Compositio Mathematica 119: 213–237, 1999. 213 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Roitman’s Theorem for Singular Projective Varieties J. BISWAS and V. SRINIVAS School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India. e-mail:
[email protected],
[email protected] (Received: 9 January 1998; accepted in revised form: 26 August 1998) Abstract. We construct an Abel–Jacobi mapping on the Chow group of 0-cycles of degree 0, and prove a Roitman theorem, for projective varieties over C with arbitrary singularities. Along the way, we obtain a new version of the Lefschetz Hyperplane theorem for singular varieties. Mathematics Subject Classification (1991): 14C025. Key words: 0-cycle, Roitman theorem, Lefschetz theorem. 1. Introduction If X is a smooth complete variety of dimension n over the complex field C,there n is a natural map CH (X)deg 0 → Alb (X) from the Chow group of 0-cycles of degree 0 (modulo rational equivalence) to the Albanese variety of X. It is known 0 i 6= > that this is surjective, and has a ‘large’ kernel if H (X, X/C) 0forsomei 2. n A famous result of Roitman [R] asserts that CH (X)deg 0 → Alb (X) is always an isomorphism on torsion subgroups. Our aim in this paper is to generalize this theorem to reduced projective varieties with arbitrary singularities. We begin with some background. Let X be any reduced projective variety of dimension n over C.LetXsing (the singular locus) denote the set of points x ∈ X such that the module of Kähler differentials 1 is not a free module of rank n; Ox,X/C thus Xsing includes points x through which X has a component of dimension <n.