western Pacific in Colour by Kira (Vol.1) and Habe (Vol 2) - good condition 20 Book 3 on Pectens, Spondylus and Bivalves - 2 ex Conchology Section 21 WW Haliotis vafescous - California 22 WW Haliotis cracherodi & laevigata - California & Aus 23 WW Amustum bellotia & pleuronecles - Queensland 24 WW Haliotis -
Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration. -
Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. -
Comparative Anatomy of Four Primitive Muricacean Gastropods: Implications for Trophonine Phylogeny
^/ -S/ COMPARATIVE ANATOMY OF FOUR PRIMITIVE MURICACEAN GASTROPODS: IMPLICATIONS FOR TROPHONINE PHYLOGENY M. G. HARASEWYCH DEPARTMENT OF INVERTEBRATE ZOOLOGY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. 20560, U.S.A. ABSTRACT The main features of the shell, head-foot, palliai complex, alimentary and reproductive systems of Trophon geversianus (Pallas), Boreotrophon aculeatus (Watson), Paziella pazi (Crosse), and Nucella lamellosa (Gmelin) are described, and phonetic and cladistic analyses based on subsets of these data presented. Similarities in shell morphology revealed by phenetic studies are interpreted as being due to convergence, and are indicative of similar habitats rather than of close phylogenetic relationships. Convergences are also noted in radular and stomach characters. Cladistic analyses of anatomical data support the following conclusions: 1 ) Thaididae are a primitive and ancient family of muricaceans forming a clade equal in taxonomic rank with Muncidae; 2) Within Muricidae, P. pazi more closely resembles the ancestral muricid phenotype than any trophonine; 3) Trophoninae comprise a comparatively recent monophyletic group with differences due to a subsequent austral adaptive radiation. The Muricidae are considered to be the most primitive and D'Attilio, 1976:13) a personal communication from E. H. family within Neogastropoda according to most (Thiele, Vokes "it appears likely that the most northern trophons are 1929; Wenz, 1941; Taylor and Sohl, 1962; Boss, 1982) but derived from the Paziella-Poiheha line, and that the several not all (Golikov and Starobogatov, 1975) recent classifica- austral forms that are unquestionably "trophonine" are prob- tions. Of the five subfamilies of Muricidae, the Trophoninae, ably derived from the Thaididae". proposed by Cossmann (1903) on the basis of shell and Thus, according to most published work, the Tropho- opercular characters to include a number of boreal and ninae are in a position to shed light on the systematics and austral species, are the most poorly understood. -
Benthic Habitat Classes and Trawl Fishing Disturbance in New Zealand Waters Shallower Than 250 M
Benthic habitat classes and trawl fishing disturbance in New Zealand waters shallower than 250 m New Zealand Aquatic Environment and Biodiversity Report No.144 S.J. Baird, J. Hewitt, B.A. Wood ISSN 1179-6480 (online) ISBN 978-0-477-10532-3 (online) January 2015 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Contents EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 The study area 3 2. COASTAL BENTHIC HABITAT CLASSES 4 2.1 Introduction 4 2.2 Habitat class definitions 6 2.3 Sensitivity of the habitat to fishing disturbance 10 3. SPATIAL PATTERN OF BOTTOM-CONTACTING TRAWL FISHING ACTIVITY 11 3.1 Bottom-contact trawl data 12 3.2 Spatial distribution of trawl data 21 3.3 Trawl footprint within the study area 26 3.4 Overlap of five-year trawl footprint on habitats within 250 m 32 3.5 GIS output from the overlay of the trawl footprint and habitat classes 37 4. SUMMARY OF NON-TRAWL BOTTOM-CONTACT FISHING METHODS IN THE STUDY AREA 38 5. DISCUSSION 39 6. ACKNOWLEDGMENTS 41 7. REFERENCES 42 APPENDIX 1: AREAS CLOSED TO FISHING WITHIN THE STUDY AREA 46 APPENDIX 2: MAPS SHOWING THE DISTRIBUTION OF THE DATA INPUTS FOR THE BENTHIC HABITAT DESCRIPTORS 49 APPENDIX 3: SENSITIVITY TO FISHING DISTURBANCE 53 APPENDIX 4: TRAWL FISHING DATA 102 APPENDIX 5: CELL-BASED TRAWL SUMMARIES 129 APPENDIX 6: TRAWL FOOTPRINT SUMMARY 151 APPENDIX 7: TRAWL FOOTPRINT – HABITAT OVERLAY 162 APPENDIX 8: SUMMARY OF DREDGE OYSTER AND SCALLOP EFFORT DATA WITHIN 250 M, 1 OCTOBER 2007–30 SEPTEMBER 2012 165 APPENDIX 9: SUMMARY OF DANISH SEINE EFFORT 181 EXECUTIVE SUMMARY Baird, S.J.; Hewitt, J.E.; Wood, B.A. -
Morphological Plasticity in Paphia Malabarica (Chemnitz) (Mollusca: Bivalvia) of a Deep Estuary, Ashtamudi Estuary
