Conference Info & Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Communications of the Acm
COMMUNICATIONS CACM.ACM.ORG OF THEACM 11/2014 VOL.57 NO.11 Scene Understanding by Labeling Pixels Evolution of the Product Manager The Data on Diversity On Facebook, Most Ties Are Weak Keeping Online Reviews Honest Association for Computing Machinery tvx-full-page.pdf-newest.pdf 1 11/10/2013 12:03 3-5 JUNE, 2015 BRUSSELS, BELGIUM Course and Workshop C proposals by M 15 November 2014 Y CM Paper Submissions by MY 12 January 2015 CY CMY K Work in Progress, Demos, DC, & Industrial Submissions by 2 March 2015 Welcoming Submissions on Content Production Systems & Infrastructures Devices & Interaction Techniques Experience Design & Evaluation Media Studies Data Science & Recommendations Business Models & Marketing Innovative Concepts & Media Art TVX2015.COM [email protected] ACM Books M MORGAN& CLAYPOOL &C PUBLISHERS Publish your next book in the ACM Digital Library ACM Books is a new series of advanced level books for the computer science community, published by ACM in collaboration with Morgan & Claypool Publishers. I’m pleased that ACM Books is directed by a volunteer organization headed by a dynamic, informed, energetic, visionary Editor-in-Chief (Tamer Özsu), working closely with a forward-looking publisher (Morgan and Claypool). —Richard Snodgrass, University of Arizona books.acm.org ACM Books ◆ will include books from across the entire spectrum of computer science subject matter and will appeal to computing practitioners, researchers, educators, and students. ◆ will publish graduate level texts; research monographs/overviews of established and emerging fields; practitioner-level professional books; and books devoted to the history and social impact of computing. ◆ will be quickly and attractively published as ebooks and print volumes at affordable prices, and widely distributed in both print and digital formats through booksellers and to libraries and individual ACM members via the ACM Digital Library platform. -
Benchmarks for IP Forwarding Tables
Reviewers James Abello Richard Cleve Vassos Hadzilacos Dimitris Achilioptas James Clippinger Jim Hafner Micah Adler Anne Condon Torben Hagerup Oswin Aichholzer Stephen Cook Armin Haken William Aiello Tom Cormen Shai Halevi Donald Aingworth Dan Dooly Eric Hansen Susanne Albers Oliver Duschka Refael Hassin Eric Allender Martin Dyer Johan Hastad Rajeev Alur Ran El-Yaniv Lisa Hellerstein Andris Ambainis David Eppstein Monika Henzinger Amihood Amir Jeff Erickson Tom Henzinger Artur Andrzejak Kousha Etessami Jeremy Horwitz Boris Aronov Will Evans Russell Impagliazzo Sanjeev Arora Guy Even Piotr Indyk Amotz Barnoy Ron Fagin Sandra Irani Yair Bartal Michalis Faloutsos Ken Jackson Julien Basch Martin Farach-Colton David Johnson Saugata Basu Uri Feige John Jozwiak Bob Beals Joan Feigenbaum Bala Kalyandasundaram Paul Beame Stefan Felsner Ming-Yang Kao Steve Bellantoni Faith Fich Haim Kaplan Micahel Ben-Or Andy Fingerhut Bruce Kapron Josh Benaloh Paul Fischer Michael Kaufmann Charles Bennett Lance Fortnow Michael Kearns Marshall Bern Steve Fortune Sanjeev Khanna Nikolaj Bjorner Alan Frieze Samir Khuller Johannes Blomer Anna Gal Joe Kilian Avrim Blum Naveen Garg Valerie King Dan Boneh Bernd Gartner Philip Klein Andrei Broder Rosario Gennaro Spyros Kontogiannis Nader Bshouty Ashish Goel Gilad Koren Adam Buchsbaum Michel Goemans Dexter Kozen Lynn Burroughs Leslie Goldberg Dina Kravets Ran Canetti Paul Goldberg S. Ravi Kumar Pei Cao Oded Goldreich Eyal Kushilevitz Moses Charikar John Gray Stephen Kwek Chandra Chekuri Dan Greene Larry Larmore Yi-Jen Chiang -
Practical Parallel Hypergraph Algorithms
Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v0 While there has been significant work on parallel graph pro- e0 cessing, there has been very surprisingly little work on high- v0 v1 v1 performance hypergraph processing. This paper presents a e collection of efficient parallel algorithms for hypergraph pro- 1 v2 cessing, including algorithms for computing hypertrees, hy- v v 2 3 e perpaths, betweenness centrality, maximal independent sets, 2 v k-core decomposition, connected components, PageRank, 3 and single-source shortest paths. For these problems, we ei- (a) Hypergraph (b) Bipartite representation ther provide new parallel algorithms or more efficient imple- mentations than prior work. Furthermore, our algorithms are Figure 1. An example hypergraph representing the groups theoretically-efficient in terms of work and depth. To imple- fv0;v1;v2g, fv1;v2;v3g, and fv0;v3g, and its bipartite repre- ment our algorithms, we extend the Ligra graph processing sentation. framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between improved compared to using a graph representation. Unfor- sparse and dense traversals based on the frontier size, edge- tunately, there is been little research on parallel hypergraph aware parallelization, using buckets to prioritize processing processing. of vertices, and compression. Our experiments on a 72-core The main contribution of this paper is a suite of efficient machine and show that our algorithms obtain excellent paral- parallel hypergraph algorithms, including algorithms for hy- lel speedups, and are significantly faster than algorithms in pertrees, hyperpaths, betweenness centrality, maximal inde- existing hypergraph processing frameworks. -
Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today. -
Practical Forward Secure Signatures Using Minimal Security Assumptions
Practical Forward Secure Signatures using Minimal Security Assumptions Vom Fachbereich Informatik der Technischen Universit¨atDarmstadt genehmigte Dissertation zur Erlangung des Grades Doktor rerum naturalium (Dr. rer. nat.) von Dipl.-Inform. Andreas H¨ulsing geboren in Karlsruhe. Referenten: Prof. Dr. Johannes Buchmann Prof. Dr. Tanja Lange Tag der Einreichung: 07. August 2013 Tag der m¨undlichen Pr¨ufung: 23. September 2013 Hochschulkennziffer: D 17 Darmstadt 2013 List of Publications [1] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas H¨ulsing,and Markus R¨uckert. On the security of the Winternitz one-time signature scheme. In A. Ni- taj and D. Pointcheval, editors, Africacrypt 2011, volume 6737 of Lecture Notes in Computer Science, pages 363{378. Springer Berlin / Heidelberg, 2011. Cited on page 17. [2] Johannes Buchmann, Erik Dahmen, and Andreas H¨ulsing.XMSS - a practical forward secure signature scheme based on minimal security assumptions. In Bo- Yin Yang, editor, Post-Quantum Cryptography, volume 7071 of Lecture Notes in Computer Science, pages 117{129. Springer Berlin / Heidelberg, 2011. Cited on pages 41, 73, and 81. [3] Andreas H¨ulsing,Albrecht Petzoldt, Michael Schneider, and Sidi Mohamed El Yousfi Alaoui. Postquantum Signaturverfahren Heute. In Ulrich Waldmann, editor, 22. SIT-Smartcard Workshop 2012, IHK Darmstadt, Feb 2012. Fraun- hofer Verlag Stuttgart. [4] Andreas H¨ulsing,Christoph Busold, and Johannes Buchmann. Forward secure signatures on smart cards. In Lars R. Knudsen and Huapeng Wu, editors, Se- lected Areas in Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 66{80. Springer Berlin Heidelberg, 2013. Cited on pages 63, 73, and 81. [5] Johannes Braun, Andreas H¨ulsing,Alex Wiesmaier, Martin A.G. -
Computational Hardness of Optimal Fair Computation: Beyond Minicrypt
Computational Hardness of Optimal Fair Computation: Beyond Minicrypt Hemanta K. Maji Department of Computer Science, Purdue University, USA [email protected] Mingyuan Wang Department of Computer Science, Purdue University, USA [email protected] Abstract Secure multi-party computation allows mutually distrusting parties to compute securely over their private data. However, guaranteeing output delivery to honest parties when the adversarial parties may abort the protocol has been a challenging objective. As a representative task, this work considers two-party coin-tossing protocols with guaranteed output delivery, a.k.a., fair coin- tossing. In the information-theoretic plain model, as in two-party zero-sum games, one of the parties can force an output with certainty. In the commitment-hybrid, any r-message coin-tossing proto- √ √ col is 1/ r-unfair, i.e., the adversary can change the honest party’s output distribution by 1/ r in the statistical distance. Moran, Naor, and Segev (TCC–2009) constructed the first 1/r-unfair protocol in the oblivious transfer-hybrid. No further security improvement is possible because Cleve (STOC–1986) proved that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and Segev’s coin-tossing protocol is optimal. However, is oblivious transfer necessary for optimal fair coin-tossing? Maji and Wang (CRYPTO–2020) proved that any coin-tossing protocol using one-way func- √ tions in a black-box manner is at least 1/ r-unfair. That is, optimal fair coin-tossing is impossible in Minicrypt. Our work focuses on tightly characterizing the hardness of computation assump- tion necessary and sufficient for optimal fair coin-tossing within Cryptomania, outside Minicrypt. -
Counter-Mode Encryption (“CTR Mode”) Was Introduced by Diffie and Hellman Already in 1979 [5] and Is Already Standardized By, for Example, [1, Section 6.4]
