Draft Screening Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Draft Screening Assessment Screening Assessment Petroleum Sector Stream Approach Natural Gas Condensates Environment Canada Health Canada December 2016 - Screening Assessment Natural Gas Condensates Synopsis Pursuant to sections 68 and 74 of the Canadian Environmental Protection Act, 1999 (CEPA), the Ministers of the Environment and of Health have conducted a screening assessment of natural gas condensates (NGCs), a class of substances that share similar sources, properties, and use. In this screening assessment, NGCs are defined as complex combinations of hydrocarbons that condense or are separated from the gaseous phase into the liquid phase: during production at wellheads; in natural gas processing plants; in gas pipelines for production, gathering, transmission and distribution; and/or in straddle plants along the main gas pipelines. NGCs consist of hydrocarbons mostly falling within, but not necessarily spanning, a carbon range of C2 to C30, with predominant hydrocarbons typically falling between C5 and C15. In addition, this definition encompasses all liquids derived from natural gas distillates, except those with predominant hydrocarbon fractions below C5. The largest use of condensates in Canada is as a diluent for bitumen or heavy crude oils. About 23% of the NGCs used for this purpose can be recovered from the diluted materials in petroleum refineries and/or upgraders for reuse; this recovered NGC is also considered within the context of this assessment. Other uses are as industrial feedstocks and as gasoline blending stocks. NGCs were included in the Petroleum Sector Stream Approach (PSSA) because they are related to the petroleum sector and are considered to be of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs). Following the categorization of the Domestic Substances List, three NGCs (CAS RNs 64741-47-5, 64741-48-6 and 68919-39-1) were identified as priorities for assessment as they met the categorization criteria under subsection 73(1) of CEPA and were identified as priorities based on other human health concerns. Due to their similarity of sources, properties, hazard, and the compositional variability within, and overlap between NGCs that can lead to interchangeable use of CAS RNs, this screening assessment encompasses all NGCs as described in the Substance Identity and Uses sections. Spill data for NGCs for the years 2002-2011 from the province of Alberta were analyzed to provide an indication of the frequency and magnitude of spills to land and freshwater. Spill data for this same period from the Nova Scotia and Newfoundland and Labrador offshore petroleum boards were used for the analyses of spills to marine water. The risk analysis conducted with these data indicates that NGCs may cause harm to soil organisms given the frequency and volume of spills to land (i.e., approximately 50 reported spills per year with a median volume of 500 L). In addition, there are, on average, two reported spills/year of NGCs to freshwater that may cause harm to aquatic organisms. Given the low reported frequency and magnitude of release of NGCs to marine water, there is a low risk of harm to marine organisms. i - Screening Assessment Natural Gas Condensates Considering all available lines of evidence presented in this screening assessment, there is risk of harm to organisms, but not to the broader integrity of the environment from NGCs. It is concluded that NGCs meet the criteria under paragraph 64(a) of CEPA as they are entering or may enter the environment in a quantity or concentration or under conditions that have or may have an immediate or long-term harmful effect on the environment or its biological diversity. However, it is concluded that NGCs do not meet the criteria under paragraph 64(b) of CEPA as they are not entering the environment in a quantity or concentration or under conditions that constitute or may constitute a danger to the environment on which life depends. Exposure and hazard information on the three high-priority NGCs (CAS RNs 64741-47-5, 64741-48-6 and 68919-39-1), as well as information on NGCs in general, were used for the human health portion of this assessment. Due to the absence of relevant toxicological studies on NGCs, health effects information on benzene and low boiling point naphthas (LBPNs) (that are similar to NGCs from a physical-chemical perspective) were considered. Benzene, a component of NGCs, has been identified by Health Canada and several international regulatory agencies as a carcinogen, and was added to the List of Toxic Substances in Schedule 1 of CEPA. Based on an analysis of the major hydrocarbon constituents of NGCs, benzene was selected as a high-hazard component to characterize potential exposure and risk to the general population from evaporative emissions of NGCs. The potential for general population exposure to NGCs was evaluated by considering data on the handling/transportation of CAS RNs 64741-47-5, 64741- 48-6 and 68919-39-1 and on evaporative emissions from NGC storage facilities. For non-cancer endpoints, margins of exposure (MOEs) for short-term inhalation exposures to evaporative emissions of NGCs in the vicinity of rail loading/unloading sites are considered potentially inadequate to address uncertainties related to health effects and exposure. For cancer endpoints, MOEs based on upper-bounding estimates of long-term inhalation exposures to evaporative emissions of NGCs in the vicinity of high-volume rail or truck loading/unloading sites, as well as in the vicinity of NGC storage facilities, are considered potentially inadequate to address uncertainties related to health effects and exposure. Based on the information presented in this screening assessment, it is concluded that NGCs meet the criteria under paragraph 64(c) of CEPA as they are entering or may enter the environment in a quantity or concentration or under conditions that constitute or may constitute a danger in Canada to human life or health. It is concluded that natural gas condensates meet one or more of the criteria set out in section 64 of CEPA. ii - Screening Assessment Natural Gas Condensates Table of Contents Synopsis ............................................................................... i Table of Contents ............................................................... iii List of Tables ....................................................................... v 1. Introduction ..................................................................... 