International Journal of Scientific and Research Publications, Volume 5, Issue 6, June 2015 1 ISSN 2250-3153 Morphotypes: Morphological plasticity in Paphia malabarica (Chemnitz) (Mollusca: Bivalvia) of a deep estuary, Ashtamudi estuary Ampili, M*. and Shiny Sreedhar, K.** * PG and Research Department of Zoology, N.S.S.Hindu College, Changanassery, Kottayam ** PG and Research Department of Zoology, Sree Narayana College, Cherthala, Alleppey, Kerala, India Abstract- Morphometric analysis of shell shape and size seems a variation (Anderson 1996; Marko and Jackson 2001; Anderson priori to be a realistic alternative for inter-group discrimination. and Roopnarine 2005; Kosnik et al. 2006) and to examine Analysis of external shell trait measurements of Venerid clam patterns of shell development (Roopnarine 2001; Tang and Paphia malabarica of Ashtamudi estuary, a deep estuary Pantel 2005). Several studies on the bivalve shells have proved unveiled morphological plasticity in the population. The clam that it was very useful in defining specific shape features that population in the barmouth of estuary was found to be might distinguish species or intraspecific variations among morphologically varied from the clam population of upper different population along a wide geographical range reaches. The morphotypes displayed variation from 11% to 38% (Dommergues et al. 2003; Palmer et al. 2004; Rufino et al. 2006; in external shell traits. The phenotypic plasticity can be explained Krapivka et al. 2007; Costa et al. 2008; Marquez et al. 2011). by ecophenotypic variation along a depth gradient with uneven Such variability is likely to reflect changing eco-physiological shell thickness and shorter form in deeper part of the estuary near requirements and constraints with body size, alongside genetic barmouth where wave action and tidal currents were higher and and environmental influences on shell morphology (Boulding with longer and deeper shells in shallow upper reaches of and Hay 1993; Boulding and van Alstyne, 1993; Hollandar et al. -
The Nautilus
THE NAUTILUS Volume 120, Numberl May 30, 2006 ISSN 0028-1344 A quarterly devoted to malacology. EDITOR-IN-CHIEF Dr. Douglas S. Jones Dr. Angel Valdes Florida Museum of Natural History Department of Malacology Dr. Jose H. Leal University of Florida Natural Histoiy Museum The Bailey-Matthews Shell Museum Gainesville, FL 32611-2035 of Los Angeles County 3075 Sanibel-Captiva Road 900 Exposition Boulevard Sanibel, FL 33957 Dr. Harry G. Lee Los Angeles, CA 90007 MANAGING EDITOR 1801 Barrs Street, Suite 500 Dr. Geerat Vermeij Jacksonville, FL 32204 J. Linda Kramer Department of Geology Shell Museum The Bailey-Matthews Dr. Charles Lydeard University of California at Davis 3075 Sanibel-Captiva Road Biodiversity and Systematics Davis, CA 95616 Sanibel, FL 33957 Department of Biological Sciences Dr. G. Thomas Watters University of Alabama EDITOR EMERITUS Aquatic Ecology Laboratory Tuscaloosa, AL 35487 Dr. M. G. Harasewych 1314 Kinnear Road Department of Invertebrate Zoology Bruce A. Marshall Columbus, OH 43212-1194 National Museum of Museum of New Zealand Dr. John B. Wise Natural History Te Papa Tongarewa Department oi Biology Smithsonian Institution P.O. Box 467 College of Charleston Washington, DC 20560 Wellington, NEW ZEALAND Charleston, SC 29424 CONSULTING EDITORS Dr. James H. McLean SUBSCRIPTION INFORMATION Dr. Riidiger Bieler Department of Malacology Department of Invertebrates Natural History Museum The subscription rate per volume is Field Museum of of Los Angeles County US $43.00 for individuals, US $72.00 Natural History 900 Exposition Boulevard for institutions. Postage outside the Chicago, IL 60605 Los Angeles, CA 90007 United States is an additional US $5.00 for surface and US $15.00 for Dr. -
Fasciolariidae
