Irukandji Factsheet

Total Page:16

File Type:pdf, Size:1020Kb

Irukandji Factsheet SURF LIFE SAVING AUSTRALIA MARINE STINGERS – IRUKANDJI Carukia barnesi DISTRIBUTION Tropical Australian waters north of southern Fraser Island (Queensland), Northern Territory waters and Western Australia south to Exmouth. COMMON NAME Irukandji Carukia barnesi SIZE AND APPEARANCE Small transparent box jellyfish, 1-2cm in diameter, usually not seen. Some may be up to 10cm long. FIRST AID Irukandji jellyfish cause an initial minor skin sting followed 5-40 minutes later by severe generalised muscular pain, headache, vomiting and sweating. The sting from some species can cause very high blood pressure Distribution in Australian waters or have effects on the heart which may be life threatening. These symptoms are sometimes referred to as Irukandji Syndrome. Because the symptoms of Irukandji Syndrome may take time to appear, all tropical jellyfish stings should be doused with vinegar. The casualty should remain out of the water, in a safe location and monitored for 45 minutes. 1. Remove casualty from water if safe to do so 2. DRSABCD Irukandji sting showing localised sweating 3. Call for help - dial triple zero (000) for an ambulance 4. Treat the sting - douse the area liberally with vinegar for at least 30 seconds 5. Monitor the casualty and seek lifesaver/lifeguard assistance if available DID YOU KNOW? The Carukia barnesi is a type of box jellyfish and is the most common species associated with the Irukandji syndrome. Irukandji jellyfish also include Carukia shinju, Carybdea xaymacana, Malo maxima, Malo kingi, Alatina Size relative to human mordens, Gerongia rifkinae, and Morbakka fenneri. Irukandji stings are occasionally reported in subtropical and temperate regions of the world, including Moreton Bay and Fraser Island. Irukandji jellyfish are a subset of the carybdeid jellyfish. SURF LIFE SAVING AUSTRALIA 34 COASTAL SAFETY FACT SHEETS For beach safety information visit: beachsafe.org.au.
Recommended publications
  • Marine Envenomations
    Environmental Marine envenomations Ingrid Berling Geoffrey Isbister Background The majority of marine envenomings are minor and do Marine stings are common but most are minor and do not not require medical intervention. Jellyfish stings are a require medical intervention. Severe and systemic marine frequent reason for presentation to first aid and primary envenoming is uncommon, but includes box jellyfish stings, healthcare providers. A knowledge of the variety of stings Irukandji syndrome, major stingray trauma and blue-ringed and envenoming syndromes that occur in Australia, octopus envenoming. Almost all marine injuries are caused including those that are clinically significant, and available by jellyfish stings, and penetrating injuries from spiny fish, treatments, is necessary for practitioners, particularly those stingrays or sea urchins. working in coastal regions. Objective This article describes the presentation and management Marine envenoming can be considered in two broad categories: of marine envenomations and injuries that may occur in jellyfish stings and penetrating venomous marine injuries. Jellyfish Australia. stings range from the life-threatening major box jellyfish (Chironex Discussion fleckeri) to painful, but generally benign, bluebottle stings common First aid for jellyfish includes tentacle removal, application to most southeastern Australian beaches (Figure 1). Penetrating of vinegar for box jellyfish, and hot water immersion (45°C venomous marine injuries often occur when handling fish, but can for 20 min) for bluebottle jellyfish stings. Basic life support occur to anyone involved in water activities, fresh water or marine. is essential for severe marine envenomings that result in They are typically more painful than just the trauma of the wound, and cardiac collapse or paralysis.