Comments to NIST concerning AES Modes of Operations: CTR-Mode Encryption Helger Lipmaa Phillip Rogaway Helsinki University of Technology (Finland) and University of California at Davis (USA) and University of Tartu (Estonia) Chiang Mai University (Thailand) [email protected] [email protected] http://www.tml.hut.fi/helger http://www.cs.ucdavis.edu/ rogaway David Wagner University of California Berkeley (USA) [email protected] http://www.cs.berkeley.edu/wagner September 2000 Abstract Counter-mode encryption (“CTR mode”) was introduced by Diffie and Hellman already in 1979 [5] and is already standardized by, for example, [1, Section 6.4]. It is indeed one of the best known modes that are not standardized in [10]. We suggest that NIST, in standardizing AES modes of operation, should include CTR-mode encryption as one possibility for the next reasons. First, CTR mode has significant efficiency advantages over the standard encryption modes without weakening the security. In particular its tight security has been proven. Second, most of the perceived disadvantages of CTR mode are not valid criticisms, but rather caused by the lack of knowledge. 1 Review of Counter-Mode Encryption E ´X µ Ò X à E Notation. Let à denote the encipherment of an -bit block using key and a block cipher . For concrete- =AEË Ò =½¾8 X i X · i ness we assume that E ,so .If is a nonempty string and is a nonnegative integer, then X j X denotes the j -bit string that one gets by regarding as a nonnegative number (written in binary, most significant bit jX j ¾ jX j first), adding i to this number, taking the result modulo , and converting this number back into an -bit string. -
Nondeterministic Direct Product Reducations and the Success
Nondeterministic Direct Product Reductions and the Success Probability of SAT Solvers [Preliminary version] Andrew Drucker∗ May 6, 2013 Last updated: May 16, 2013 Abstract We give two nondeterministic reductions which yield new direct product theorems (DPTs) for Boolean circuits. In these theorems one assumes that a target function f is mildly hard against nondeterministic circuits, and concludes that the direct product f ⊗t is extremely hard against (only polynomially smaller) probabilistic circuits. The main advantage of these results compared with previous DPTs is the strength of the size bound in our conclusion. As an application, we show that if NP is not in coNP=poly then, for every PPT algorithm attempting to produce satisfying assigments to Boolean formulas, there are infinitely many instances where the algorithm's success probability is nearly-exponentially small. This furthers a project of Paturi and Pudl´ak[STOC'10]. Contents 1 Introduction 2 1.1 Hardness amplification and direct product theorems..................2 1.2 Our new direct product theorems.............................4 1.3 Application to the success probability of PPT SAT solvers...............6 1.4 Our techniques.......................................7 2 Preliminaries 9 2.1 Deterministic and probabilistic Boolean circuits..................... 10 2.2 Nondeterministic circuits and nondeterministic mappings............... 10 2.3 Direct-product solvers................................... 12 2.4 Hash families and their properties............................ 13 2.5 A general nondeterministic circuit construction..................... 14 ∗School of Mathematics, IAS, Princeton, NJ. Email: [email protected]. This material is based upon work supported by the National Science Foundation under agreements Princeton University Prime Award No. CCF- 0832797 and Sub-contract No. 00001583. -
The Cryptographic Impact of Groups with Infeasible Inversion Susan Rae
The Cryptographic Impact of Groups with Infeasible Inversion by Susan Rae Hohenberger Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2003 ©Massachusetts Institute of Technology 2003. All rights reserved. ....................... Author ....... .---- -- -........ ... * Department of Electrical Engineering and Computer Science May 16, 2003 C ertified by ..................................... Ronald L. Rivest Viterbi Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by ............... .. ... .S . i. t Arthur C. Smith Chairman, Department Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHNOLO GY SWO JUL 0 7 2003 LIBRARIES 2 The Cryptographic Impact of Groups with Infeasible Inversion by Susan Rae Hohenberger Submitted to the Department of Electrical Engineering and Computer Science on May 16, 2003, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering Abstract Algebraic group structure is an important-and often overlooked-tool for constructing and comparing cryptographic applications. Our driving example is the open problem of finding provably secure transitive signature schemes for directed graphs, proposed by Micali and Rivest [41]. A directed transitive signature scheme (DTS) allows Alice to sign a subset of edges on a directed graph in such a way that anyone can compose Alice's signatures on edges a and bc to obtain her signature on edge -a. We formalize the necessary mathemat- ical criteria for a secure DTS scheme when the signatures can be composed in any order, showing that the edge signatures in such a scheme form a special (and powerful) mathemat- ical group not known to exist: an Abelian trapdoor group with infeasible inversion (ATGII). -
Chromatic Scheduling of Dynamic Data-Graph
