Semantic Extract-Transform-Load Framework for Big Data Integration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Mapping: Definition, Tools, and Techniques
Data Mapping: Definition, Tools, and Techniques Enterprise data is getting more dispersed and voluminous by the day, and at the same time, it has become more important than ever for businesses to leverage data and transform it into actionable insights. However, enterprises today collect information from an array of data points, and they may not always speak the same language. To integrate this data and make sense of it, data mapping is used which is the process of establishing relationships between separate data models. What is Data Mapping? In simple words, data mapping is the process of mapping data fields from a source file to their related target fields. For example, in Figure 1, ‘Name,’ ‘Email,’ and ‘Phone’ fields from an Excel source are mapped to the relevant fields in a Delimited file, which is our destination. Data mapping tasks vary in complexity, depending on the hierarchy of the data being mapped, as well as the disparity between the structure of the source and the target. Every business application, whether on-premise or cloud, uses metadata to explain the data fields and attributes that constitute the data, as well as semantic rules that govern how data is stored within that application or repository. For example, Microsoft Dynamics CRM contains several data objects, such as Leads, Opportunities, and Competitors. Each of these data objects has several fields like Name, Account Owner, City, Country, Job Title, and more. The application also has a defined schema along with attributes, enumerations, and mapping rules. Therefore, if a new record is to be added to the schema of a data object, a data map needs to be created from the data source to the Microsoft Dynamics CRM account. -
A Platform for Networked Business Analytics BUSINESS INTELLIGENCE
BROCHURE A platform for networked business analytics BUSINESS INTELLIGENCE Infor® Birst's unique networked business analytics technology enables centralized and decentralized teams to work collaboratively by unifying Leveraging Birst with existing IT-managed enterprise data with user-owned data. Birst automates the enterprise BI platforms process of preparing data and adds an adaptive user experience for business users that works across any device. Birst networked business analytics technology also enables customers to This white paper will explain: leverage and extend their investment in ■ Birst’s primary design principles existing legacy business intelligence (BI) solutions. With the ability to directly connect ■ How Infor Birst® provides a complete unified data and analytics platform to Oracle Business Intelligence Enterprise ■ The key elements of Birst’s cloud architecture Edition (OBIEE) semantic layer, via ODBC, ■ An overview of Birst security and reliability. Birst can map the existing logical schema directly into Birst’s logical model, enabling Birst to join this Enterprise Data Tier with other data in the analytics fabric. Birst can also map to existing Business Objects Universes via web services and Microsoft Analysis Services Cubes and Hyperion Essbase cubes via MDX and extend those schemas, enabling true self-service for all users in the enterprise. 61% of Birst’s surveyed reference customers use Birst as their only analytics and BI standard.1 infor.com Contents Agile, governed analytics Birst high-performance in the era of -
Data Warehouse: an Integrated Decision Support Database Whose Content Is Derived from the Various Operational Databases
1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in DATABASE MANAGEMENT Topic Objective: At the end of this topic student will be able to: Understand the Contrasting basic concepts Understand the Database Server and Database Specified Understand the USER Clause Definition/Overview: Data: Stored representations of objects and events that have meaning and importance in the users environment. Information: Data that have been processed in such a way that they can increase the knowledge of the person who uses it. Metadata: Data that describes the properties or characteristics of end-user data and the context of that data. Database application: An application program (or set of related programs) that is used to perform a series of database activities (create, read, update, and delete) on behalf of database users. WWW.BSSVE.IN Data warehouse: An integrated decision support database whose content is derived from the various operational databases. Constraint: A rule that cannot be violated by database users. Database: An organized collection of logically related data. Entity: A person, place, object, event, or concept in the user environment about which the organization wishes to maintain data. Database management system: A software system that is used to create, maintain, and provide controlled access to user databases. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Data dependence; data independence: With data dependence, data descriptions are included with the application programs that use the data, while with data independence the data descriptions are separated from the application programs. Data warehouse; data mining: A data warehouse is an integrated decision support database, while data mining (described in the topic introduction) is the process of extracting useful information from databases. -
Data Extraction Techniques for Spreadsheet Records
Data Extraction Techniques for Spreadsheet Records Volume 2, Number 1 2007 page 119 – 129 Mark G. Simkin University of Nevada Reno, [email protected], (775) 784-4840 Downloaded from http://meridian.allenpress.com/aisej/article-pdf/2/1/119/2070089/aise_2007_2_1_119.pdf by guest on 28 September 2021 Abstract Many accounting applications use spreadsheets as repositories of accounting records, and a common requirement is the need to extract specific information from them. This paper describes a number of techniques that accountants can use to perform such tasks directly using common spreadsheet tools. These techniques include (1) simple and advanced filtering techniques, (2) database functions, (3) methods for both simple and stratified sampling, and, (4) tools for finding duplicate or unmatched records. Keywords Data extraction techniques, spreadsheet databases, spreadsheet filtering methods, spreadsheet database functions, sampling. INTRODUCTION A common use of spreadsheets is as a repository of accounting records (Rose 2007). Examples include employee records, payroll records, inventory records, and customer records. In all such applications, the format is typically the same: the rows of the worksheet contain the information for any one record while the columns contain the data fields for each record. Spreadsheet formatting capabilities encourage such applications inasmuch as they also allow the user to create readable and professional-looking outputs. A common user requirement of records-based spreadsheets is the need to extract subsets of information from them (Severson 2007). In fact, a survey by the IIA in the U.S. found that “auditor use of data extraction tools has progressively increased over the last 10 years” (Holmes 2002). -
