A Platform for Networked Business Analytics BUSINESS INTELLIGENCE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Query All Tables in a Schema
Query All Tables In A Schema Orchidaceous and unimpressionable Thor often air-dried some iceberg imperially or amortizing knee-high. Dotier Griffin smatter blindly. Zionism Danie industrializing her interlay so opaquely that Timmie exserts very fustily. Redshift Show Tables How your List Redshift Tables FlyData. How to query uses mutexes will only queried data but what is fine and built correctly: another advantage we can easily access a string. Exception to query below queries to list of. 1 Do amount of emergency following Select Tools List Tables On the toolbar click 2 In the. How can easily access their business. SQL to Search for her VALUE data all COLUMNS of all TABLES in. This system table has the user has a string value? Search path for improving our knowledge and dedicated professional with ai model for redshift list all constraints, views using schemas. Sqlite_temp_schema works without loop. True if you might cause all. Optional message bit after finishing an awesome blog. Easy way are a list all objects have logs all databases do you can be logged in lowercase, fully managed automatically by default description form. How do not running sap, and sizes of all object privileges granted, i understood you all redshift of how about data professional with sqlite? Any questions or. The following research will bowl the T-SQL needed to change every rule change the WHERE clause define the schema you need and replace. Lists all of schema name is there you can be specified on other roles held by email and systems still safe even following command? This data scientist, thanx for schemas that you learn from sysindexes as sqlite. -
Data Extraction Techniques for Spreadsheet Records
Data Extraction Techniques for Spreadsheet Records Volume 2, Number 1 2007 page 119 – 129 Mark G. Simkin University of Nevada Reno, [email protected], (775) 784-4840 Downloaded from http://meridian.allenpress.com/aisej/article-pdf/2/1/119/2070089/aise_2007_2_1_119.pdf by guest on 28 September 2021 Abstract Many accounting applications use spreadsheets as repositories of accounting records, and a common requirement is the need to extract specific information from them. This paper describes a number of techniques that accountants can use to perform such tasks directly using common spreadsheet tools. These techniques include (1) simple and advanced filtering techniques, (2) database functions, (3) methods for both simple and stratified sampling, and, (4) tools for finding duplicate or unmatched records. Keywords Data extraction techniques, spreadsheet databases, spreadsheet filtering methods, spreadsheet database functions, sampling. INTRODUCTION A common use of spreadsheets is as a repository of accounting records (Rose 2007). Examples include employee records, payroll records, inventory records, and customer records. In all such applications, the format is typically the same: the rows of the worksheet contain the information for any one record while the columns contain the data fields for each record. Spreadsheet formatting capabilities encourage such applications inasmuch as they also allow the user to create readable and professional-looking outputs. A common user requirement of records-based spreadsheets is the need to extract subsets of information from them (Severson 2007). In fact, a survey by the IIA in the U.S. found that “auditor use of data extraction tools has progressively increased over the last 10 years” (Holmes 2002). -
Exasol User Manual Version 6.0.8
Exasol User Manual Version 6.0.8 Empowering analytics. Experience the world´s fastest, most intelligent, in-memory analytics database. Copyright © 2018 Exasol AG. All rights reserved. The information in this publication is subject to change without notice. EXASOL SHALL NOT BE HELD LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS CONTAINED HEREIN NOR FOR ACCIDENTAL OR CONSEQUENTIAL DAMAGES RES- ULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF. No part of this publication may be photocopied or reproduced in any form without prior written consent from Exasol. All named trademarks and registered trademarks are the property of their respective owners. Exasol User Manual Table of Contents Foreword ..................................................................................................................................... ix Conventions ................................................................................................................................. xi Changes in Version 6.0 ................................................................................................................. xiii 1. What is Exasol? .......................................................................................................................... 1 2. SQL reference ............................................................................................................................ 5 2.1. Basic language elements .................................................................................................... 5 2.1.1. Comments -
SQL Server Column Store Indexes Per-Åke Larson, Cipri Clinciu, Eric N
