Diversity and Prevalence of ANTAR Rnas Across Actinobacteria Dolly Mehta1,2 and Arati Ramesh1*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Cryobacterium Psychrophilum Gen. Nov., Sp. Nov., Nom. Rev., Comb. Nov
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1997, p. 474-478 Vol. 47, No. 2 0020-7713/97/$04.00+0 Copyright 0 1997, International Union of Microbiological Societies Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an Obligately Psychrophilic Actinomycete To Accommodate “Curtobacteriumpsychrophilum” Inoue and Komagata 1976 KEN-ICHIRO SUZUKI,l* JUNK0 SASAKI,’ MASAKAZU URAMOT0,2 TAKASHI NAKASE,’ AND KAZUO KOMAGATA3 Japan Collection of Microorganisms, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351 -01, Department of Agriculture, Tamagawa University, Machida, Tokyo 192, and Tokyo University of Agn’culture, Setagaya-ku, Tokyo 156, Japan “Curtobacteriumpsychrophilum,” proposed by Inoue and Komagata in 1976, is a psychrophilic gram-positive irregular rod isolated from Antarctic soil. This organism grew optimally at 9 to 12°C and did not grow at higher than 18°C. Chemotaxonomic characteristics of this organism were the presence of 2,4-diaminobutyricacid in the cell wall and menaquinone-10as the predominant respiratory quinone. The cellular fatty acid profile, which contained a significant amount of an anteiso-branched monounsaturated acid, 12-methyl tetradecenoic acid, was a distinctive characteristic of this organism and was reasonable for adaptation to low temperature. Phylogenetic analysis based on 16s ribosomal DNA sequences revealed that this organism was positioned at a separate branch in the family Microbacteriaceae, actinomycetes with group B peptidoglycan. We propose the name Cryobacterium psychrophilum gen. nov., sp. nov. for this organism. The type strain is JCM 1463 (=IAM 12024 =ATCC 43563 =IF0 15735 =NCIMB 2068). In the course of an ecological study of microorganisms in albidurn JCM 1344T, Curtobacterium citreum JCM 134fiT, and Curtobacterium Antarctica, Inoue isolated some obligately psychrophilic bac- pusillurn JCM 1350T were cultivated at 10 and 17°C on R agar for comparison of the cellular fatty acid compositions. -
Aestuariimicrobium Ganziense Sp. Nov., a New Gram-Positive Bacterium Isolated from Soil in the Ganzi Tibetan Autonomous Prefecture, China
Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan Autonomous Prefecture, China Yu Geng Yunnan University Jiang-Yuan Zhao Yunnan University Hui-Ren Yuan Yunnan University Le-Le Li Yunnan University Meng-Liang Wen yunnan university Ming-Gang Li yunnan university Shu-Kun Tang ( [email protected] ) Yunnan Institute of Microbiology, Yunnan University https://orcid.org/0000-0001-9141-6244 Research Article Keywords: Aestuariimicrobium ganziense sp. nov., Chemotaxonomy, 16S rRNA sequence analysis Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-215613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on March 12th, 2021. See the published version at https://doi.org/10.1007/s00203-021-02261-2. Page 1/11 Abstract A novel Gram-stain positive, oval shaped and non-agellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall. -
Twenty-Three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems 2 Exhibit Growth Under Simulated Martian Conditions at 0.7 Kpa
Schuerger and Nicholson, 2015 Astrobiology, accepted 12-02-15 1 Twenty-three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems 2 Exhibit Growth under Simulated Martian Conditions at 0.7 kPa 3 4 Andrew C. Schuerger1* and Wayne L. Nicholson2 5 6 1Dept. of Plant Pathology, University of Florida, Gainesville, FL, email: [email protected], USA. 7 2Dept of Microbiology and Cell Science, University of Florida, Gainesville, FL; email: 8 [email protected]; USA. 9 10 11 12 Running title: Low-pressure growth of bacteria at 0.7 kPa. 13 14 15 16 17 *Corresponding author: University of Florida, Space Life Sciences Laboratory, 505 Odyssey 18 Way, Merritt Island, FL 32953. Phone 321-261-3774. Email: [email protected]. 19 20 21 22 23 Pages: 22 24 Tables: 3 25 Figures: 4 26 1 Schuerger and Nicholson, 2015 Astrobiology, accepted 12-02-15 27 Summary 28 Bacterial growth at low pressure is a new research area with implications for predicting 29 microbial activity in clouds, the bulk atmosphere on Earth, and for modeling the forward 30 contamination of planetary surfaces like Mars. Here we describe experiments on the recovery 31 and identification of 23 species of bacterial hypobarophiles (def., growth under hypobaric 32 conditions of approximately 1-2 kPa) in 11 genera capable of growth at 0.7 kPa. Hypobarophilic 33 bacteria, but not archaea or fungi, were recovered from soil and non-soil ecosystems. The 34 highest numbers of hypobarophiles were recovered from Arctic soil, Siberian permafrost, and 35 human saliva. Isolates were identified through 16S rRNA sequencing to belong to the genera 36 Carnobacterium, Exiguobacterium, Leuconostoc, Paenibacillus, and Trichococcus. -
