Infection of Potato Plants with Potato Leafroll Virus Changes Attraction and Feeding Behaviour of Myzus Persicae A

Total Page:16

File Type:pdf, Size:1020Kb

Infection of Potato Plants with Potato Leafroll Virus Changes Attraction and Feeding Behaviour of Myzus Persicae A DOI: 10.1111/j.1570-7458.2007.00607.x Blackwell Publishing Ltd Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae A. E. Alvarez1,2, E. Garzo1,3, M. Verbeek2, B. Vosman2, M. Dicke1 & W. F. Tjallingii1* 1Wageningen University, Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands, 2Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands, and 3Centro de Ciencias Medioambientales, CSIC, Departamento de Protección Vegetal, Serrano 115 dpdo, 28006 Madrid, Spain Accepted: 29 May 2007 Key words: Solanaceae, Solanum tuberosum, Homoptera, Aphididae, green peach aphid, plant odours, plant viruses, EPG, probing, PLRV Abstract Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV-infection of potato plants affected aphid behaviour. We found that M. persicae’s ability to differentiate headspace volatiles emitted from PLRV-infected and non-infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV-infected and non-infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV-infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV-infected and non-infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV-infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed. such a way that interactions between host and vector are Introduction influenced. Vector activity and behaviour are important Potato leafroll virus (PLRV) (genus Polerovirus, family determinants of the rate and extent of epidemic virus Luteoviridae) is a persistently transmitted circulative virus development (Jeger et al., 1998, 2004). Changes in the that depends on aphids for dispersal and transmission to attraction between the aphid vector and the infected plant host plants. Potato leafroll virus is restricted to the phloem. and changes in the benefits obtained by the aphid from this Aphids acquire PLRV during ingestion of phloem sap from relationship will certainly influence the probability of virus infected plants and they inoculate it into new plants during dispersal. salivation into the phloem sieve elements. The green peach In some plant–virus–aphid interactions, the presence of aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae), viruses negatively affects the performance of the vector. On is the most efficient vector of PLRV. In this triangular wheat, the presence of barley yellow dwarf virus (BYDV) relationship, direct interactions occur between virus, host, reduces the concentration of total amino acids in the and vector. Moreover, virus infections can change hosts in phloem. BYDV-infection also leads to a less efficient use of phloem sap by the aphid Sitobion avenae (F.) (Fiebig et al., 2004). A. E. Alvarez and E. Garzo contributed equally to this article. *Correspondence: W. F. Tjallingii, Wageningen University, Benefits for the vector that favour the transmission of Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, viruses have been described for various plant–pathogen– The Netherlands. E-mail: [email protected] vector combinations. Belliure et al. (2005) showed that © 2007 The Authors Entomologia Experimentalis et Applicata 125: 135–144, 2007 Journal compilation © 2007 The Netherlands Entomological Society 135 136 Alvarez et al. Frankliniella occidentalis (Pergande) benefits indirectly from EPG waveforms have been correlated with aphid activities the tomato spotted wilt virus, which it transmits, through as well as with tissue locations of the stylet tips (Tjallingii, effects of the virus on host-plant characteristics. They hypo- 1978; Kimmins & Tjallingii, 1986; Tjallingii & Hogen thesized that infection with the virus has a negative effect on Esch, 1993). Strategies for controlling plant viruses depend induced defences against the thrips vector. Aphis gossypii highly on the understanding of the virus–plant–vector Glover transmits zucchini yellow mosaic virus (ZYMV) interactions. The partial plant resistance present in potato to Cucurbita pepo L. and it lives longer and produces more cultivar Kardal slows down aphid population growth on offspring than on non-infected plants (Blua et al., 1994). young plants and, consequently, limits acquisition and In contrast to the negative effects mentioned above (Fiebig dissemination of PLRV. The resistance to aphids in Kardal et al., 2004), BYDV has been reported to benefit its vector is phloem located and occurs in young apical leaves, it S. avenae (F.) by disrupting the development of a braconid declines in mature and senescent leaves (Alvarez et al., parasitoid within the aphid vector (Christiansen-Weniger 2006). Here, we investigated whether infection with PLRV et al., 1998). BYDV-infection of wheat plants increases the changed the host plant to the advantage of the aphid attractiveness to the aphid Rhopalosiphum padi (L.) as a through improving probing and feeding behaviour in result of producing more volatiles than non-infected plants young apical leaves of cv. Kardal. We were especially (Jiménez-Martínez et al., 2004). interested in changes regarding vector attraction. Castle & Berger (1993) found that M. persicae performance Our specific aim was to study (i) the