Scientific Data Mining in Astronomy
SCIENTIFIC DATA MINING IN ASTRONOMY Kirk D. Borne Department of Computational and Data Sciences, George Mason University, Fairfax, VA 22030, USA [email protected] Abstract We describe the application of data mining algorithms to research prob- lems in astronomy. We posit that data mining has always been fundamen- tal to astronomical research, since data mining is the basis of evidence- based discovery, including classification, clustering, and novelty discov- ery. These algorithms represent a major set of computational tools for discovery in large databases, which will be increasingly essential in the era of data-intensive astronomy. Historical examples of data mining in astronomy are reviewed, followed by a discussion of one of the largest data-producing projects anticipated for the coming decade: the Large Synoptic Survey Telescope (LSST). To facilitate data-driven discoveries in astronomy, we envision a new data-oriented research paradigm for astron- omy and astrophysics – astroinformatics. Astroinformatics is described as both a research approach and an educational imperative for modern data-intensive astronomy. An important application area for large time- domain sky surveys (such as LSST) is the rapid identification, charac- terization, and classification of real-time sky events (including moving objects, photometrically variable objects, and the appearance of tran- sients). We describe one possible implementation of a classification broker for such events, which incorporates several astroinformatics techniques: user annotation, semantic tagging, metadata markup, heterogeneous data integration, and distributed data mining. Examples of these types of collaborative classification and discovery approaches within other science disciplines are presented. arXiv:0911.0505v1 [astro-ph.IM] 3 Nov 2009 1 Introduction It has been said that astronomers have been doing data mining for centuries: “the data are mine, and you cannot have them!”. -
Data Quality Through Data Integration: How Integrating Your IDEA Data Will Help Improve Data Quality
center for the integration of IDEA Data Data Quality Through Data Integration: How Integrating Your IDEA Data Will Help Improve Data Quality July 2018 Authors: Sara Sinani & Fred Edora High-quality data is essential when looking at student-level data, including data specifically focused on students with disabilities. For state education agencies (SEAs), it is critical to have a solid foundation for how data is collected and stored to achieve high-quality data. The process of integrating the Individuals with Disabilities Education Act (IDEA) data into a statewide longitudinal data system (SLDS) or other general education data system not only provides SEAs with more complete data, but also helps SEAs improve accuracy of federal reporting, increase the quality of and access to data within and across data systems, and make better informed policy decisions related to students with disabilities. Through the data integration process, including mapping data elements, reviewing data governance processes, and documenting business rules, SEAs will have developed documented processes and policies that result in more integral data that can be used with more confidence. In this brief, the Center for the Integration of IDEA Data (CIID) provides scenarios based on the continuum of data integration by focusing on three specific scenarios along the integration continuum to illustrate how a robust integrated data system improves the quality of data. Scenario A: Siloed Data Systems Data systems where the data is housed in separate systems and State Education Agency databases are often referred to as “data silos.”1 These data silos are isolated from other data systems and databases. -
Tip for Data Extraction for Meta-Analysis - 11
Tip for data extraction for meta-analysis - 11 How can you make data extraction more efficient? Kathy Taylor Data extraction that’s not well organised will add delays to the analysis of data. There are a number of ways in which you can improve the efficiency of the data extraction process and also help in the process of analysing the extracted data. The following list of recommendations is derived from a number of different sources and my experiences of working on systematic reviews and meta- analysis. 1. Highlight the extracted data on the pdfs of your included studies. This will help if the other data extractor disagrees with you, as you’ll be able to quickly find the data that you extracted. You obviously need to do this on your own copies of the pdfs. 2. Keep a record of your data sources. If a study involves multiple publications, record what you found in each publication, so if the other data extractor disagrees with you, you can quickly find the source of your extracted data. 3. Create folders to group sources together. This is useful when studies involve multiple publications. 4. Provide informative names of sources. When studies involve multiple publications, it is useful to identify, through names of files, which is the protocol publication (source of data for quality assessment) and which includes the main results (sources of data for meta- analysis). 5. Document all your calculations and estimates. Using calculators does not leave a record of what you did. It’s better to do your calculations in EXCEL, or better still, in a computer program. -
Managing Data in Motion This Page Intentionally Left Blank Managing Data in Motion Data Integration Best Practice Techniques and Technologies