Extreme Cold Environments: a Suitable Niche for Selection of Novel Psychrotrophic Microbes for Biotechnological Applications
Editorial Adv Biotech & Micro Volume 2 Issue 2 - February 2017 Copyright © All rights are reserved by Ajar Nath Yadav DOI: 10.19080/AIBM.2017.02.555584 Extreme Cold Environments: A Suitable Niche for Selection of Novel Psychrotrophic Microbes for Biotechnological Applications Ajar Nath Yadav1*, Priyanka Verma2, Vinod Kumar1, Shashwati Ghosh Sachan3 and Anil Kumar Saxena4 1Department of Biotechnology, Eternal University, India 2Department of Microbiology, Eternal University, India 3Department of Bio-Engineering, Birla Institute of Technology, India 4ICAR-National Bureau of Agriculturally Important Microorganisms, India Submission: January 27, 2017; Published: February 06, 2017 *Corresponding author: Ajar Nath Yadav, Assistant professor, Department of Biotechnology, Akal College of Agriculture, Eternal University, India, Tel: ; Email: Editorial several reports on whole genome sequences of novel and The microbiomes of cold environments are of particular potential psychrotrophic microbes [26,27]. importance in global ecology since the majority of terrestrial and aquatic ecosystems of our planet are permanently or The novel species of psychrotrophic microbes have been seasonally submitted to cold temperatures. Earth is primarily a isolated worldwide and reported from different domain cold, marine planet with 90% of the ocean’s waters being at 5°C archaea, bacteria and fungi which included members of phylum or lower. Permafrost soils, glaciers, polar sea ice, and snow cover Actinobacteria, Proteobacteria, Bacteroidetes, Basidiomycota, make up 20% of the Earth’s surface environments. Microbial Firmicutes and Euryarchaeota [7-25]. Along with novel species communities under cold habitats have been undergone the of psychrotrophic microbes, some microbial species including physiological adaptations to low temperature and chemical Arthrobacter nicotianae, Brevundimonas terrae, Paenibacillus stress. -
Diversity and Prevalence of ANTAR Rnas Across Actinobacteria
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diversity and prevalence of ANTAR RNAs across actinobacteria Dolly Mehta1,2 and Arati Ramesh1,+ 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, India 560065. 2SASTRA University, Tirumalaisamudram, Thanjavur – 613401. +Corresponding Author: Arati Ramesh National Centre for Biological Sciences GKVK Campus, Bellary Road Bangalore, 560065 Tel. 91-80-23666930 e-mail: [email protected] Running title: Identification of ANTAR RNAs across Actinobacteria Keywords: ANTAR protein:RNA regulatory system, structured RNA, actinobacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335034; this version posted October 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Computational approaches are often used to predict regulatory RNAs in bacteria, but their success is limited to RNAs that are highly conserved across phyla, in sequence and structure. The ANTAR regulatory system consists of a family of RNAs (the ANTAR-target RNAs) that selectively recruit ANTAR proteins. This protein-RNA complex together regulates genes at the level of translation or transcriptional elongation. -
Lacisediminihabitans Profunda Gen. Nov., Sp. Nov., a Member of the Family Microbacteriaceae Isolated from Freshwater Sediment