1 2. Substance Identity .......................................................... 3 3. Physical and Chemical Properties ................................ 5 4. Sources .......................................................................... 10 5. Uses ................................................................................ 11 6. Release to the Environment ......................................... 12 6.1 Releases from Petroleum Facilities ........................................................... 12 6.2 Unintentional Releases – Spills to the Environment .............................. 16 6.3 Releases from Transportation ................................................................ 18 7. Environmental Fate and Behaviour ............................. 19 7.1 Environmental Distribution ......................................................................... 19 7.1.1 Fate in Water ...................................................................................... 20 7.1.2 Fate in Soil .......................................................................................... 22 7.2 Persistence and Bioaccumulation Potential ........................................... 24 7.2.1 Environmental Persistence .............................................................. 24 7.2.2 Potential for Bioaccumulation .......................................................... 26 8. Potential to Cause Ecological Harm............................ 27 8.1 Ecological Effects Assessment .................................................................. 27 8.1.1 Aquatic Compartment ......................................................................... 28 8.2 Ecological Exposure Assessment .......................................................... 39 8.2.1 Aquatic Compartment ......................................................................... 39 8.2.2 Terrestrial Compartment ..................................................................... 41 8.3 Characterization of Ecological Risk ....................................................... 41 8.3.1 Conclusion .......................................................................................... 46 iii - Screening Assessment Natural Gas Condensates 8.3.2 Uncertainties in Evaluation of Ecological Risk .................................... 46 9. Potential to Cause Harm to Human Health ................. 47 9.1 Exposure Assessment ........................................................................... 47 9.2 Health Effects Assessment ........................................................................ 58 9.3 Characterization of Risk to Human Health ................................................. 62 9.4 Uncertainties in Evaluation of Risk to Human Health ................................ 65 10 Conclusion .................................................................... 66 11. References ................................................................... 67 Appendix A: Petroleum substance grouping ................................................... 95 Appendix B: Other terms
Recommended publications
  • Natural Gas Processing Plants. 2
    → Linde Engineering Natural Gas Processing Plants. 2 Contents. 3 Introduction 4 Components and pretreatment of natural gas 5 Natural gas plants 6 Extraction of hydrocarbons and LPG plants 7 References for LPG/C3+ recovery plants 8 NGL plants 8 References for NGL/C2+ recovery plants 10 Extraction of non hydrocarbons Nitrogen rejection units (NRU) Helium recovery and liquefaction plants 11 References for nitrogen rejection and helium plants 12 Contact 3 Introduction. Natural gas is valuable both as a clean source of energy and as a chemical feedstock. Before reaching the customer, it has to pass several processing steps. These steps are partly neces- sary to be able to transport the gas over long distances and partly necessary for the recovery of valuable components contained in the gas. Linde AG´s Engineering Division has world-class experience in the entire natural gas processing chain. Linde offers engi- neering as well as technical and commercial services, includ- ing feasibility studies, pre-FEED, FEED, detail engineering and turnkey plant construction. Plant design and scope of supply typically includes specialized and tailor made cryogenic equipment manufactured in Linde workshops such as plate- fin and coil-wound heat exchangers. Linde´s competence in project development, planning, exe- cution and construction of turn-key plants is clearly demon- strated by the fact that it has built more than 4,000 plants world-wide. 4 Components and pretreatment of natural gas. Components of natural gas Pretreatment of natural gas Natural gas is a mixture of gases containing Natural gas pretreatment typically consists of primarily hydrocarbon gases. It is colorless and mercury removal, gas sweetening and drying.