WMSDB - Worldwide Mollusc Species Data Base Family: FASCIOLARIIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-BUCCINOIDEA ------ Family: FASCIOLARIIDAE Gray, 1853 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=1523, Genus=128, Subgenus=5, Species=558, Subspecies=42, Synonyms=789, Images=454 abbotti , Polygona abbotti (M.A. Snyder, 2003) abnormis , Fusus abnormis E.A. Smith, 1878 - syn of: Coralliophila abnormis (E.A. Smith, 1878) abnormis , Latirus abnormis G.B. III Sowerby, 1894 abyssorum , Fusinus abyssorum P. Fischer, 1883 - syn of: Mohnia abyssorum (P. Fischer, 1884) achatina , Fasciolaria achatina P.F. Röding, 1798 - syn of: Fasciolaria tulipa (C. Linnaeus, 1758) achatinus , Fasciolaria achatinus P.F. Röding, 1798 - syn of: Fasciolaria tulipa (C. Linnaeus, 1758) acherusius , Chryseofusus acherusius R. Hadorn & K. Fraussen, 2003 aciculatus , Fusus aciculatus S. Delle Chiaje in G.S. Poli, 1826 - syn of: Fusinus rostratus (A.G. Olivi, 1792) acleiformis , Dolicholatirus acleiformis G.B. I Sowerby, 1830 - syn of: Dolicholatirus lancea (J.F. Gmelin, 1791) acmensis , Pleuroploca acmensis M. Smith, 1940 - syn of: Triplofusus giganteus (L.C. Kiener, 1840) acrisius , Fusus acrisius G.D. Nardo, 1847 - syn of: Ocinebrina aciculata (J.B.P.A. Lamarck, 1822) aculeiformis , Dolicholatirus aculeiformis G.B. I Sowerby, 1833 - syn of: Dolicholatirus lancea (J.F. Gmelin, 1791) aculeiformis , Fusus aculeiformis J.B.P.A. Lamarck, 1816 - syn of: Perrona aculeiformis (J.B.P.A. Lamarck, 1816) acuminatus, Latirus acuminatus (L.C. Kiener, 1840) acus , Dolicholatirus acus (A. Adams & L.A. Reeve, 1848) acuticostatus, Fusinus hartvigii acuticostatus (G.B. II Sowerby, 1880) acuticostatus, Fusinus acuticostatus G.B. -
Identifying Gastropod Spawn from DNA Barcodes: Possible but Not Yet Practicable
Molecular Ecology Resources (2009) doi: 10.1111/j.1755-0998.2009.02576.x DNABlackwell Publishing Ltd BARCODING Identifying gastropod spawn from DNA barcodes: possible but not yet practicable N. PUILLANDRE,* E. E. STRONG,† P. BOUCHET,‡ M.-C. BOISSELIER,* A. COULOUX§ and S. SAMADI* *UMR 7138, Systématique, adaptation, évolution (UPMC/IRD/MNHN/CNRS), Université Pierre et Marie Curie (UPMC), CP26, 57 rue Cuvier, 75231 Paris cedex 05, France, †Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, MRC 163, PO Box 37012, Washington, DC 20013-7012, USA, ‡Muséum National d’Histoire Naturelle, 57 rue Cuvier, 75231 Paris cedex 05, France, §GENOSCOPE, Centre National de Séquençage, 91000 Evry, France Abstract Identifying life stages of species with complex life histories is problematic as species are often only known and/or described from a single stage. DNA barcoding has been touted as an important tool for linking life-history stages of the same species. To test the current efficacy of DNA barcodes for identifying unknown mollusk life stages, 24 marine gastropod egg capsules were collected off the Philippines in deep water and sequenced for partial fragments of the COI, 16S and 12S mitochondrial genes. Two egg capsules of known shallow- water Mediterranean species were used to calibrate the method. These sequences were compared to those available in GenBank and the Barcode of Life Database (BOLD). Using COI sequences alone, only a single Mediterranean egg capsule was identified to species, and a single Philippine egg capsule was identified tentatively to genus; all other COI sequences recovered matches between 76% and 90% with sequences from BOLD and Gen- Bank. -
Conradconfusus, a Replacement Name for Buccinofusus
Cainozoic November 2002 Research, 1(1-2) (2001), pp. 129-132, a name for Conradconfusus, replacement Buccinofusus Conrad, 1868, non 1866 (Mollusca, Gastropoda) Martin+Avery Snyder Research Associate, Department of Malacology, Academy of Natural Sciences ofPhiladelphia, 19th and Benjamin Franklin Park- PA way, Philadelphia, 19103, USA; e-mail: [email protected] Received 6 August 2002; revised version accepted 20 August 2002 The Fusus is for new genus Conradconfusus n. gen., type species parilis Conrad, 1832, proposed as a replacement name Buccinofu- 1868 strata sus Conrad, (non 1866). Twenty-three (sub)species, from Upper Cretaceous and Cainozoic worldwide, may be assigned this to genus. Key words: Mollusca, Gastropoda, Cretaceous, Cainozoic, replacement name, lectotype. Introduction diegoensis and Fusus parilis are not congeneric, and the latter use of the genus name Buccinofusus, probably in Conrad introduced the (1866, p. 17) validly genus Bucci- the neogastropod family Fasciolariidae, requires re- nofusus by the combination Buccinofusus diegoensis placement. (Gabb); the type species, by monotypy, being Tritonium diegoensis Gabb, 1864 (p. 95, pi. 18, fig. 44) from the Eocene of California. The nearly complete holotype, A replacement name which is 14.3 mm in height and 8.5 mm in width, was reported by Stewart (1927, p. 430) to be in the Museum When Conrad (1868) introduced Buccinofusus, he sug- of Paleontology at Berkeley, California (registration gested four possible species as members of this genus, in number 11980). The was noted by Stewart (1927, addition to F. parilis viz. genus , but overlooked Neave p. 430) by (1939-1966). Vaught (1989, p. 50) listed the genus Buccinofusus with the date Buccinum balteatumReeve, 1846 (Recent, Australia); 1866. -