Managing Data in Motion This page intentionally left blank Managing Data in Motion Data Integration Best Practice Techniques and Technologies April Reeve AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Morgan Kaufmann is an imprint of Elsevier Acquiring Editor: Andrea Dierna Development Editor: Heather Scherer Project Manager: Mohanambal Natarajan Designer: Russell Purdy Morgan Kaufmann is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA Copyright r 2013 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
Informatica Cloud Data Integration
Informatica® Cloud Data Integration Microsoft SQL Server Connector Guide Informatica Cloud Data Integration Microsoft SQL Server Connector Guide March 2019 © Copyright Informatica LLC 2017, 2019 This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License. Informatica, the Informatica logo, Informatica Cloud, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade names or trademarks of their respective owners. Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product. See patents at https://www.informatica.com/legal/patents.html. DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of noninfringement, merchantability, or use for a particular purpose. -
What to Look for When Selecting a Master Data Management Solution What to Look for When Selecting a Master Data Management Solution
What to Look for When Selecting a Master Data Management Solution What to Look for When Selecting a Master Data Management Solution Table of Contents Business Drivers of MDM .......................................................................................................... 3 Next-Generation MDM .............................................................................................................. 5 Keys to a Successful MDM Deployment .............................................................................. 6 Choosing the Right Solution for MDM ................................................................................ 7 Talend’s MDM Solution .............................................................................................................. 7 Conclusion ..................................................................................................................................... 8 Master data management (MDM) exists to enable the business success of an orga- nization. With the right MDM solution, organizations can successfully manage and leverage their most valuable shared information assets. Because of the strategic importance of MDM, organizations can’t afford to make any mistakes when choosing their MDM solution. This article will discuss what to look for in an MDM solution and why the right choice will help to drive strategic business initiatives, from cloud computing to big data to next-generation business agility. 2 It is critical for CIOs and business decision-makers to understand the value -
AIMMX: Artificial Intelligence Model Metadata Extractor
AIMMX: Artificial Intelligence Model Metadata Extractor Jason Tsay Alan Braz Martin Hirzel [email protected] [email protected] Avraham Shinnar IBM Research IBM Research Todd Mummert Yorktown Heights, New York, USA São Paulo, Brazil [email protected] [email protected] [email protected] IBM Research Yorktown Heights, New York, USA ABSTRACT International Conference on Mining Software Repositories (MSR ’20), October Despite all of the power that machine learning and artificial intelli- 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. gence (AI) models bring to applications, much of AI development https://doi.org/10.1145/3379597.3387448 is currently a fairly ad hoc process. Software engineering and AI development share many of the same languages and tools, but AI de- 1 INTRODUCTION velopment as an engineering practice is still in early stages. Mining The combination of sufficient hardware resources, the availability software repositories of AI models enables insight into the current of large amounts of data, and innovations in artificial intelligence state of AI development. However, much of the relevant metadata (AI) models has brought about a renaissance in AI research and around models are not easily extractable directly from repositories practice. For this paper, we define an AI model as all the software and require deduction or domain knowledge. This paper presents a and data artifacts needed to define the statistical model for a given library called AIMMX that enables simplified AI Model Metadata task, train the weights of the statistical model, and/or deploy the eXtraction from software repositories. -
BI SEARCH and TEXT ANALYTICS New Additions to the BI Technology Stack
SECOND QUARTER 2007 TDWI BEST PRACTICES REPORT BI SEARCH AND TEXT ANALYTICS New Additions to the BI Technology Stack By Philip Russom TTDWI_RRQ207.inddDWI_RRQ207.indd cc11 33/26/07/26/07 111:12:391:12:39 AAMM Research Sponsors Business Objects Cognos Endeca FAST Hyperion Solutions Corporation Sybase, Inc. TTDWI_RRQ207.inddDWI_RRQ207.indd cc22 33/26/07/26/07 111:12:421:12:42 AAMM SECOND QUARTER 2007 TDWI BEST PRACTICES REPORT BI SEARCH AND TEXT ANALYTICS New Additions to the BI Technology Stack By Philip Russom Table of Contents Research Methodology and Demographics . 3 Introduction to BI Search and Text Analytics . 4 Defining BI Search . 5 Defining Text Analytics . 5 The State of BI Search and Text Analytics . 6 Quantifying the Data Continuum . 7 New Data Warehouse Sources from the Data Continuum . 9 Ramifications of Increasing Unstructured Data Sources . .11 Best Practices in BI Search . 12 Potential Benefits of BI Search . 12 Concerns over BI Search . 13 The Scope of BI Search . 14 Use Cases for BI Search . 15 Searching for Reports in a Single BI Platform Searching for Reports in Multiple BI Platforms Searching Report Metadata versus Other Report Content Searching for Report Sections Searching non-BI Content along with Reports BI Search as a Subset of Enterprise Search Searching for Structured Data BI Search and the Future of BI . 18 Best Practices in Text Analytics . 19 Potential Benefits of Text Analytics . 19 Entity Extraction . 20 Use Cases for Text Analytics . 22 Entity Extraction as the Foundation of Text Analytics Entity Clustering and Taxonomy Generation as Advanced Text Analytics Text Analytics Coupled with Predictive Analytics Text Analytics Applied to Semi-structured Data Processing Unstructured Data in a DBMS Text Analytics and the Future of BI .