    [Show full text]
  • Successful Use of Heat As First Aid for Tropical Australian Jellyfish Stings
    Toxicon 122 (2016) 142e144 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Case report Successful use of heat as first aid for tropical Australian jellyfish stings * Mark Little a, b, , Richard Fitzpatrick d, Jamie Seymour c a FACEM MPH &TM DTM & H Department of Emergency Medicine, Cairns Hospital, Cairns, Australia b Queensland Tropical Health Alliance School of Public Health and Tropical Medicine, James Cook University, Australia c Queensland Tropical Health Alliance, School of Public Health and Tropical Medicine, Centre for Biodiscovery & Molecular Development of Therapeutics, Queensland Emergency Medical Research Foundation, Faculty of Medicine, Health & Molecular Sciences, James Cook University, Cairns Campus, Mcgregor Road, 4878, Cairns, Australia d Queensland Tropical Health Alliance, James Cook University, Cairns Campus, Mcgregor Road, 4878, Cairns, Australia article info abstract Article history: Currently the Australian Resuscitation Council (ARC) recommends dousing with vinegar followed by ice Received 24 June 2016 as first aid for jellyfish stings in tropical Australia, with limited evidence to support this recommendation Received in revised form (Li et al., 2013). We report our successful experience in using hot water immersion as first aid in treating 29 September 2016 two people stung by venomous tropical Australian jellyfish, one by Chironex fleckeri and one by Carukia Accepted 4 October 2016 barnesi. Available online 6 October 2016 © 2016 Elsevier Ltd. All rights reserved. Keywords: Jellyfish First aid Hot water Cubozoan Chironex fleckeri Carukia barnesi 1. Clinical record The jellyfish, wrapped around the victims arm, was captured and later identified as Carukia barnesi. A 35 yo M cinematographer was filming documentary on Iru- A 40yo M biologist was at Palm Cove collecting Box jellyfish kandji jellyfish at Palm Cove, Queensland.
    [Show full text]
  • Awareness, Prevention and Treatment of World-Wide Marine Stings and Bites
    Awareness, Prevention and Treatment of world-wide marine stings and bites Dr Peter Fenner Honorary Medical Officer, Surf Life Saving Australia International Life Saving Federation Medical/Rescue Conference Proceedings September 1997 Abstract The most common world-wide first aid treatment used by the average lifesaver/lifeguard is the treatment of marine envenomation, especially the treatment of jellyfish stings. It is important to use the correct first aid treatment for each type of envenomation. This study provides a simplified protocol for: - 1. Awareness of the geographical distribution and possibilities of envenomation enabling: - 2. Preventative strategies to reduce morbidity and mortality from marine envenomation 3. First aid treatment of marine envenomation by jellyfish or other marine animals This discussion is based on protocols developed for Surf Life Saving Australia and other first aid providers in Australia over the past ten years. Their success has been proven by a 30% reduction in the number of stings over the past 10 years (statistics from the author’s records). Information for this article has been taken from: - 1. Venomous and poisonous marine animals: a medical and biological handbook produced by Surf Life Saving Queensland 2. The global problem of cnidarian stinging. MD Thesis by the author for the University of London. Introduction The global problem of marine envenomation is not fully appreciated. Each year hundreds of deaths occur from poisoning (by ingestion or eating) or by envenomation (stinging by jellyfish, or biting by venomous marine animals). The morbidity is even greater with jellyfish stings world-wide being numbered in their millions. Each summer it is estimated that up to half a million stings occur on the east coast of the United States from the Portuguese man-o’-war (Physalia physalis).
    [Show full text]
  • Etiology of Irukandji Syndrome with Particular Focus on the Venom Ecology and Life History of One Medically Significant Carybdeid Box Jellyfish Alatina Moseri
    ResearchOnline@JCU This file is part of the following reference: Carrette, Teresa Jo (2014) Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/40748/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/40748/ Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri Thesis submitted by Teresa Jo Carrette BSc MSc December 2014 For the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the College of Marine and Environmental Sciences James Cook University Dedication: “The sea, once it casts its spell, holds one in its net of wonder forever.” Jacques Yves Cousteau To my family – and my ocean home ii Acknowledgements Firstly, I have to acknowledge my primary supervisor Associate Professor Jamie Seymour. We have spent the last 17 years in a variable state of fatigue, blind enthusiasm, inspiration, reluctance, pain-killer driven delusion, hope and misery. I have you to blame/thank for it all. Just when I think all hope is lost and am about to throw it all in you seem to step in with the words of wisdom that I need.
