The Reception of the Work of Leonhard Euler (1707-1783)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
The Work of Sophie Germain and Niels Henrik Abel on Fermat's Last
The Work of Sophie Germain and Niels Henrik Abel on Fermat’s Last Theorem Lene-Lise Daniloff Master’s Thesis, Spring 2017 This master’s thesis is submitted under the master’s programme Mathematics, with programme option Mathematics, at the Department of Mathematics, University of Oslo. The scope of the thesis is 60 credits. The front page depicts a section of the root system of the exceptional Lie group E8, projected into the plane. Lie groups were invented by the Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in differential equations and today they play a central role in various parts of mathematics. Abstract In this thesis, we study what can be said about Fermat's Last Theorem using only elementary methods. We will study the work of Sophie Germain and Niels Henrik Abel, both who worked with Fermat's Last Theorem in the early 1800s. Abel claimed to have proven four partial results of Fermat's Last Theorem, but mentioned nothing about how he had proved them. The aim of this thesis is to rediscover these four proofs. We will show that using only elementary methods, we are able to prove parts of Abel's theorems, but we have not found it possible to prove them in full generality. We will see that allowing ourselves to use some non-elementary methods one can prove more of Abel's claims, but still not in full generality. i Acknowledgements First of all I would like to thank my supervisor Arne B. Sletsjøe for suggesting the topic, and guiding me through the process of writing the thesis. -
Sophie Germain, the Princess of Mathematics and Fermat's Last
Sophie Germain, The Princess of Mathematics and Fermat's Last Theorem Hanna Kagele Abstract Sophie Germain (1776-1831) is the first woman known who managed to make great strides in mathematics, especially in number theory, despite her lack of any formal training or instruction. She is best known for one particular theorem that aimed at proving the first case of Fermats Last Theorem. Recent research on some of Germain`s unpublished manuscripts and letters reveals that this particular theorem was only one minor result in her grand plan to prove Fermat`s Last Theorem. This paper focuses on presenting some of Sophie Germains work that has likely lain unread for nearly 200 years. 1. Introduction Sophie Germain has been known for years as the woman who proved Sophie Germain's Theorem and as the first woman who received an award in mathematics. These accomplishments are certainly impressive on their own, especially being raised in a time period where women were discouraged from being educated. However, it has recently been discovered that her work in number theory was far greater than an isolated theorem. In the last 20 years, her letters to mathematicians such as Gauss and Legendre have been analyzed by various researchers and her extensive work on the famous Fermat's Last Theorem has been uncovered. Germain was the first mathematician to ever formulate a cohesive plan for proving Fermat's Last Theorem. She worked tirelessly for years at successfully proving the theorem using her method involving modular arithmetic. In pursuit of this goal, she also proved many other results, including the theorem she is famous for. -
Chapter 4 Finite Difference Gradient Information
Chapter 4 Finite Difference Gradient Information In the masters thesis Thoresson (2003), the feasibility of using gradient- based approximation methods for the optimisation of the spring and damper characteristics of an off-road vehicle, for both ride comfort and handling, was investigated. The Sequential Quadratic Programming (SQP) algorithm and the locally developed Dynamic-Q method were the two successive approximation methods used for the optimisation. The determination of the objective function value is performed using computationally expensive numerical simulations that exhibit severe inherent numerical noise. The use of forward finite differences and central finite differences for the determination of the gradients of the objective function within Dynamic-Q is also investigated. The results of this study, presented here, proved that the use of central finite differencing for gradient information improved the optimisation convergence history, and helped to reduce the difficulties associated with noise in the objective and constraint functions. This chapter presents the feasibility investigation of using gradient-based successive approximation methods to overcome the problems of poor gradient information due to severe numerical noise. The two approximation methods applied here are the locally developed Dynamic-Q optimisation algorithm of Snyman and Hay (2002) and the well known Sequential Quadratic 47 CHAPTER 4. FINITE DIFFERENCE GRADIENT INFORMATION 48 Programming (SQP) algorithm, the MATLAB implementation being used for this research (Mathworks 2000b). This chapter aims to provide the reader with more information regarding the Dynamic-Q successive approximation algorithm, that may be used as an alternative to the more established SQP method. Both algorithms are evaluated for effectiveness and efficiency in determining optimal spring and damper characteristics for both ride comfort and handling of a vehicle. -
