View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Mathematics 212 (2007) 191–224 www.elsevier.com/locate/aim Microlocal study of topological Radon transforms and real projective duality Yutaka Matsui a,∗, Kiyoshi Takeuchi b a Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan b Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan Received 6 January 2006; accepted 4 October 2006 Available online 9 November 2006 Communicated by Michael J. Hopkins Abstract Various topological properties of projective duality between real projective varieties and their duals are obtained by making use of the microlocal theory of (subanalytically) constructible sheaves developed by Kashiwara [M. Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985) 193–209] and Kashiwara–Schapira [M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292, Springer, Berlin–Heidelberg–New York, 1990]. In particular, we prove in the real setting some results similar to the ones proved by Ernström in the complex case [L. Ernström, Topological Radon trans- forms and the local Euler obstruction, Duke Math. J. 76 (1994) 1–21]. For this purpose, we describe the characteristic cycles of topological Radon transforms of constructible functions in terms of curvatures of strata in real projective spaces. © 2006 Elsevier Inc. All rights reserved. MSC: 14B05; 14P25; 35A27; 32C38; 53A20 Keywords: Constructible functions; Radon transforms; Dual varieties * Corresponding author. E-mail addresses:
[email protected] (Y.