effects of PLRV- improves in terms of growth rate, reproduction, and longevity infection of potato plants on vector attraction by using an on cultivated Solanum tuberosum L. (Solanaceae) plants olfactometer assay for apical and mature leaves, and (ii) the when infected by PLRV (vector-borne virus) as compared impact of PLRV-infection on plant resistance, as expressed to virus-free potato plants, plants infected by potato virus by feeding behaviour, by using the EPG technique. We Y (PVY, stylet-borne virus that can be briefly associated to hypothesized that the better performance of M. persicae aphids but also mechanically transmitted), or potato virus previously found on PLRV-infected potatoes plants was X (PVX, vector-independent mechanically transmitted due to structural or chemical changes in plant tissues that virus). It was also found that more M. persicae individuals enhanced probing and feeding behaviour. settled on PLRV-infected leaves of S. tuberosum L. than on leaves of virus-free, PVY-infected, or PVX-infected leaves Materials and methods (Castle et al., 1998). Eigenbrode et al. (2002) reported that M. persicae preferred PLRV-infected to either non- Plants and aphids infected potato plants, PVY-infected plants, or PVX-infected Virus-free potato plants (S. tuberosum L. cv. Kardal) were plants. They found an increased emission of several volatiles propagated in vitro (Alvarez et al., 2006). After 2 weeks, by PLRV-infected plants when compared to non-infected the rooted plantlets were transferred to soil in a glasshouse plants. These volatiles may act as attractants and arrestants at 22 ± 2 °C, about 70% r.h., and an L16:D8 photoperiod. of M. persicae. Srinivasan et al. (2006) found that the A new colony of M. persicae was established on radish preference of M. persicae for PLRV-infected Solanum Raphanus sativus L. starting with a single virginoparous spp. plants over non-infected plants relies primarily on apterous aphid from a colony maintained at the Laboratory olfactory cues rather than on visual cues. The role of plant of Entomology, Wageningen University, Wageningen, The volatiles in host recognition and settling behaviour by aphids Netherlands. The colony was reared in a climate chamber has been reviewed by Pickett et al. (1992). Vargas et al. at 22 ± 2 °C, 30–40% r.h., and an L16:D8 photoperiod. (2005) have recently shown that alate virginoparae of the tobacco-adapted subspecies Myzus persicae nicotianae Virus infection recognized and chose their host plant more efficiently One week after transfer to soil, nine potato plants were than the generalist Myzus persicae s.s., on the basis of exposed to 15 viruliferous M. persicae nymphs during 96 h olfactory and visual cues and factors present at cuticular (treatment) and nine potato plants were exposed to 15 and subcuticular levels. virus-free nymphs during the same time (control). After In addition to olfactory cues, aphids must insert their 96 h, aphids and nymphs were gently removed with a brush. mouthparts into plant tissues (probing) in order to select Three Physalis floridana Rybd. plants, very susceptible to a suitable host and find the phloem. Therefore, knowledge M. persicae and PLRV, were also exposed to 15 viruliferous of mechanical or biochemical cues in host plants during nymphs during 96 h as a positive control. Viruliferous probing by aphids is crucial. The electrical penetration aphids had been obtained by placing apterous adult aphids
Recommended publications
  • Breeding Virus Resistant Potatoes (Solanum Tuberosum): a Review of Traditional and Molecular Approaches
    Heredity 86 (2001) 17±35 Received 22 December 1999, accepted 20 September 2000 Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches RUTH M. SOLOMON-BLACKBURN* & HUGH BARKER Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K. Tetraploid cultivated potato (Solanum tuberosum) is the World's fourth most important crop and has been subjected to much breeding eort, including the incorporation of resistance to viruses. Several new approaches, ideas and technologies have emerged recently that could aect the future direction of virus resistance breeding. Thus, there are new opportunities to harness molecular techniques in the form of linked molecular markers to speed up and simplify selection of host resistance genes. The practical application of pathogen-derived transgenic resistance has arrived with the ®rst release of GM potatoes engineered for virus resistance in the USA. Recently, a cloned host virus resistance gene from potato has been shown to be eective when inserted into a potato cultivar lacking the gene. These and other developments oer great opportunities for improving virus resistance, and it is timely to consider these advances and consider the future direction of resistance breeding in potato. We review the sources of available resistance, conventional breeding methods, marker-assisted selection, somaclonal variation, pathogen-derived and other transgenic resistance, and transformation with cloned host genes. The relative merits of the dierent methods are discussed, and the likely direction of future developments is considered. Keywords: breeding, host gene, potato virus, resistance, review, transgenic. The viruses whether the infection is primary (current season infec- tion) or secondary (tuber-borne).