SQL Server Column Store Indexes Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Srikumar Rangarajan, Aleksandras Surna, Qingqing Zhou Microsoft {palarson, ciprianc, ehans, artemoks, susanpr, srikumar, asurna, qizhou}@microsoft.com ABSTRACT SQL Server column store indexes are “pure” column stores, not a The SQL Server 11 release (code named “Denali”) introduces a hybrid, because they store all data for different columns on new data warehouse query acceleration feature based on a new separate pages. This improves I/O scan performance and makes index type called a column store index. The new index type more efficient use of memory. SQL Server is the first major combined with new query operators processing batches of rows database product to support a pure column store index. Others greatly improves data warehouse query performance: in some have claimed that it is impossible to fully incorporate pure column cases by hundreds of times and routinely a tenfold speedup for a store technology into an established database product with a broad broad range of decision support queries. Column store indexes are market. We’re happy to prove them wrong! fully integrated with the rest of the system, including query To improve performance of typical data warehousing queries, all a processing and optimization. This paper gives an overview of the user needs to do is build a column store index on the fact tables in design and implementation of column store indexes including the data warehouse. It may also be beneficial to build column enhancements to query processing and query optimization to take store indexes on extremely large dimension tables (say more than full advantage of the new indexes. -
Tip for Data Extraction for Meta-Analysis - 11
Tip for data extraction for meta-analysis - 11 How can you make data extraction more efficient? Kathy Taylor Data extraction that’s not well organised will add delays to the analysis of data. There are a number of ways in which you can improve the efficiency of the data extraction process and also help in the process of analysing the extracted data. The following list of recommendations is derived from a number of different sources and my experiences of working on systematic reviews and meta- analysis. 1. Highlight the extracted data on the pdfs of your included studies. This will help if the other data extractor disagrees with you, as you’ll be able to quickly find the data that you extracted. You obviously need to do this on your own copies of the pdfs. 2. Keep a record of your data sources. If a study involves multiple publications, record what you found in each publication, so if the other data extractor disagrees with you, you can quickly find the source of your extracted data. 3. Create folders to group sources together. This is useful when studies involve multiple publications. 4. Provide informative names of sources. When studies involve multiple publications, it is useful to identify, through names of files, which is the protocol publication (source of data for quality assessment) and which includes the main results (sources of data for meta- analysis). 5. Document all your calculations and estimates. Using calculators does not leave a record of what you did. It’s better to do your calculations in EXCEL, or better still, in a computer program. -
Replication at the Speed of Change – a Fast, Scalable Replication Solution for Near Real-Time HTAP Processing
Replication at the Speed of Change – a Fast, Scalable Replication Solution for Near Real-Time HTAP Processing Dennis Butterstein Daniel Martin Jia Zhong Lingyun Wang Knut Stolze Felix Beier IBM Silicon Valley Lab IBM Research & Development GmbH 555 Bailey Ave Schonaicher¨ Strasse 220 San Jose, CA 95141, United States 71032 Boblingen,¨ Germany [email protected] [email protected] [email protected] fdanmartin,stolze,[email protected] ABSTRACT engine was first replaced with Netezza (IBM PureData Sys- 2 The IBM Db2 Analytics Accelerator (IDAA) is a state- tem for Analytics ). Netezza's design is to always use table of-the art hybrid database system that seamlessly extends scans on all of its disks in parallel, leveraging FPGAs to ap- the strong transactional capabilities of Db2 for z/OS with ply decompression, projection and filtering operations before the very fast column-store processing in Db2 Warehouse. the data hits the main processors of the cluster nodes. The The Accelerator maintains a copy of the data from Db2 for row-major organized tables were hash-distributed across all z/OS in its backend database. Data can be synchronized nodes (and disks) based on selected columns (to facilitate at a single point in time with a granularity of a table, one co-located joins) or in a random fashion. The engine itself or more of its partitions, or incrementally as rows changed is optimized for table scans; besides Zone Maps there are no using replication technology. other structures (e. g., indices) that optimize the processing IBM Change Data Capture (CDC) has been employed as of predicates. -
A Peek Under the Hood
