Deprotonative Metalation of Five-Membered Aromatic Heterocycles Using Mixed Lithium-Zinc Species J.M

Total Page:16

File Type:pdf, Size:1020Kb

Deprotonative Metalation of Five-Membered Aromatic Heterocycles Using Mixed Lithium-Zinc Species J.M Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium-zinc species J.M. l’Helgoual’Ch, Anne Seggio, Floris Chevallier, M. Yonehara, Erwann Jeanneau, Masanobu Uchiyama, Florence Mongin To cite this version: J.M. l’Helgoual’Ch, Anne Seggio, Floris Chevallier, M. Yonehara, Erwann Jeanneau, et al.. Deproto- native metalation of five-membered aromatic heterocycles using mixed lithium-zinc species. Journal of Organic Chemistry, American Chemical Society, 2007, 73 (1), pp.177-183. 10.1021/jo7020345. hal-00784514 HAL Id: hal-00784514 https://hal.archives-ouvertes.fr/hal-00784514 Submitted on 5 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium-zinc species Jean-Martial L'Helgoual'ch,† Anne Seggio,† Floris Chevallier,† Mitsuhiro Yonehara,‡ Erwann Jeanneau,§ Masanobu Uchiyama,*,‡ and Florence Mongin*,† Synthèse et ElectroSynthèse Organiques, UMR 6510 CNRS, Université de Rennes 1, Bâtiment 10A, Case 1003, Campus Scientifique de Beaulieu, 35042 Rennes, France, The Institute of Physical and Chemical Research, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan, and Centre de Diffractométrie Henri Longchambon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France [email protected], [email protected] RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) † UMR 6510 CNRS, Université de Rennes 1. ‡ RIKEN. § Centre de Diffractométrie Henri Longchambon, Université Lyon 1. 1) 0.5 equiv ZnCl2·TMEDA + 1.5 equiv LiTMP THF, rt, 2 h Ar H Ar I 2) I2 Ar-H = benzoxazole, benzothiazole, benzo[b]thiophene, benzo[b]furan, N-Boc indole, N-Boc pyrrole, N-phenylpyrazole: 52-73% 1 Abstract: Deprotonation of benzoxazole, benzothiazole, benzo[b]thiophene, benzo[b]furan, N-Boc protected indole and pyrrole, and N-phenylpyrazole using an in situ mixture of ZnCl2·TMEDA (0.5 equiv) and lithium 2,2,6,6-tetramethylpiperidide (1.5 equiv) in THF at room temperature was described. The reaction was evidenced by trapping with iodine, regioselectively giving the expected functionalized derivatives in 52 to 73% yields. A mixture of mono- and disubstituted derivatives was obtained starting from thiazole. Cross-coupling reactions of 2-metalated benzo[b]thiophene and benzo[b]furan with heteroaromatic chlorides proved possible under palladium catalysis. A reaction pathway where the lithium amide and zinc diamide present in solution behave synergically was proposed for the deprotonation reaction, taking account of NMR and DFT studies carried out on the basic mixture. ___________________________________________________________________________________ Introduction Substituted five-membered aromatic heterocycles are structural units present in many natural products and pharmaceutical synthetic intermediates.1 Among the methods used to functionalize them,1 deprotonation reactions using lithiated bases have been developed.2 This methodology often requires low temperatures and can not be used when reactive functional groups are present. In addition, unlike organoboron, organotin, organozinc and organomagnesium compounds, organolithiums can hardly be involved in cross-coupling reactions.3 Organomagnesium compounds have been prepared by deprotonation at higher temperatures.4 Nevertheless, because of the limited reactivity of the magnesium amide or diamide used to deprotonate functionalized substrates, an excess has in general to be employed to ensure good yields.5 In addition, even if the use of mixed lithium-magnesium amides seems more promising,6 it is still not extendable to very sensitive substrates. 2 The deprotonation reactions of sensitive aromatics such as alkyl benzoates, ethyl thiophenecarboxylates, ethyl 2-furancarboxylate, pyridine, quinoline and isoquinoline using t 7 Bu2Zn(TMP)Li (TMP = 2,2,6,6-tetramethylpiperidino) as a base were first described in 1999. More i recently, the use of the aluminium ate base Bu3Al(TMP)Li and the copper ate bases R(TMP)Cu(CN)Li2 (R = alkyl, aryl, or TMP) have been developed in order to generate functionalized aromatic compounds including heterocycles.8 The reactions performed in tetrahydrofuran (THF) proved to be chemoselective, but require 1 or 2 equiv of base.9 Several examples of deprotonation using lithium amidozincates in hexane have been reported by Mulvey since 2005.10 The term alkali-metal-mediated zincation has been introduced to depict these reactions because the reactivity ("synergy") exhibited by the zincates can not