Evolutionary Patterns and Consequences of Developmental Mode in Cenozoic Gastropods from Southeastern Australia
Evolutionary patterns and consequences of developmental mode in Cenozoic gastropods from southeastern Australia Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Kirstie Rae Thomson September 2013 ABSTRACT Gastropods, like many other marine invertebrates undergo a two-stage life cycle. As the adult body plan results in narrow environmental tolerances and restricted mobility, the optimum opportunity for dispersal occurs during the initial larval phase. Dispersal is considered to be a major influence on the evolutionary trends of different larval strategies. Three larval strategies are recognised in this research: planktotrophy, lecithotrophy and direct development. Planktotrophic larvae are able to feed and swim in the plankton resulting in the greatest dispersal potential. Lecithotrophic larvae have a reduced planktic period and are considered to have more restricted dispersal. The planktic period is absent in direct developing larvae and therefore dispersal potential in these taxa is extremely limited. Each of these larval strategies can be confidently inferred from the shells of fossil gastropods and the evolutionary trends associated with modes of development can be examined using both phylogenetic and non-phylogenetic techniques. This research uses Cenozoic gastropods from southeastern Australia to examine evolutionary trends associated with larval mode. To ensure the species used in analyses are distinct and correctly assigned, a taxonomic review of the six families included in this study was undertaken. The families included in this study were the Volutidae, Nassariidae, Raphitomidae, Borsoniidae, Mangeliidae and Turridae. Phylogenetic analyses were used to examine the relationships between taxa and to determine the order and timing of changes in larval mode throughout the Cenozoic. -
Feeding Behavior of Adelomelon Ancilla (Lighfoot, 1786): a Predatory Neogastropod (Gastropoda: Volutidae) in Patagonian Benthic Communities
THE NAUTILUS 123(3):159–165, 2009 Page 159 Feeding behavior of Adelomelon ancilla (Lighfoot, 1786): A predatory neogastropod (Gastropoda: Volutidae) in Patagonian benthic communities Gregorio Bigatti Carlos J.M. Sanchez Patricia Miloslavich Pablo E. Penchaszadeh Centro Nacional Patago´nico Antelo Departamento de Estudios Museo Argentino de Ciencias CENPAT – CONICET Museo Argentino de Ambientales Naturales (MACN-CONICET) Boulevard Brown s/n Ciencias Naturales Universidad Simo´n Bolı´var and U9120ACV Puerto Madryn (MACN-CONICET) Apartado Postal 89000 Departamento de ARGENTINA and Caracas 1080 Biodiversidad Facultad de [email protected] Departamento de VENEZUELA Ciencias Exactas y Naturales Biodiversidad Facultad de Universidad de Buenos Aires Ciencias Exactas y ARGENTINA Naturales Universidad de Buenos Aires, ARGENTINA ABSTRACT In the gulfs of northern Patagonia, this species inhabits mixed gravel and sand bottoms, and is easily collected by Adelomelon ancilla, a volutid commonly found in shallow water SCUBA at depths of 5 to 20 m, during low tide, and near in northern Patagonia, is a top predator in the benthic commu- the shore. Despite its commercial importance as a new nities of this region. This species presents an anemone (Antholoba achates) epibiosis that may protect it from preda- fishery resource, A. ancilla has not been well studied, tors. Adelomelon ancilla captures prey by tightly engulfing it with research on this species being limited to descriptions with the foot, and ingests them, generally alive, after narcotiz- of egg capsules and embryology (Penchaszadeh and ing their muscles. A narcotizing substance, produced by the De Mahieu, 1976; Penchaszadeh et al., 1999; Penchaszadeh accessory salivary glands, is released through the proboscis and Miloslavich, 2001; Penchaszadeh et al., 2006), and into the prey while the latter is tightly enveloped within the to reproductive biology and oviposition (Penchaszadeh foot, allowing for prey narcotization.