    [Show full text]
  • 1 Refinery and Petrochemical Processes
    3 1 Refinery and Petrochemical Processes 1.1 Introduction The combination of high demand for electric cars and higher automobile engine effi- ciency in the future will mean less conversion of petroleum into fuels. However, the demand for petrochemicals is forecast to rise due to the increase in world popula- tion. With this, it is expected that modern and more innovative technologies will be developed to serve the growth of the petrochemical market. In a refinery process, petroleum is converted into petroleum intermediate prod- ucts, including gases, light/heavy naphtha, kerosene, diesel, light gas oil, heavy gas oil, and residue. From these intermediate refinery product streams, several fuels such as fuel gas, liquefied petroleum gas, gasoline, jet fuel, kerosene, auto diesel, and other heavy products such as lubricants, bunker oil, asphalt, and coke are obtained. In addition, these petroleum intermediates can be further processed and separated into products for petrochemical applications. In this chapter, petroleum will be introduced first. Petrochemicals will be intro- duced in the second part of the chapter. Petrochemicals – the main subject of this book – will address three major areas, (i) the production of the seven cornerstone petrochemicals: methane and synthesis gas, ethylene, propylene, butene, benzene, toluene, and xylenes; (ii) the uses of the seven cornerstone petrochemicals, and (iii) the technology to separate petrochemicals into individual components. 1.2 Petroleum Petroleum is derived from the Latin words “petra” and “oleum,” which means “rock” and “oil,” respectively. Petroleum also is known as crude oil or fossil fuel. It is a thick, flammable, yellow-to-black mixture of gaseous, liquid, and solid hydrocarbons formed from the remains of plants and animals.
    [Show full text]
  • Dehydrogenation by Heterogeneous Catalysts
    Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts.
    [Show full text]
  • Natural Gas Liquids in North America: Overview and Outlook to 2035
    Study No. 130 July 2012 CANADIAN NATURAL GAS LIQUIDS IN ENERGY RESEARCH NORTH AMERICA: OVERVIEW INSTITUTE AND OUTLOOK TO 2035 Canadian Energy Research Institute | Relevant • Independent • Objective NATURAL GAS LIQUIDS IN NORTH AMERICA: OVERVIEW AND OUTLOOK TO 2035 Natural Gas Liquids in North America: Overview and Outlook to 2035 Copyright © Canadian Energy Research Institute, 2012 Sections of this study may be reproduced in magazines and newspapers with acknowledgement to the Canadian Energy Research Institute ISBN 1-927037-09-6 Author: Carlos A. Murillo Acknowledgements: The author wishes to acknowledge Rick Funk of Funk & Associates Inc. and Paul Kralovic of Kralovic Economics Inc.; as well as those involved in the production, reviewing, and editing of the material, including but not limited to Peter Howard and Megan Murphy. CANADIAN ENERGY RESEARCH INSTITUTE 150, 3512 – 33 Street NW Calgary, Alberta T2L 2A6 Canada www.ceri.ca July 2012 Printed in Canada Front cover photo courtesy of ATCO Midstream. Natural Gas Liquids in North America: Overview and Outlook to 2035 iii Table of Contents LIST OF FIGURES ............................................................................................................. v LIST OF TABLES .............................................................................................................. xi REPORT HIGHLIGHTS & SUMMARY ................................................................................ xiii INTRODUCTION ............................................................................................................