    [Show full text]
  • Marine Stingers Factsheet
    Marine Stingers Frequently Asked Questions What are Irukandji? Irukandji is a group of jellyfish which are known to cause symptoms of a potentially dangerous syndrome called Irukandji Syndrome. There are currently 14 known species of Irukandji, however only a few of these species have the potential to occur in the waters around the Whitsundays. Irukandji can occur coastally and around the reef and islands. What is Irukandji Syndrome? Irukandji Syndrome is a syndrome which can affect people who have been stung by an Irukandji jellyfish. While the Irukandji sting itself can be relatively mild, the symptoms of the Irukandji Syndrome, in very rare cases, can be life-threatening. Symptoms of Irukandji Syndrome can take 5 to 45 (typically 20-30) minutes to develop after being stung. Some symptoms include: • Lower backache, overall body pain and muscular cramps. The pain from this can be severe. • Nausea/vomiting • Chest pain and difficulty breathing • Pins and needles • Anxiety and a feeling of “impending doom” • Headache, usually severe • Increased respiratory rate • Piloerection (hair standing on end) • High blood pressure which can lead to stroke or heart failure • A sting is rarely evident – usually just a pale red mark with goose pimples or sweating. Are Irukandji only prevalent in Australia? No. Species of Irukandji occur in South East Asia, the Caribbean, Hawaii, South Africa and even the United Kingdom. Australia is leading the study of these creatures, which is probably the reason why the jellyfish may be wrongly associated with occurring only in Australia. What are Box Jellyfish? While globally the term ‘Box Jellyfish’ is the general term given to any jellyfish which has a bell (head) shaped like a box, in Australia, the name always refers to a particular species of jellyfish called Chironex fleckeri.
    [Show full text]
  • 'Irukandji' Jellyfish: Carukia Barnesi
    ResearchOnline@JCU This file is part of the following reference: Courtney, Robert (2016) Life cycle, prey capture ecology, and physiological tolerances of Medusae and polyps of the 'Irukandji' jellyfish: Carukia barnesi. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/49935/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/49935/ Life Cycle, Prey Capture Ecology, and Physiological Tolerances of Medusae and Polyps of the ‘Irukandji’ Jellyfish: Carukia barnesi Thesis Submitted by: Robert Courtney BSc (Hons 1A) November 11, 2016 For the Degree of: Doctor of Philosophy College of Public Health, Medical and Veterinary Sciences James Cook University Supervisors: Principle Supervisor: Associate Professor Jamie Seymour, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns [email protected] Co-Supervisor: Emeritus Professor Rhondda Jones, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville [email protected] Co-Supervisor: Dr Nik Sachlikidis, NGSAquatic, [email protected] Thesis Dedication: I would like to dedicate this thesis to The Lions Foundation of Australia, for their continual financial support dedicated to stinger research, and to Dr. Jack Barnes, for his pioneering work in the field of Irukandji research. i Statement of the Contribution of Others: Robert Courtney is the primary author of this Thesis and was extensively involved in all aspects of this work under the supervision of: Associate Professor Jamie Seymour; Emeritus Professor Rhondda Jones; and Dr Nik Sachlikidis.
    [Show full text]
  • Critical Evaluation of Characters for Species Identification in The
    Plankton Benthos Res 9(2): 83–98, 2014 Plankton & Benthos Research © The Plankton Society of Japan Critical evaluation of characters for species identification in the cubomedusa genus Malo (Cnidaria, Cubozoa, Carybdeida, Carukiidae) ILKA STRAEHLER-POHL Zoologisches Institut und Zoologisches Museum, Biozentrum Grindel, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany Received 27 November 2013; Accepted 8 January 2014 Abstract: Medusae of an undetermined species of the carukiid genus Malo were sampled for life cycle research at Port Douglas Marina, Port Douglas, Australia, in 2011. Due to confusing character variations within the specimens, identification to species level initially seemed impossible. To resolve their identity, the type material of Malo maxima Gershwin, 2005 and M. kingi Gershwin, 2007 were examined. Comparisons were made of the two, and also with the unknown species. Unexpectedly, no significant differences were found between M. maxima and M. kingi. Moreover, all character variations in them were observed as well in the unknown species. Accordingly, M. maxima from West- ern Australia and M. kingi from Queensland are considered to represent populations of the same species. Characters considered both reliable and unreliable for species determination in the genus are discussed, and an emended diagno- sis of Malo is proposed. The earlier name M. maxima is proposed for both populations and for the specimens from Port Douglas. Key words: Malo kingi, Malo maxima, medusa, morphology, taxonomy kingi Gershwin, 2007, yet some of the specimens showed Introduction characters used to define the species Malo maxima Gersh- Specimens of an unidentified cubozoan species were win, 2005 from Western Australia. Moreover, all speci- collected in April 2011 at a marina in Port Douglas (Aus- mens bore six eyes per rhopalium rather than two, as de- tralia).