White paper Technical A Peek under the hood White paper Technical Contents A peek under the hood 01 02 03 Introduction 3 Being really fast 5 Providing a Great User Experience 12 Massively Parallel Processing MPP 5 Self-Optimization 13 Large-Scale In-Memory Advanced Analytics 04 Architecture 9 and Data Science 14 Supporting Business Integration Filters, Joins and Sorting 10 and Day-to-Day Operation 16 Query Optimizer and Interfaces and Tool Query Cache 11 Integration 17 Data Ingestion and Data Integration 18 The Virtual Schema Framework for Data Virtualization & 05 Hybrid Clouds 20 Summary 13 Fail Safety, Dual Data Center Operation and Backup/Restore 24 SQL Preprocessor 25 01 White paper Technical 3 Introduction Exasol was founded in founders recognized that database designed specifically Nuremberg, Germany, in the year new opportunities were made for analytics. Exasol holds 2000 – a time when two trends possible by these trends. With performance records in the in hardware were starting to RAM falling in cost and rising in TPC-H online transaction emerge: capacity and cluster computing processing benchmark from being merely a commodity, it the Transaction Processing Major improvements in was now conceivable to apply Performance Council (TPC) for processing power were no the principles and architectures decision-support databases, longer coming from ever of high-performance computing outperforming competitors by increasing clock speeds of to database design. In the years orders of magnitudes and scaling central processing units (CPUs), that followed, the company up to hundreds of terabytes of but instead from parallel and exclusively focused on delivering data. distributed systems. -
I Am a Data Engineer, Specializing in Data Analytics and Business Intelligence, with More Than 8+ Years of Experience and a Wide Range of Skills in the Industry
Dan Storms [email protected] linkedin.com/in/danstorms1 | 1-503-521-6477 About me I am a data engineer, specializing in data analytics and business intelligence, with more than 8+ years of experience and a wide range of skills in the industry. I have a passion for leveraging technology to help businesses meet their needs and better serve their customers. I bring a deep understanding of business analysis, data architecture, and data modeling with a focus in developing reporting solutions to drive business insights and actions. I believe continuous learning is critical to remaining relevant in technology and have completed degrees in both Finance and Business Information Systems. I have also completed certifications in AWS and Snowflake. Born and raised in Oregon and currently living in Taiwan, I enjoy any opportunity to explore the outdoors and am passionate about travel and exploring the world. Past Employers NIKE Personal Abilities Hard work and honesty forms my beliefs Critical Thinker Problem Solver Logical Visioner Deep experience in business Developed dashboards using Developed data pipelines using analysis, data architecture, and Tableau and PowerBI Apache Airflow, Apache Spark, data modeling and Snowflake Work Ethic Loyalty and Persistence Persuasive Leader Migrated Nike Digital Global Ops Experience streaming and Led analysis and development of BI to Snowflake transforming application data in KPIs in both healthcare and Nike Kafka and Snowflake digital Education & Credentials I believe that personal education never ends Bachelor -
AIMMX: Artificial Intelligence Model Metadata Extractor
AIMMX: Artificial Intelligence Model Metadata Extractor Jason Tsay Alan Braz Martin Hirzel [email protected] [email protected] Avraham Shinnar IBM Research IBM Research Todd Mummert Yorktown Heights, New York, USA São Paulo, Brazil [email protected] [email protected] [email protected] IBM Research Yorktown Heights, New York, USA ABSTRACT International Conference on Mining Software Repositories (MSR ’20), October Despite all of the power that machine learning and artificial intelli- 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. gence (AI) models bring to applications, much of AI development https://doi.org/10.1145/3379597.3387448 is currently a fairly ad hoc process. Software engineering and AI development share many of the same languages and tools, but AI de- 1 INTRODUCTION velopment as an engineering practice is still in early stages. Mining The combination of sufficient hardware resources, the availability software repositories of AI models enables insight into the current of large amounts of data, and innovations in artificial intelligence state of AI development. However, much of the relevant metadata (AI) models has brought about a renaissance in AI research and around models are not easily extractable directly from repositories practice. For this paper, we define an AI model as all the software and require deduction or domain knowledge. This paper presents a and data artifacts needed to define the statistical model for a given library called AIMMX that enables simplified AI Model Metadata task, train the weights of the statistical model, and/or deploy the eXtraction from software repositories. -
Magic Quadrant for Business Intelligence and Analytics Platforms Published: 16 February 2017 ID: G00301340 Analyst(S): Rita L