    [Show full text]
  • Thermal Conductivity Correlations for Minor Constituent Fluids in Natural
    Fluid Phase Equilibria 227 (2005) 47–55 Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decaneଝ M.L. Huber∗, R.A. Perkins Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA Received 21 July 2004; received in revised form 29 October 2004; accepted 29 October 2004 Abstract Natural gas, although predominantly comprised of methane, often contains small amounts of heavier hydrocarbons that contribute to its thermodynamic and transport properties. In this manuscript, we review the current literature and present new correlations for the thermal conductivity of the pure fluids n-octane, n-nonane, and n-decane that are valid over a wide range of fluid states, from the dilute-gas to the dense liquid, and include an enhancement in the critical region. The new correlations represent the thermal conductivity to within the uncertainty of the best experimental data and will be useful for researchers working on thermal conductivity models for natural gas and other hydrocarbon mixtures. © 2004 Elsevier B.V. All rights reserved. Keywords: Alkanes; Decane; Natural gas constituents; Nonane; Octane; Thermal conductivity 1. Introduction 2. Thermal conductivity correlation Natural gas is a mixture of many components. Wide- We represent the thermal conductivity λ of a pure fluid as ranging correlations for the thermal conductivity of the lower a sum of three contributions: alkanes, such as methane, ethane, propane, butane and isobu- λ ρ, T = λ T + λ ρ, T + λ ρ, T tane, have already been developed and are available in the lit- ( ) 0( ) r( ) c( ) (1) erature [1–6].
    [Show full text]
  • Measurements of Higher Alkanes Using NO Chemical Ionization in PTR-Tof-MS
    Atmos. Chem. Phys., 20, 14123–14138, 2020 https://doi.org/10.5194/acp-20-14123-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Measurements of higher alkanes using NOC chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China Chaomin Wang1,2, Bin Yuan1,2, Caihong Wu1,2, Sihang Wang1,2, Jipeng Qi1,2, Baolin Wang3, Zelong Wang1,2, Weiwei Hu4, Wei Chen4, Chenshuo Ye5, Wenjie Wang5, Yele Sun6, Chen Wang3, Shan Huang1,2, Wei Song4, Xinming Wang4, Suxia Yang1,2, Shenyang Zhang1,2, Wanyun Xu7, Nan Ma1,2, Zhanyi Zhang1,2, Bin Jiang1,2, Hang Su8, Yafang Cheng8, Xuemei Wang1,2, and Min Shao1,2 1Institute for Environmental and Climate Research, Jinan University, 511443 Guangzhou, China 2Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443 Guangzhou, China 3School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, China 4State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China 5State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China 6State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese
    [Show full text]
  • Development of Health-Based Alternative to the Total Petroleum Hydrocarbon (Tph) Parameter
    INTERIM FINAL PETROLEUM REPORT: DEVELOPMENT OF HEALTH-BASED ALTERNATIVE TO THE TOTAL PETROLEUM HYDROCARBON (TPH) PARAMETER Prepared for: Bureau of Waste Site Cleanup Massachusetts Department of Environmental Protection Boston, MA Prepared by: Office of Research and Standards Massachusetts Department of Environmental Protection Boston, MA and ABB Environmental Services, Inc. Wakefield, MA AUGUST 1994 INTERIM FINAL PETROLEUM REPORT: DEVELOPMENT OF HEALTH-BASED ALTERNATIVE TO THE TOTAL PETROLEUM HYDROCARBON (TPH) PARAMETER TABLE OF CONTENTS Section Title Page No. EXECUTIVE SUMMARY .................................................................................................. v AUTHORS AND REVIEWERS .......................................................................................... ix 1.0 INTRODUCTION.......................................................................................................1-1 1.1 Background ...............................................................................................1-1 1.2 Purpose......................................................................................................1-2 1.3 Approach ...................................................................................................1-6 2.0 HAZARD IDENTIFICATION FOR PETROLEUM HYDROCARBONS.....................2-1 2.1 Composition of Petroleum Products...........................................................2-1 2.2 Toxic Effects of Whole Products................................................................2-5 2.2.1 Gasoline.........................................................................................2-5