    [Show full text]
  • A Clinician's Guide to Australian Venomous Bites and Stings
    Incorporating the updated CSL Antivenom Handbook Bites and Stings Australian Venomous Guide to A Clinician’s A Clinician’s Guide to DC-3234 Australian Venomous Bites and Stings Incorporating the updated CSL Antivenom Handbook Associate Professor Julian White Associate Professor Principal author Principal author Principal author Associate Professor Julian White The opinions expressed are not necessarily those of bioCSL Pty Ltd. Before administering or prescribing any prescription product mentioned in this publication please refer to the relevant Product Information. Product Information leafl ets for bioCSL’s antivenoms are available at www.biocsl.com.au/PI. This handbook is not for sale. Date of preparation: February 2013. National Library of Australia Cataloguing-in-Publication entry. Author: White, Julian. Title: A clinician’s guide to Australian venomous bites and stings: incorporating the updated CSL antivenom handbook / Professor Julian White. ISBN: 9780646579986 (pbk.) Subjects: Bites and stings – Australia. Antivenins. Bites and stings – Treatment – Australia. Other Authors/ Contributors: CSL Limited (Australia). Dewey Number: 615.942 Medical writing and project management services for this handbook provided by Dr Nalini Swaminathan, Nalini Ink Pty Ltd; +61 416 560 258; [email protected]. Design by Spaghetti Arts; +61 410 357 140; [email protected]. © Copyright 2013 bioCSL Pty Ltd, ABN 26 160 735 035; 63 Poplar Road, Parkville, Victoria 3052 Australia. bioCSL is a trademark of CSL Limited. bioCSL understands that clinicians may need to reproduce forms and fl owcharts in this handbook for the clinical management of cases of envenoming and permits such reproduction for these purposes. However, except for the purpose of clinical management of cases of envenoming from bites/stings from Australian venomous fauna, no part of this publication may be reproduced by any process in any language without the prior written consent of bioCSL Pty Ltd.
    [Show full text]
  • Seq Transcriptomics of the Cubozoan Alatina Alata, an Emerging Model Cnidarian
    ABSTRACT Title of Dissertation: TAXONOMY, MORPHOLOGY, AND RNA- SEQ TRANSCRIPTOMICS OF THE CUBOZOAN ALATINA ALATA, AN EMERGING MODEL CNIDARIAN Cheryl L Ames, Doctor of Philosophy 2016 Dissertation directed by: Associate Professor Alexandra E. Bely, Biology Department Adjunct Professor Allen G. Collins, Biological Sciences Graduate Program Cnidarians are often considered simple animals, but the more than 13,000 estimated species (e.g., corals, hydroids and jellyfish) of the early diverging phylum exhibit a broad diversity of forms, functions and behaviors, some of which are demonstrably complex. In particular, cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Some cubozoan species possess complex mating behaviors or particularly potent stings, and all possess well- developed light sensation involving image-forming eyes. Like all cnidarians, cubozoans have specialized subcellular structures called nematocysts that are used in prey capture and defense. The objective of this study is to contribute to the development of the box jellyfish Alatina alata as a model cnidarian. This cubozoan species offers numerous advantages for investigating morphological and molecular traits underlying complex processes and coordinated behavior in free-living medusozoans (i.e., jellyfish), and more broadly throughout Metazoa. First, I provide an overview of Cnidaria with an emphasis on the current understanding of genes and proteins implicated in complex biological processes in a few select cnidarians. Second, to further develop resources for A. alata, I provide a formal redescription of this cubozoan and establish a neotype specimen voucher, which serve to stabilize the taxonomy of the species. Third, I generate the first functionally annotated transcriptome of adult and larval A.