Numerical Solution of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Kendall Atkinson, Weimin Han, David Stewart University of Iowa Iowa City, Iowa A JOHN WILEY & SONS, INC., PUBLICATION Copyright c 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. -
Ernst Abbe 1840-1905: a Social Reformer
We all do not belong to ourselves Ernst Abbe 1840-1905: a Social Reformer Fritz Schulze, Canada Linda Nguyen, The Canadian Press, Wednesday, January 2014: TORONTO – By the time you finish your lunch on Thursday, Canada’s top paid CEO will have already earned (my italics!) the equivalent of your annual salary.* It is not unusual these days to read such or similar headlines. Each time I am reminded of the co-founder of the company I worked for all my active life. Those who know me, know that I worked for the world-renowned German optical company Carl Zeiss. I also have a fine collection of optical instruments, predominantly microscopes, among them quite a few Zeiss instruments. Carl Zeiss founded his business as a “mechanical atelier” in Jena in 1846 and his mathematical consultant, Ernst Abbe, a poorly paid lecturer at the University Jena, became his partner in 1866. That was the beginning of a comet-like rise of the young company. Ernst Abbe was born in Eisenach, Thuringia, on January 23, 1840, as the first child of a spinnmaster of a local textile mill.Till the beginning of the 50s each and every day the Lord made my father stood at his machines, 14, 15, 16 hours, from 5 o’clock in the morning till 7 o’clock in the evening during quiet periods, 16 hours from 4 o’clock in the morning till 8 o’clock in the evening during busy times, without any interruption, not even a lunch break. I myself as a small boy of 5 – 9 years brought him his lunch, alternately with my younger sister, and watched him as he gulped it down leaning on his machine or sitting on a wooden box, then handing me back the empty pail and immediately again tending his machines." Ernst Abbe remembered later. -
Year XIX, Supplement Ethnographic Study And/Or a Theoretical Survey of a Their Position in the Article Should Be Clearly Indicated
III. TITLES OF ARTICLES DRU[TVO ANTROPOLOGOV SLOVENIJE The journal of the Slovene Anthropological Society Titles (in English and Slovene) must be short, informa- SLOVENE ANTHROPOLOGICAL SOCIETY Anthropological Notebooks welcomes the submis- tive, and understandable. The title should be followed sion of papers from the field of anthropology and by the name of the author(s), their position, institutional related disciplines. Submissions are considered for affiliation, and if possible, by e-mail address. publication on the understanding that the paper is not currently under consideration for publication IV. ABSTRACT AND KEYWORDS elsewhere. It is the responsibility of the author to The abstract must give concise information about the obtain permission for using any previously published objective, the method used, the results obtained, and material. Please submit your manuscript as an e-mail the conclusions. Authors are asked to enclose in English attachment on [email protected] and enclose your contact information: name, position, and Slovene an abstract of 100 – 200 words followed institutional affiliation, address, phone number, and by three to five keywords. They must reflect the field of e-mail address. research covered in the article. English abstract should be placed at the beginning of an article and the Slovene one after the references at the end. V. NOTES A N T H R O P O L O G I C A L INSTRUCTIONS Notes should also be double-spaced and used sparingly. They must be numbered consecutively throughout the text and assembled at the end of the article just before references. VI. QUOTATIONS Short quotations (less than 30 words) should be placed in single quotation marks with double marks for quotations within quotations. -
Numerical Integration
Chapter 12 Numerical Integration Numerical differentiation methods compute approximations to the derivative of a function from known values of the function. Numerical integration uses the same information to compute numerical approximations to the integral of the function. An important use of both types of methods is estimation of derivatives and integrals for functions that are only known at isolated points, as is the case with for example measurement data. An important difference between differen- tiation and integration is that for most functions it is not possible to determine the integral via symbolic methods, but we can still compute numerical approx- imations to virtually any definite integral. Numerical integration methods are therefore more useful than numerical differentiation methods, and are essential in many practical situations. We use the same general strategy for deriving numerical integration meth- ods as we did for numerical differentiation methods: We find the polynomial that interpolates the function at some suitable points, and use the integral of the polynomial as an approximation to the function. This means that the truncation error can be analysed in basically the same way as for numerical differentiation. However, when it comes to round-off error, integration behaves differently from differentiation: Numerical integration is very insensitive to round-off errors, so we will ignore round-off in our analysis. The mathematical definition of the integral is basically via a numerical in- tegration method, and we therefore start by reviewing this definition. We then derive the simplest numerical integration method, and see how its error can be analysed. We then derive two other methods that are more accurate, but for these we just indicate how the error analysis can be done. -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