    [Show full text]
  • Evidence for Lysine Acetylation in the Coat Protein of a Polerovirus
    Journal of General Virology (2014), 95, 2321–2327 DOI 10.1099/vir.0.066514-0 Short Evidence for lysine acetylation in the coat protein of Communication a polerovirus Michelle Cilia,1,2,3 Richard Johnson,4 Michelle Sweeney,3 Stacy L. DeBlasio,1,3 James E. Bruce,4 Michael J. MacCoss4 and Stewart M. Gray1,2 Correspondence 1USDA-Agricultural Research Service, Ithaca, NY 14853, USA Michelle Cilia 2Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, [email protected] NY 14853, USA 3Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA 4Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. Received 4 April 2014 We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers Accepted 13 June 2014 to stabilize the capsid by promoting intermonomer salt bridge formation. Potato leafroll virus (PLRV) and the barley/cereal/maize encapsidation of one species’ RNA in the virion of another yellow dwarf viruses, members of the Luteoviridae and species. Such manipulation can result in an expansion of referred to hereafter as luteovirids, are globally important potential aphid species that can transmit the virus.
    [Show full text]
  • The Role of F-Box Proteins During Viral Infection
    Int. J. Mol. Sci. 2013, 14, 4030-4049; doi:10.3390/ijms14024030 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Role of F-Box Proteins during Viral Infection Régis Lopes Correa 1, Fernanda Prieto Bruckner 2, Renan de Souza Cascardo 1,2 and Poliane Alfenas-Zerbini 2,* 1 Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: [email protected] (R.L.C.); [email protected] (R.S.C.) 2 Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864. Received: 23 October 2012; in revised form: 14 December 2012 / Accepted: 17 January 2013 / Published: 18 February 2013 Abstract: The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions.
    [Show full text]
  • Mosquito-Borne Viruses and Suppressors of Invertebrate Antiviral RNA Silencing
    Viruses 2014, 6, 4314-4331; doi:10.3390/v6114314 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Mosquito-Borne Viruses and Suppressors of Invertebrate Antiviral RNA Silencing Scott T. O’Neal, Glady Hazitha Samuel, Zach N. Adelman and Kevin M. Myles * Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA; E-Mails: [email protected] (S.T.O.); [email protected] (G.H.S.); [email protected] (Z.N.A.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-540-231-6158. External Editor: Rollie Clem Received: 19 September 2014; in revised form: 28 October 2014 / Accepted: 31 October 2014 / Published: 11 November 2014 Abstract: The natural maintenance cycles of many mosquito-borne viruses require establishment of persistent non-lethal infections in the invertebrate host. While the mechanisms by which this occurs are not well understood, antiviral responses directed by small RNAs are important in modulating the pathogenesis of viral infections in disease vector mosquitoes. In yet another example of an evolutionary arms race between host and pathogen, some plant and insect viruses have evolved to encode suppressors of RNA silencing (VSRs). Whether or not mosquito-borne viral pathogens encode VSRs has been the subject of debate. While at first there would seem to be little evolutionary benefit to mosquito-borne viruses encoding proteins or sequences that strongly interfere with RNA silencing, we present here a model explaining how the expression of VSRs by these viruses in the vector might be compatible with the establishment of persistence.
    [Show full text]
  • Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases
    viruses Review Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases Krin S. Mann † and Hélène Sanfaçon ,* Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-250-494-6393 † Current Address: University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada. Received: 21 December 2018; Accepted: 12 January 2019; Published: 15 January 2019 Abstract: Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses. Keywords: proteolytic processing; viral proteases; protease specificity; protease structure; virus evolution 1. Introduction Eukaryotic RNA viruses have a long evolution history, which is driven by their necessary adaptation to their hosts [1].