Antonie van Leeuwenhoek (2020) 113:365–375 https://doi.org/10.1007/s10482-019-01347-8 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Lacisediminihabitans profunda gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from freshwater sediment Ye Zhuo . Chun-Zhi Jin . Feng-Jie Jin . Taihua Li . Dong Hyo Kang . Hee-Mock Oh . Hyung-Gwan Lee . Long Jin Received: 14 August 2019 / Accepted: 2 October 2019 / Published online: 18 October 2019 Ó The Author(s) 2019 Abstract A novel Gram-stain-positive bacterial sequence similarities to Glaciihabitans tibetensis strain, CHu50b-6-2T, was isolated from a 67-cm-long KCTC 29148T, Frigoribacterium faeni KACC sediment core collected from the Daechung Reservoir 20509T and Lysinibacter cavernae DSM 27960T, at a water depth of 17 m, Daejeon, Republic of Korea. respectively. The phylogenetic trees revealed that The cells of strain CHu50b-6-2T were aerobic non- strain CHu50b-6-2T did not show a clear affiliation to motile and formed yellow colonies on R2A agar. The any genus within the family Microbacteriaceae. The phylogenetic analysis based on 16S rRNA gene chemotaxonomic results showed B1a type pepti- sequencing indicated that the strain formed a separate doglacan containg 2, 4-diaminobutyric acid (DAB) lineage within the family Microbacteriaceae, exhibit- as the diagnostic diamino acid, MK-10 as the ing 98.0%, 97.7% and 97.6% 16S rRNA gene predominant respiratory menaquinone, diphos- phatidylglycerol, phosphatidylglycerol, and an unidentified glycolipid as the major polar lipids, Ye Zhuo and Chun-Zhi Jin have contributed equally to this work. anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids, and a DNA G ? C content of 67.3 mol%. -
Schumannella Luteola Gen. Nov., Sp. Nov., a Novel Genus of the Family Microbacteriaceae
J. Gen. Appl. Microbiol., 54, 253‒258 (2008) Full Paper Schumannella luteola gen. nov., sp. nov., a novel genus of the family Microbacteriaceae Sun-Young An*, Tian Xiao, and Akira Yokota Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113‒0032, Japan (Received February 28, 2008; Accepted June 24, 2008) An actinobacterial strain KHIAT, isolated from lichen in Tokyo, was taxonomically characterized using a polyphasic approach. The isolate is a Gram-positive, anaerobic, non-motile and rod- shaped bacterium. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the isolate is represented as an independent lineage distinctive from the Microbacteriaceae genera. The G+C content of DNA was 58.7 mol%. The chemotaxonomic characteristics of the isolate are cell wall peptidoglycan type (2,4-diaminobutyric acid), major cellular fatty acids (anteiso-C15:0 and iso-C16:0) and quinone type (MK-11 and MK-10). On the basis of the phenotypic and phyloge- netic distinctness, it is proposed that strain KHIAT represents a novel species in a new genus of the family Microbacteriaceae, Schumannella luteola gen. nov., sp. nov. The type strain is KHIAT (=JCM 23215T=TISTR 1824T). Key Words—Schumannella luteola gen. nov., sp. nov. Introduction butyric acid in the cell wall. Analyses of the 16S rRNA gene sequences from strain KHIAT showed that it was The family Microbacteriaceae currently contains 24 related to genera such as Leifsonia, Rhodoglobus, and genera, which are characterized by unsaturated major Salinibacterium of the family Microbacteriaceae. menaquinones (Collins and Jones, 1981) and B-type The aim of the present study is to elucidate the taxo- peptidoglycan (Park et al., 1993; Schleifer and Kan- nomic position of the isolate, using polyphasic taxon- dler, 1972; Stackebrandt et al., 1997). -
Genomic Insights of Cryobacterium Isolated from Ice Core Reveal Genome Dynamics for Adaptation in Glacier
Genomic Insights of Cryobacterium Isolated From Ice Core Reveal Genome Dynamics for Adaptation in Glacier Liu, Yongqin; Shen, Liang; Zeng, Yonghui; Xing, Tingting; Xu, Baiqing; Wang, Ninglian Published in: Frontiers in Microbiology DOI: 10.3389/fmicb.2020.01530 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Liu, Y., Shen, L., Zeng, Y., Xing, T., Xu, B., & Wang, N. (2020). Genomic Insights of Cryobacterium Isolated From Ice Core Reveal Genome Dynamics for Adaptation in Glacier. Frontiers in Microbiology, 11, [1530]. https://doi.org/10.3389/fmicb.2020.01530 Download date: 04. okt.. 2021 fmicb-11-01530 July 11, 2020 Time: 15:35 # 1 ORIGINAL RESEARCH published: 14 July 2020 doi: 10.3389/fmicb.2020.01530 Genomic Insights of Cryobacterium Isolated From Ice Core Reveal Genome Dynamics for Adaptation in Glacier Yongqin Liu1,2,3*, Liang Shen1,4, Yonghui Zeng5, Tingting Xing1,3, Baiqing Xu1,2 and Ninglian Wang2,6 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, 2 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China, 3 University of Chinese Academy of Sciences, Beijing, China, 4 College of Life Sciences, Anhui Normal University, Wuhu, China, 5 Department of Environmental Science, Aarhus University, Roskilde, Denmark, 6 College of Urban and Environmental Science, Northwest University, Xi’an, China Glacier is the dominant cold habitat in terrestrial environments, providing a model ecosystem to explore extremophilic strategies and study early lives on Earth. -