    [Show full text]
  • 2. Alkanes and Cycloalkanes
    BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H. Hart, L. E. Craine, D. J. Hart, C. M. Hadad, 4) Organic Chemistry: A Brief Course, R. C. Atkins, F.A. Carey Hazırlayanlar : Prof. Dr. Pervin Ünal Civcir ve Doç. Dr. Melike Kalkan 2. ALKANES AND CYCLOALKANES 2.1 Nomenclature of alkanes 2.2 Physical Properties of Alkanes 2.3 Preparation of Alkanes 2.3.1 Hydrogenation of Alkenes and Alkynes 2.3.2 Alkanes From Alkyl Halides 2.3.2.1 Reduction 2.3.2.2 Wurtz Reaction 2.3.2.3 Hydrolysis of Grignard Reagent 2.3.3 Reduction of Carbonyl Compounds 2.3.3.1 Clemmensen Reduction 2.3.3.2 Wolf- Kıschner Reduction 2.3.3.3 Alkanes from Carboxylic Acids 2.4 Reactions of Alkanes 2.4.1 Radicalic substitution reactions 2.4.2 Combustion Reactions 2.4.3 Nitration 2.4.4 Cracking 2.5 Cycloalkanes 2.5.1 Nomenclature of Cycloalkanes 2.5.2 Conformations of Cycloalkanes 2.5.3 Substituted Cycloalkanes 2.5.3.1 Monosubstitued Cycloalkanes 2.5.3.2 Disubstitued Cycloalkanes Hazırlayanlar : Prof. Dr. Pervin Ünal Civcir ve Doç. Dr. Melike Kalkan 2.1 Nomenclature of Alkanes Alkanes with increasing numbers of carbon atoms have names are based on the Latin word for the number of carbon atoms in the chain of each molecule. Nomenclature of Straight Chain Alkanes: n CnH2n+2 n-Alkane n CnH2n+2 n-Alkane n CnH2n+2 n-Alkane 1 CH4 methane 6 C6H14 hexane 11 C11H24 undecane 2 C2H6 ethane 7 C7H16 heptane 12 C12H26 dodecane 3 C3H8 propane 8 C8H18 octane 13 C13H28 tridecane 4 C4H10 butane 9 C9H20 nonane 14 C14H30 tetradecane 5 C5H12 pentane 10 C10H22 decane 15 C15H32 pentadecane 2.2 Physical Properties of Alkanes (i) The first four alkanes are gases at room temperature.
    [Show full text]
  • Property Analysis of Ethanol−Natural Gasoline−BOB Blends to Make
    Property Analysis of Ethanol− Natural Gasoline−BOB Blends to Make Flex Fuel Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-67243 November 2016 Contract No. DE-AC36-08GO28308 Property Analysis of Ethanol− Natural Gasoline−BOB Blends to Make Flex Fuel Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. Prepared under Task No. WFGS.1000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5400-67243 Golden, CO 80401 November 2016 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • (C2–C8) Sources and Sinks Around the Arabian Peninsula
    Atmos. Chem. Phys., 19, 7209–7232, 2019 https://doi.org/10.5194/acp-19-7209-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Non-methane hydrocarbon (C2–C8) sources and sinks around the Arabian Peninsula Efstratios Bourtsoukidis1, Lisa Ernle1, John N. Crowley1, Jos Lelieveld1, Jean-Daniel Paris2, Andrea Pozzer1, David Walter3, and Jonathan Williams1 1Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany 2Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette, France 3Department of Multiphase Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany Correspondence: Efstratios Bourtsoukidis ([email protected]) Received: 29 January 2019 – Discussion started: 14 February 2019 Revised: 25 April 2019 – Accepted: 29 April 2019 – Published: 29 May 2019 Abstract. Atmospheric non-methane hydrocarbons source-dominated areas of the Arabian Gulf (bAG D 0:16) (NMHCs) have been extensively studied around the and along the northern part of the Red Sea (bRSN D 0:22), but globe due to their importance to atmospheric chemistry stronger dependencies are found in unpolluted regions such and their utility in emission source and chemical sink as the Gulf of Aden (bGA D 0:58) and the Mediterranean Sea identification. This study reports on shipborne NMHC (bMS D 0:48). NMHC oxidative pair analysis indicated that measurements made around the Arabian Peninsula during OH chemistry dominates the oxidation of hydrocarbons in the AQABA (Air Quality and climate change in the Arabian the region, but along the Red Sea and the Arabian Gulf the BAsin) ship campaign.