Optical Expert Named New Professor for History of Physics at University and Founding Director of German Optical Museum
URL: http://www.uni-jena.de/en/News/PM180618_Mappes_en.pdf Optical Expert Named New Professor for History of Physics at University and Founding Director of German Optical Museum Dr Timo Mappes to assume new role on 1 July 2018 / jointly appointed by University of Jena and German Optical Museum Dr Timo Mappes has been appointed Professor for the History of Physics with a focus on scientific communication at the Friedrich Schiller University Jena (Germany). He will also be the founding Director of the new German Optical Museum in Jena. Mappes will assume his new duties on 1 July 2018. Scientist, manager and scientific communicator "The highly complex job profile for this professorship meant the search committee faced a difficult task. We were very fortunate to find an applicant with so many of the necessary qualifications," says Prof. Dr Gerhard G. Paulus, Chairman of the search committee, adding: "If the committee had been asked to create its ideal candidate, it would have produced someone that resembled Dr Mappes." Mappes has a strong background in science and the industrial research and development of optical applications, and over the last twenty years has become very well-respected in the documentation and history of microscope construction from 1800 onwards. Last but not least, he has management skills and experience in sharing his knowledge with the general public, and with students in particular. All of this will be very beneficial for the German Optical Museum. The new concept and the extensive renovation of the traditional Optical Museum in Jena will make way for the new German Optical Museum, a research museum and forum for showcasing the history of optics and photonics. -
The Original Euler's Calculus-Of-Variations Method: Key
Submitted to EJP 1 Jozef Hanc, [email protected] The original Euler’s calculus-of-variations method: Key to Lagrangian mechanics for beginners Jozef Hanca) Technical University, Vysokoskolska 4, 042 00 Kosice, Slovakia Leonhard Euler's original version of the calculus of variations (1744) used elementary mathematics and was intuitive, geometric, and easily visualized. In 1755 Euler (1707-1783) abandoned his version and adopted instead the more rigorous and formal algebraic method of Lagrange. Lagrange’s elegant technique of variations not only bypassed the need for Euler’s intuitive use of a limit-taking process leading to the Euler-Lagrange equation but also eliminated Euler’s geometrical insight. More recently Euler's method has been resurrected, shown to be rigorous, and applied as one of the direct variational methods important in analysis and in computer solutions of physical processes. In our classrooms, however, the study of advanced mechanics is still dominated by Lagrange's analytic method, which students often apply uncritically using "variational recipes" because they have difficulty understanding it intuitively. The present paper describes an adaptation of Euler's method that restores intuition and geometric visualization. This adaptation can be used as an introductory variational treatment in almost all of undergraduate physics and is especially powerful in modern physics. Finally, we present Euler's method as a natural introduction to computer-executed numerical analysis of boundary value problems and the finite element method. I. INTRODUCTION In his pioneering 1744 work The method of finding plane curves that show some property of maximum and minimum,1 Leonhard Euler introduced a general mathematical procedure or method for the systematic investigation of variational problems. -
February 2009
How Euler Did It by Ed Sandifer Estimating π February 2009 On Friday, June 7, 1779, Leonhard Euler sent a paper [E705] to the regular twice-weekly meeting of the St. Petersburg Academy. Euler, blind and disillusioned with the corruption of Domaschneff, the President of the Academy, seldom attended the meetings himself, so he sent one of his assistants, Nicolas Fuss, to read the paper to the ten members of the Academy who attended the meeting. The paper bore the cumbersome title "Investigatio quarundam serierum quae ad rationem peripheriae circuli ad diametrum vero proxime definiendam maxime sunt accommodatae" (Investigation of certain series which are designed to approximate the true ratio of the circumference of a circle to its diameter very closely." Up to this point, Euler had shown relatively little interest in the value of π, though he had standardized its notation, using the symbol π to denote the ratio of a circumference to a diameter consistently since 1736, and he found π in a great many places outside circles. In a paper he wrote in 1737, [E74] Euler surveyed the history of calculating the value of π. He mentioned Archimedes, Machin, de Lagny, Leibniz and Sharp. The main result in E74 was to discover a number of arctangent identities along the lines of ! 1 1 1 = 4 arctan " arctan + arctan 4 5 70 99 and to propose using the Taylor series expansion for the arctangent function, which converges fairly rapidly for small values, to approximate π. Euler also spent some time in that paper finding ways to approximate the logarithms of trigonometric functions, important at the time in navigation tables.