    [Show full text]
  • Pod Pepper Vein Yellows Virus, a New Recombinant Polerovirus Infecting
    Zhao et al. Virol J (2021) 18:42 https://doi.org/10.1186/s12985-021-01511-5 SHORT REPORT Open Access Pod pepper vein yellows virus, a new recombinant polerovirus infecting Capsicum frutescens in Yunnan province, China Kuangjie Zhao1†, Yueyan Yin2,3†, Mengying Hua1, Shaoxiang Wang4, Xiaohan Mo5, Enping Yuan4, Hongying Zheng1, Lin Lin1, Hairu Chen3, Yuwen Lu1, Jianping Chen1, Jiejun Peng1* and Fei Yan1* Abstract Pepper vein yellows viruses (PeVYV) are phloem-restricted viruses in the genus Polerovirus, family Luteoviridae. Typical viral symptoms of PeVYV including interveinal yellowing of leaves and upward leaf curling were observed in pod pep- per plants (Capsicum frutescens) growing in Wenshan city, Yunnan province, China. The complete genome sequence of a virus from a sample of these plants was determined by next-generation sequencing and RT-PCR. Pod pepper vein yellows virus (PoPeVYV) (MT188667) has a genome of 6015 nucleotides, and the characteristic genome organization of a member of the genus Polerovirus. In the 5′ half of its genome (encoding P0 to P4), PoPeVYV is most similar (93.1% nt identity) to PeVYV-3 (Pepper vein yellows virus 3) (KP326573) but diverges greatly in the 3′-part encoding P5, where it is most similar (91.7% nt identity) to tobacco vein distorting virus (TVDV, EF529624) suggesting a recombinant origin. Recombination analysis predicted a single recombination event afecting nucleotide positions 4126 to 5192 nt, with PeVYV-3 as the major parent but with the region 4126–5192 nt derived from TVDV as the minor parent. A full-length clone of PoPeVYV was constructed and shown to be infectious in C.
    [Show full text]
  • Detection of Coat Protein Gene of the Potato Leafroll Virus by Reverse
    atholog P y & nt a M l i P c r Journal of f o o b l i a o Almasi et al., J Plant Pathol Microb 2013, 4:1 l n o r g u y DOI: 10.4172/2157-7471.1000156 o J Plant Pathology & Microbiology ISSN: 2157-7471 Research Article Open Access Detection of Coat Protein Gene of the Potato Leafroll Virus by Reverse Transcription Loop-Mediated Isothermal Amplification Mohammad Amin Almasi1*, Hossein Jafary2, Aboubakr Moradi1, Neda Zand2, Mehdi Aghapour Ojaghkandi1 and Saeedeh Aghaei1 1Department of Plant Biotechnology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran 2Department of Plant Protection, Agricultural and Natural Resources Research Center of Zanjan, Zanjan, Iran Abstract Loop-mediated isothermal amplification assay amplifies DNA/RNA with high specificity and sensitivity. In this study, we describe an optimized reverse transcription- LAMP assay for detection of Potato Leafroll Virus. Firstly, DAS-ELISA assay was performed to detect of the virus in a collection containing 40 suspicious samples. Lastly, two samples were detected as the positive samples. Then, the positive samples were verified by RT-PCR and RT-LAMP methods. Furthermore, the results demonstrated that the RT-LAMP assay was 40 times sensitive and 4 time faster compared to RT-PCR. RT-LAMP assay was accomplished in the water bath either frees from any thermal cycler machine or sophisticated laboratories facility. Moreover, in RT-LAMP reaction the positive samples were detected through turbidity which produced by magnesium pyrophosphate. Interestingly, the application of CaCl2 instead of MgSO4 which create calcium pyrophosphate in reaction could significantly increase both stability and concentration of turbidity.