2/21/2017 Gartner Reprint (https://www.gartner.com/home) LICENSED FOR DISTRIBUTION Magic Quadrant for Business Intelligence and Analytics Platforms Published: 16 February 2017 ID: G00301340 Analyst(s): Rita L. Sallam, Cindi Howson, Carlie J. Idoine, Thomas W. Oestreich, James Laurence Richardson, Joao Tapadinhas Summary The business intelligence and analytics platform market's shift from IT-led reporting to modern business-led analytics is now mainstream. Data and analytics leaders face countless choices: from traditional BI vendors that have closed feature gaps and innovated, to disruptors continuing to execute. Strategic Planning Assumptions By 2020, smart, governed, Hadoop/Spark-, search- and visual-based data discovery capabilities will converge into a single set of next-generation data discovery capabilities as components of modern BI and analytics platforms. By 2021, the number of users of modern BI and analytics platforms that are differentiated by smart data discovery capabilities will grow at twice the rate of those that are not, and will deliver twice the business value. By 2020, natural-language generation and artificial intelligence will be a standard feature of 90% of modern BI platforms. By 2020, 50% of analytic queries will be generated using search, natural-language processing or voice, or will be autogenerated. By 2020, organizations that offer users access to a curated catalog of internal and external data will realize twice the business value from analytics investments than those that do not. Through 2020, the number of citizen data scientists will grow five times faster than the number of data scientists. Market Definition/Description Visual-based data discovery, a defining feature of the modern business intelligence (BI) platform, began in around 2004 and has since transformed the market and new buying trends away from IT- centric system of record (SOR) reporting to business-centric agile analytics. -
BI SEARCH and TEXT ANALYTICS New Additions to the BI Technology Stack
SECOND QUARTER 2007 TDWI BEST PRACTICES REPORT BI SEARCH AND TEXT ANALYTICS New Additions to the BI Technology Stack By Philip Russom TTDWI_RRQ207.inddDWI_RRQ207.indd cc11 33/26/07/26/07 111:12:391:12:39 AAMM Research Sponsors Business Objects Cognos Endeca FAST Hyperion Solutions Corporation Sybase, Inc. TTDWI_RRQ207.inddDWI_RRQ207.indd cc22 33/26/07/26/07 111:12:421:12:42 AAMM SECOND QUARTER 2007 TDWI BEST PRACTICES REPORT BI SEARCH AND TEXT ANALYTICS New Additions to the BI Technology Stack By Philip Russom Table of Contents Research Methodology and Demographics . 3 Introduction to BI Search and Text Analytics . 4 Defining BI Search . 5 Defining Text Analytics . 5 The State of BI Search and Text Analytics . 6 Quantifying the Data Continuum . 7 New Data Warehouse Sources from the Data Continuum . 9 Ramifications of Increasing Unstructured Data Sources . .11 Best Practices in BI Search . 12 Potential Benefits of BI Search . 12 Concerns over BI Search . 13 The Scope of BI Search . 14 Use Cases for BI Search . 15 Searching for Reports in a Single BI Platform Searching for Reports in Multiple BI Platforms Searching Report Metadata versus Other Report Content Searching for Report Sections Searching non-BI Content along with Reports BI Search as a Subset of Enterprise Search Searching for Structured Data BI Search and the Future of BI . 18 Best Practices in Text Analytics . 19 Potential Benefits of Text Analytics . 19 Entity Extraction . 20 Use Cases for Text Analytics . 22 Entity Extraction as the Foundation of Text Analytics Entity Clustering and Taxonomy Generation as Advanced Text Analytics Text Analytics Coupled with Predictive Analytics Text Analytics Applied to Semi-structured Data Processing Unstructured Data in a DBMS Text Analytics and the Future of BI . -
Intelligent Decision Support Systems- a Framework
Information and Knowledge Management www.iiste.org ISSN 2224-5758 (Paper) ISSN 2224-896X (Online) Vol 2, No.6, 2012 Intelligent Decision Support Systems- A Framework Ahmad Tariq * Khan Rafi The Business School, University of Kashmir, Srinagar-190006, India * [email protected] Abstract: Information technology applications that support decision-making processes and problem- solving activities have thrived and evolved over the past few decades. This evolution led to many different types of Decision Support System (DSS) including Intelligent Decision Support System (IDSS). IDSS include domain knowledge, modeling, and analysis systems to provide users the capability of intelligent assistance which significantly improves the quality of decision making. IDSS includes knowledge management component which stores and manages a new class of emerging AI tools such as machine learning and case-based reasoning and learning. These tools can extract knowledge from previous data and decisions which give DSS capability to support repetitive, complex real-time decision making. This paper attempts to assess the role of IDSS in decision making. First, it explores the definitions and understanding of DSS and IDSS. Second, this paper illustrates a framework of IDSS along with various tools and technologies that support it. Keywords: Decision Support Systems, Data Warehouse, ETL, Data Mining, OLAP, Groupware, KDD, IDSS 1. Introduction The present world lives in a rapidly changing and dynamic technological environment. The recent advances in technology have had profound impact on all fields of human life. The Decision making process has also undergone tremendous changes. It is a dynamic process which may undergo changes in course of time. The field has evolved from EDP to ESS.