Chromatic Scheduling of Dynamic Data-Graph Computations by Tim Kaler Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the AROH!VE rNSTITUTE MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2013 W 2.9 2MH3 Copyright 2013 Tim Kaler. All rig ts reserved. The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole and in part in any medium now known or hereafter created. A u th or ................................................................ Department of Electrical Engineering and Computer Science May 24, 2013 Certified by ..... ...... Charles E. Leiserson Professor of Computer Science and Engineering Thesis Supervisor Accepted by ...... 'I Dennis M. Freeman Chairman, Department Committee on Graduate Students Chromatic Scheduling of Dynamic Data-Graph Computations by Tim Kaler Submitted to the Department of Electrical Engineering and Computer Science on May 24, 2013, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Data-graph computations are a parallel-programming model popularized by pro- gramming systems such as Pregel, GraphLab, PowerGraph, and GraphChi. A fun- damental issue in parallelizing data-graph computations is the avoidance of races be- tween computation occuring on overlapping regions of the graph. Common solutions such as locking protocols and bulk-synchronous execution often sacrifice performance, update atomicity, or determinism. A known alternative is chromatic scheduling which uses a vertex coloring of the conflict graph to divide data-graph updates into sets which may be parallelized without races. -
The Power of Algorithmic Approaches to the Graph Isomorphism Problem
The Power of Algorithmic Approaches to the Graph Isomorphism Problem Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Daniel Neuen, Master of Science aus Dormagen Berichter: Universit¨atsprofessorDr. Martin Grohe Universit¨atsprofessorDr. Pascal Schweitzer Universit¨atsprofessorDr. L´aszl´oBabai Tag der m¨undlichen Pr¨ufung:17. Dezember 2019 Diese Dissertation ist auf den Internetseiten der Universit¨atsbibliothek online verf¨ugbar. ii Abstract The Graph Isomorphism Problem asks, given two input graphs, whether they are structurally the same, that is, whether there is a renaming of the vertices of the first graph in order to transform it to the second graph. By a recent breakthrough result of Babai (STOC 2016), this problem can be solved in quasipolynomial time. However, despite extensive research efforts, it remains one of only few natural problems in NP that are neither known to be solvable in polynomial time nor known to be NP- complete. Over the past five decades several powerful techniques tackling the Graph Isomor- phism Problem have been investigated uncovering various surprising links between different approaches. Also, the situation has led to a number of algorithms solving the isomorphism problem on restricted classes of input graphs. In this thesis, we continue the investigation of various standard approaches to the Graph Isomorphism Problem to further broaden our understanding on the power and limits of such approaches. In particular, this leads to several improved algorithms solving the isomorphism problem for important restricted classes of graphs. One of the most fundamental methods in the context of graph isomorphism test- ing is the Weisfeiler-Leman algorithm, which iteratively computes an isomorphism- invariant coloring of vertex-tuples. -
On the Probabilistic Closure of the Loose Unambiguous Hierarchy
Electronic Colloquium on Computational Complexity, Report No. 50 (2014) On the probabilistic closure of the loose unambiguous hierarchy Edward A. Hirsch∗ Dmitry Sokolovy March 21, 2014 Abstract Unambiguous hierarchies [NR93, LR94, NR98] are defined similarly to the polyno- mial hierarchy; however, all witnesses must be unique. These hierarchies have subtle differences in the mode of using oracles. We consider a \loose" unambiguous hierarchy prUH• with relaxed definition of oracle access to promise problems. Namely, we allow to make queries that miss the promise set; however, the oracle answer in this case can be arbitrary (a similar definition of oracle access has been used in [CR08]). We prove that the first part of Toda's theorem PH ⊆ BP · ⊕P ⊆ PPP can be rectified to PH = BP · prUH•, that is, the closure of our hierarchy under Sch¨oning's BP operator equals the polynomial hierarchy. It is easily seen that BP · prUH• ⊆ BP · ⊕P. The proof follows the same lines as Toda's proof, so the main contribution of the present note is a new definition. 1 Introduction Around 1990, there was a burst of results about interactive protocols [GMR89, Bab85, GS86, BOGKW88, BM88, LFKN92, BFL91, Sha90]. In the same time, Seinosuke Toda proved that PH ⊆ BP · ⊕P ⊆ PPP [Tod91]. The first part of his result can be viewed as an Arthur-Merlin game (recall that AM = BP · NP); however, Merlin must have an odd number of correct proofs. One can describe its proof as follows. We depart from a relativized version of Valiant-Vazirani's lemma and turn the polynomial hierarchy, level by level, into a multi-round Arthur-Merlin game where Merlin always has a unique witness.