    [Show full text]
  • Downloaded from Phytozome 6.0
    Silva et al. BMC Molecular Biology 2011, 12:40 http://www.biomedcentral.com/1471-2199/12/40 RESEARCHARTICLE Open Access Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus Tatiane F Silva1, Elisson AC Romanel2, Roberto RS Andrade1, Laurent Farinelli3, Magne Østerås3, Cécile Deluen3, Régis L Corrêa4, Carlos EG Schrago2 and Maite FS Vaslin1* Abstract Background: In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Results: Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions: This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Plant Viral Proteases: Beyond the Role of Peptide Cutters
    fpls-09-00666 May 16, 2018 Time: 17:22 # 1 MINI REVIEW published: 17 May 2018 doi: 10.3389/fpls.2018.00666 Plant Viral Proteases: Beyond the Role of Peptide Cutters Bernardo Rodamilans1*, Hongying Shan1, Fabio Pasin2 and Juan Antonio García1 1 Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain, 2 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub- units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and Edited by: movement, and has significant impact on pathogen fitness and virulence. In this mini- Helene Sanfaçon, review, we give an overview of plant viral proteases emphasizing their importance during Agriculture and Agri-Food Canada (AAFC), Canada viral infections and the varied functionalities that result from their proteolytic activities. Reviewed by: Keywords: viral proteases, viral polyprotein, plant viruses, viral replication, virion formation, host range, defense Michael Rozanov, and counterdefense Pirogov Russian National Research Medical University, Russia Jeremy Thompson, INTRODUCTION Cornell University, United States Valerian V. Dolja, Viruses are the most abundant biological entities in the planet (Suttle, 2007).
    [Show full text]
  • Interspecific Interactions Within a Vector-Borne Complex Are Influenced by a Co-Occurring Pathosystem
    www.nature.com/scientificreports OPEN Interspecifc interactions within a vector‑borne complex are infuenced by a co‑occurring pathosystem Regina K. Cruzado‑Gutiérrez1,2,7, Rohollah Sadeghi2,7, Sean M. Prager3, Clare L. Casteel4, Jessica Parker2, Erik J. Wenninger5, William J. Price6, Nilsa A. Bosque‑Pérez2, Alexander V. Karasev2 & Arash Rashed1,2* Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with “Candidatus Liberibacter solanacearum” (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae). As these two pathosystems may co‑occur, we studied whether the presence of one virus strain, PVY°, afected the host preference, oviposition, and egg hatch rate of Lso‑free or Lso‑carrying psyllids in tomato plants. We also examined whether PVY infection infuenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso‑carrying psyllids showed a preference toward healthy hosts, whereas the Lso‑free psyllids preferentially settled on the PVY‑infected tomatoes. Oviposition of the Lso‑carrying psyllids was lower on PVY‑infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not signifcantly afected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY‑infected host to the Lso‑carrying psyllids. Although our study demonstrated that pre‑existing PVY infection can reduce oviposition by the Lso‑carrying vector, the preference of the Lso‑carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a feld.
    [Show full text]
  • Myzus Persicae)
    Molecular aspects of Potato Virus Y transmission by aphids (Myzus persicae) Saman Bahrami Kamangar A dissertation submitted in partial fulfillment of the requirements for the PhD degree in Bioscience Engineering Promoters: Prof. dr. ir. Guy Smagghe, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University Dr. ir. Kris De Jonghe, - Plant Sciences Unit, Flanders Research institute for Agriculture, Fisheries and Food (ILVO) Dr. ir. Nji Tizi Clauvis Taning, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University Dutch translation of the title: Moleculaire aspecten van aardappel virus Y transmissie door bladluizen (Myzus persicae) Please refer to this thesis as follows: Bahrami Kamangar, S. (2021). Molecular aspects of Potato Virus Y transmission by aphids (Myzus persicae). PhD thesis. Ghent University, Belgium. ISBN: 9789463574259 Ghent University: Rector: Prof. dr. ir. Rik Van de Walle Faculty of Bioscience Engineering: Dean: Prof. dr. ir. Marc Van Meirvenne II Aknowledgment During the preparation of this thesis, I received great support and assistance. First, I would like to thank the Agricultural Research Education and Extention Organization (AREEO) in Iran for funding a part of my study. I would like to extend my sincere thanks to my supervisors Prof. dr. ir. Guy Smagghe, Dr. ir. Kris De Jonghe and Dr. ir. Nji Tizi Clauvis Taning for their consistent encouragement, support and guidance over the running of this research. I also wish to thank the Jury members Prof. Dr. Daisy Vanrompay, Dr. Olivier Christiaens, Dr. Jochem Bonte, and Dr. Stephan Steyer for reviewing and improving this thesis. I am grateful to Steve Baeyen, Lab Manager at the Institute for Agricultural and Fisheries Research, for his technical support.
    [Show full text]