    [Show full text]
  • Nathalia Mejía Sánchez
    NATHALIA MEJÍA SÁNCHEZ Estudo Filogeográfico de Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) na Costa Brasileira Phylogeographic study of Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) in the Brazilian Coast São Paulo 2011 NATHALIA MEJÍA SÁNCHEZ Estudo Filogeográfico de Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) na Costa Brasileira Phylogeographic study of Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) in the Brazilian Coast Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências, na Área de Zoologia. Orientador: Antonio Carlos Marques São Paulo 2011 Mejía - Sánchez, Nathalia Estudo Filogeográfico de Chiropsalmus cf. quadrumanus (Cnidaria: Cubozoa) na Costa Brasileira. 64 p. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Chiropsalmus cf. quadrumanus 2. Cubozoa 3. Filogeografia 4. Especiação críptica. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora: ________________________ _______________________ Prof(a). Dr(a). Prof(a). Dr(a). _______________________ Prof. Dr. Antonio Carlos Marques A mi familia, por apoyarme y comprenderme con cariño. A Juli, por su amor incondicional y estar siempre presente. “Los buenos días te dan felicidad, los malos días te dan experiencia y ambos son esenciales para la vida… La felicidad te mantiene dulce, los intentos te mantienen fuerte. Las penas te mantienen humano, las caídas te mantienen humilde. Y el éxito… el éxito te mantiene brillante…” Anónimo (fragmentos de uma mensagem enviada por meus pais, 17 de Setembro de 2010) Agradecimentos Ao professor Antonio Carlos Marques (Tim) pela oportunidade, confiança para realizar meu projeto e pelas inumeráveis revisões e correções sempre adequadas para a produção deste trabalho.
    [Show full text]
  • Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa)
    GBE Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa) Anna M. L. Klompen 1,*EhsanKayal 2,3 Allen G. Collins 2,4 andPaulynCartwright 1 1 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA Downloaded from https://academic.oup.com/gbe/article/13/6/evab081/6248095 by guest on 28 September 2021 2Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA 3Sorbonne Universite, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France 4National Systematics Laboratory of NOAA’s Fisheries Service, Silver Spring, Maryland, USA *Corresponding author: E-mail: [email protected] Accepted: 19 April 2021 Abstract Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore- forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs.
    [Show full text]
  • An Emerging Model for Studying Venom, Vision and Sex Cheryl Lewis Ames1,2*, Joseph F
    Lewis Ames et al. BMC Genomics (2016) 17:650 DOI 10.1186/s12864-016-2944-3 RESEARCH ARTICLE Open Access A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata: an emerging model for studying venom, vision and sex Cheryl Lewis Ames1,2*, Joseph F. Ryan3,4, Alexandra E. Bely5, Paulyn Cartwright6 and Allen G. Collins1,7 Abstract Background: Cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Many cubozoans have a particularly potent sting, effected by stinging structures called nematocysts; cubozoans have well-developed light sensation, possessing both image-forming lens eyes and light-sensitive eye spots; and some cubozoans have complex mating behaviors, including aggregations, copulation and internal fertilization. The cubozoan Alatina alata is emerging as a cnidarian model because it forms predictable monthly nearshore breeding aggregations in tropical to subtropical waters worldwide, making both adult and larval material reliably accessible. To develop resources for A. alata, this study generated a functionally annotated transcriptome of adult and larval tissue, applying preliminary differential expression analyses to identify candidate genes involved in nematogenesis and venom production, vision and extraocular sensory perception, and sexual reproduction, which for brevity we refer to as “venom”, “vision” and “sex”. Results: We assembled a transcriptome de novo from RNA-Seq data pooled from multiple body parts (gastric cirri, ovaries, tentacle (with pedalium base) and rhopalium) of an adult female A. alata medusa and larval planulae. Our transcriptome comprises ~32 K transcripts, after filtering, and provides a basis for analyzing patterns of gene expression in adult and larval box jellyfish tissues.
    [Show full text]