These De Doctorat De
2018 - 14 THESE DE DOCTORAT DE AGROCAMPUS OUEST COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 600 Ecole doctorale Ecologie, Géosciences, Agronomie et Alimentation Spécialité : Biochimie, biologie moléculaire et cellulaire Par Fillipe Luiz ROSA DO CARMO La protéine de couche de surface SlpB assure la médiation de l’immunomodulation et de l’adhésion chez le probiotique Propionibacterium freudenreichii CIRM-BIA 129 Thèse présentée et soutenue à AGROCAMPUS OUEST campus de Rennes, le 6 septembre 2018 Unité de recherche : UMR INRA AGROCAMPUS OUEST Science et Technologie du lait et de l’œuf (STLO) Thèse en Cotutelle : Université Fédérale du Minas Gerais Thèse N° : 2018-14 _ B-315 Rapporteurs avant soutenance : Aristóteles Góes Neto Professeur Université fédérale du Minas Gerais, Brésil. Muriel Thomas Directrice de recherche INRA UMR1319 Micalis, Jouy en Josas. Composition du Jury : Président : Françoise Nau Professeur AGROCAMPUS OUEST-Rennes Examinateurs : Nathalie Desmasures Professeur Université de Caen Normandie, Caen Benoit Foligné Université du Droit et de la Santé Lille 2, Lille Dir. de thèse : Gwénaël Jan Directeur de recherche UMR STLO INRA, Rennes Dir. de thèse : Vasco Azevedo Professeur Université fédérale du Minas Gerais, Brésil. Invité(s) Yves Le Loir Directeur de l’UMR STLO INRA, Rennes Gwennola Ermel Professeur Université de Rennes 1,Rennes UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOLOGIA GERAL PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA Tese de Doutorado Papel da proteína de superfície SlpB na imunomodulação e adesão da linhagem probiótica Propionibacterium freudenreichii CIRM-BIA 129. Orientado: Fillipe Luiz Rosa do Carmo Orientadores: Prof./Dr. Vasco Ariston de Carvalho Azevedo Dr. -
Permanent Draft Genome Sequence of the Probiotic Strain Propionibacterium Freudenreichii CIRM-BIA 129 (ITG P20)
Falentin et al. Standards in Genomic Sciences (2016) 11:6 DOI 10.1186/s40793-015-0120-z SHORT GENOME REPORT Open Access Permanent draft genome sequence of the probiotic strain Propionibacterium freudenreichii CIRM-BIA 129 (ITG P20) Hélène Falentin1,2*, Stéphanie-Marie Deutsch1,2, Valentin Loux3, Amal Hammani3, Julien Buratti3, Sandrine Parayre1,2, Victoria Chuat1,2, Valérie Barbe4, Jean-Marc Aury4, Gwenaël Jan1,2 and Yves Le Loir1,2 Abstract Propionibacterium freudenreichii belongs to the class Actinobacteria (Gram positive with a high GC content). This “Generally Recognized As Safe” (GRAS) species is traditionally used as (i) a starter for Swiss-type cheeses where it is responsible for holes and aroma production, (ii) a vitamin B12 and propionic acid producer in white biotechnologies, and (iii) a probiotic for use in humans and animals because of its bifidogenic and anti-inflammatory properties. Until now, only strain CIRM-BIA1T had been sequenced, annotated and become publicly available. Strain CIRM-BIA129 (commercially available as ITG P20) has considerable anti-inflammatory potential. Its gene content was compared to that of CIRM-BIA1 T. This strain contains 2384 genes including 1 ribosomal operon, 45 tRNA and 30 pseudogenes. Keywords: GRAS, QPS, probiotic, anti-inflammatory, immunomodulation, surface proteins Introduction poorly understood. Sequencing CIRM-BIA129 (ITG- Propionibacterium freudenreichii belongs to the class of P20) would enable investigation of the genomic determi- Actinobacteria (Gram positive bacteria with a high GC nants responsible for the important anti-inflammatory content). This ‘Generally Recognized As Safe’ species is properties of this strain. To our knowledge, CIRM- traditionally used as (i) a starter for Swiss-type cheeses BIA129 is the second strain in this species to be se- where it is responsible for holes and aroma production quenced, annotated and made publicly available.