    [Show full text]
  • Natural Gasoline
    Safety Data Sheet 1. Identification Product Name: Natural Gasoline Synonyms: Debutanized Natural Gasoline - DNG Chemical Family: Aliphatic Hydrocarbon Mixture Manufacturers Name: Whiting Oil and Gas Corporation Address: 1700 Broadway, Suite 2300 Denver, Colorado 80290 Product Use: Hydrocarbon fuel Phone Number for Information: (303) 837-1661 Emergency Phone Number (Chemtrec): (800) 424-9300 Natural Gasoline is a mixture of saturated aliphatic hydrocarbons (predominantly C5 through C8) separated from natural gas by processes such as refrigeration or absorption. 2. Hazard Identification DANGER! FLAMMABLE LIQUID ASPIRATION OF LIQUID IN THE LUNGS CAN PRODUCE CHEMICAL PNEUMONIA OR EVEN DEATH. PRODUCES SKIN IRRITATION UPON PROLONGED OR REPEATED SKIN CONTACT. MAY CONTAIN BENZENE WHICH CAN CAUSE CANCER OR BE TOXIC TO BLOOD-FORMING ORGANS. NO SMOKING! KEEP AWAY FROM HEAT/SPARKS/OPEN FLAMES/HOT SURFACES. WEAR PROTECTIVE GLOVES, CLOTHING AND EYE WEAR WHEN HANDLING. AVOID RELEASE INTO THE ENVIRONMENT. Globally Harmonized System (GHS) Information Physical Hazards Classification Flammable Liquids, Category 1 Health Hazards Classification Skin Corrosion/irritation, Category 2 Serious eye damage/eye irritation, Category 2b Carcinogenicity, Category 1B Specific Target organ toxicity – single exposure, Category 3 (drowsiness and dizziness) Specific Target organ toxicity – repeated exposure, Category 2 (bone marrow, liver, thymus, nervous system) Aspiration hazard, Category 1 Product Name: Whiting Natural Gasoline Page 1 of 7 Environmental Hazards Classification
    [Show full text]
  • 5.1 OVERVIEW Gasoline Is a Mixture of Relatively Volatile Hydrocarbons
    GASOLINE 117 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Gasoline is a mixture of relatively volatile hydrocarbons, including alkanes, cycloalkanes, alkenes, and aromatics. Individual hydrocarbon components differentially partition to environmental media on the basis of their physical/chemical properties. Gasoline is released to the atmosphere as hydrocarbon vapors from processing and use as a fuel, and to surface water, groundwater, and soil through spills and leaks in aboveground and underground storage tanks and pipelines. Gasoline has been identified in 23 of the 1,397 NPL hazardous waste sites that have been proposed for inclusion on the NPL (HAZDAT 1992). The frequency of these sites within the Unites States can be seen in Figure 5-l. The volatile hydrocarbon fraction of gasoline, which consists primarily of short-chain (C4-C5) alkanes and alkenes and some aromatics, partitions to the atmosphere where photochemical oxidation is the main removal process. Much of what is released to surface waters and surface soils is lost by volatilization to the atmosphere. Releases to subsurface soils may leach through the unsaturated zone and contaminate groundwater. Aromatics constitute most of the water soluble fraction of gasoline. Biodegradation of gasoline hydrocarbons by a diverse group of microorganisms is an important removal process in surface waters, soil, and groundwater. Bioconcentration and sorption of gasoline hydrocarbons to soils and sediments may be important only for higher molecular weight hydrocarbons that are resistant to biodegradation. Exposure of the general population to gasoline occurs primarily through inhalation of very small quantities of the volatile fraction of the mixture during automobile refueling. Another important source of exposure is ingestion, dermal, and inhalation exposure for certain populations through the use of gasoline-contaminated surface water or groundwater in domestic potable water applications.
    [Show full text]