The Future of British Odonata
Total Page:16
File Type:pdf, Size:1020Kb
The Future of British Odonata Determining temporal range dynamics from distribution patterns and dispersal Alyson Pavitt MSc Conservation Science Imperial College London, Silwood Park A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science and the Diploma of Imperial College London . PDF processed with CutePDF evaluation edition www.CutePDF.com © Alyson Pavitt, 2011 [email protected] Contents 1. Introduction ..................................................................................................................................... 1 1.1. Statement of need ..................................................................................................................... 1 1.2. Range dynamics ........................................................................................................................ 2 1.3. Distribution and dispersal ....................................................................................................... 3 1.4. Aims and objectives .................................................................................................................. 4 1.5. Hypotheses ................................................................................................................................ 4 2. Background ...................................................................................................................................... 7 2.1. Analysis of range dynamics .................................................................................................... 7 2.2. Odonates as a model taxon ................................................................................................... 10 2.3. Spatial distribution patterns .................................................................................................. 12 2.4. Use of traits in understanding species distribution ........................................................... 15 3. Methods and materials ................................................................................................................. 20 3.1. Range dynamics ...................................................................................................................... 20 3.2. Patterns of distribution .......................................................................................................... 21 3.3. Trait data .................................................................................................................................. 22 3.4. Data analysis............................................................................................................................ 23 3.5. Analysis of measurement methods ...................................................................................... 24 4. Results ............................................................................................................................................. 25 4.1. Range dynamics ...................................................................................................................... 25 4.2. Patterns of distribution .......................................................................................................... 26 4.3. Morphometric analysis .......................................................................................................... 27 4.4. Dispersal capacity ................................................................................................................... 32 4.5. Representativeness of museum specimens ......................................................................... 33 5. Discussion ...................................................................................................................................... 34 5.1. Spatial dynamics ..................................................................................................................... 34 5.2. Patterns of Distribution .......................................................................................................... 36 5.3. Dispersal morphometrics ...................................................................................................... 37 5.4. Determining occupancy change ........................................................................................... 38 5.5. Suborder variation .................................................................................................................. 42 5.6. Value of historic collections ................................................................................................... 42 5.7. Recommendations for future research................................................................................. 43 6. Conclusions .................................................................................................................................... 45 References........................................................................................................................................... 46 Appendices ......................................................................................................................................... 62 © Alyson Pavitt, 2011 [email protected] Acronyms AOO Area of Occupancy BAP Biological Action Plan BDS British Dragonfly Society BRC Biological Records Centre EOO Extent of Occupancy IUCN International Union for Conservation of Nature NBN National Biological Network NHM Natural History Museum, London T1 Time period 1 (1970-1996) T2 Time period 2 (1997-2008) VCA Variance Component Analysis © Alyson Pavitt, 2011 [email protected] Figures Page 4.1 The relationship between the fractal dimension of species distribution (D) and cell 27 occupancy. The change in shape between t1 and t2 is shown for each species, displayed with the linear regression model for mean species residual D against mean species cell occupancy (grey line). The dotted lines are species with a positive residual D change, these species became more aggregated from t1 to t2. The solid lines are species with a negative residual D change, and these are species which became sparser across time. 4.2 Linear regression models for the relationships between (a) dry wing length and the 28 logs of abdominal length, (b) thoracic volume and the logs of abdominal length 3, and (c) wing aspect ratio and the logs of abdominal length 2. Solid lines show the linear regression fitted straight to the data, whilst dashed lines show the linear regression once phylogenetic signal is controlled for. 4.3 Relationship between the log of wing aspect ratio and residuals of dry wing length 30 (controlling for phylogenetic signal) in anisopterans (filled points and solid regression line) and zygopterans (empty points and dashed regression line). 4.4 Difference between the two primary methods of measuring odonate wing length. 31 This is based on length measurements taken from the right forewing of Coenagrion puella (see Conrad et al . 2002; Hassall et al . 2008 for complete methodologies). 4.5 Distribution of occupied grid cells in the British ranges of (a) Orthopterum cancellatum 39 (a species increasing in occupancy) and (b) Calopteryx virgo (a species decreasing in occupancy),for t1 (left) and t2 (right) . 4.6 Distribution of occupied grid cells in the Britain range of Aeshna isosceles for t1 (left) 40 and t2 (right). © Alyson Pavitt, 2011 [email protected] Tables Page 2.1 Comparison of the two main methods used to measure species range shift. 10 2.2 Variables responsible for determining species distribution patterns, grouped 12 according to their influences as defined by Guisan & Thuiller (2005). 2.3 Comparison of methods used to measure spatial distribution pattern. 13 2.4 Selection of species traits which have been found to correlate significantly with 16 changes to invertebrate ranges. 2.5 Morphological traits used as proxies for dispersal capacity in a range of species. 18 4.1 The number of species which showed cell occupancy or range shift changes. The 25 binomial sign test shows whether a significantly greater proportion of species showed a range expansion or northwards shift). 4.2 The number of species with more or less aggregated distributions (residual D), the 26 number of species changing over time (residual D change), and whether there was a significant proportion with more aggregated or increasingly aggregated ranges (binomial sign test). 4.3 The variance in dry wing length and aspect ratio accounted for by each of the nested 29 taxonomic scales (for n= 572 specimens). 4.4 The variance in dry wing length and aspect ratio accounted for by inter- (between 30 species and all higher taxonomic levels) and intraspecific (between and within sex) variation. The binomial sign test shows whether a significantly greater proportion of variation was accounted for interspecific variation. 4.5 The number of species with a positive change index (expansion in overall cell 32 occupancy from t1 to t2). The binomial proportion test shows whether there is a significant difference in the proportion of each sub-order showing a cell occupancy increase. Percentages given as a proportion of n. 4.6 Statistical outputs from Welch two sample t-tests investigating differences in wing 33 length between dry museum specimens and wet specimens (recently collected). © Alyson Pavitt, 2011 [email protected] Abstract Temporal range dynamics (range shift and change index), dispersal morphometrics (wing length, wing aspect ratio, and thoracic volume), and distribution pattern