be attained by the homometallic compounds on their own.11 Herein, we report a new chemoselective deprotonation tool for regio-controlled functionalization of five-membered aromatic heterocycles using a basic mixture obtained from a lithium base and TMEDA- chelated zinc chloride. Results and Discussion To develop new chemoselective deprotonation reactions of five-membered aromatic heterocycles, our approach capitalizes on the high chemoselectivity of organozincate reagents, which allows flexible design and fine-tuning by modifying the ligation environment. In the initial screening of suitable zincates, benzoxazole (1) was selected as a model substrate because this substrate can be readily metalated by alkyllithiums, but the 2-lithiated species is well-known to be in equilibrium with the corresponding lithium phenolate, even at extremely low temperature.12 We therefore focused on the stability of intermediary aromatic zincates (relative to their lithium analogues) which is well-known to prevent from subsequent rearrangement13 or side-reactions.14 We assumed that it might allow the 3 regioselective zincation of five-membered aromatic heterocycles and the isolation of 2-zincate intermediates without any successive side-reactions. Previous NMR studies on 2-metallo benzoxazole have shown the equilibrium was completely on the side of the open isomer with lithium, whereas transmetalation to the organozinc derivative favored the ring closure.15 Then, we performed a preliminary DFT study on the stability of 2-metallo benzoxazoles and their rearrangement pathways by means of the B3LYP/6-31+G* method. Figure 1 shows the energy changes for each path, and the geometries of the transition states, intermediates and products. While the transition state (TS) and the product (PD) of 2-lithio derivatives were kinetically and thermodynamically stable, those of the 2-zincio compounds were found to be more unstable compared with 2-zincio reactant (RT), which was consistent with the experimental observations. These big energetic changes by the difference of metal species prompted us to further survey on whether the zincate bases could be used for chemoselective metalation of aromatic heterocycles. E N 1.30 109.6° 1.86 Li 1.94 N 1.49 89.7° 1.92 O Li 1.34 2.44 110.1° 66.8° N 1.18 1.38 TS 31.8° O 10.0 55.1° 3.18 2.22 22.9 125.2° RT Li O 1.74 PD E N 1.22 69.6° 101.2° 1.93 1.92 N 1.18 O 2.19 ZnCl 42.1° 72.4° N 2.82 2.14 1.30 TS 134.0° 1.93 ZnCl 114.0° ZnCl 25.8 O 1.89 1.39 33.1 2.88 O 119.4° PD RT FIGURE 1. Calculated structures for the reactants, transition states and products, and energy changes. Bond lengths and energy changes at the B3LYP/6-31+G* level are shown in Å and kcal/mol, respectively. 4 The deprotonation reaction of 1 was then examined using various zincate reagents (Table 1). The addition of one molar equiv (per lithium) of TMEDA or THF to a bulk nonpolar hydrocarbon in order to increase the opportunity for crystal growth proved to favor the deprotonation reactions of N,N- diisopropylcarboxamide10b,c and anisole10d using lithium amidozincates. We therefore decided to prepare 16 bases from ZnCl2·TMEDA, much less hygroscopic than ZnCl2, and 3 (or 4) equiv of alkyllithium or lithium dialkylamide, and to study their ability to deprotonate benzoxazole (1) (Table 1). TABLE 1. Deprotonation of benzoxazole (1) using in situ prepared mixtures of ZnX2·TMEDA and 3 (or 4) equiv of alkyllithium or lithium dialkylamide 1) ZnX2·TMEDA (n1 equiv) N + RLi (n2 equiv) + R'Li (n3 equiv) N O solvent, rt, 2 h O I 2) I2 1 2 entry X n1 R n2 R' n3 solvent yield (%) 1 Cl 1.0 Me 3.0 - - THF 28 2 Cl 1.0 Bu 3.0 - - THF 10 3 Cl 1.0 Bu 4.0 - - THF 32 4 Cl 1.0 Bu 2.0 TMP 1.0 THF 35 5 Cl 1.0 sBu 2.0 TMP 1.0 THF 38 6 Cl 1.0 Me 2.0 TMP 1.0 THF 44 7 Cl 0.50 TMP 1.5 - - THF 57 8 Cl 0.33 TMP 1.0 - - THF 60 9 Cl 0.40 TMP 1.2 - - THF 55 10 Cl 0.40 TMP 1.2 - - hexane 55 11 Br 0.33 TMP 1.0 - - THF 58 The first experiments were carried out with bases obtained by mixing 1 equiv of ZnCl2·TMEDA and 3 equiv of methyl- or butyllithium, and assumed to be lithium trimethylzincate and lithium tributylzincate, respectively.17 When used in THF at room temperature for 2 h, these mixed Li-Zn compounds hardly 5 metalated benzoxazole (1), giving the 2-substituted derivative 2 in low yields of 28 and 10%, respectively, after trapping with iodine (Entries 1 and 2). Since dilithium tetraalkylzincates have been shown to exhibit a higher reactivity compared to lithium trialkylzincates in various reactions including halogen-metal exchange,18 we decided to use 4 equiv of butyllithium instead of 3.
Recommended publications
  • Synthesis of Condensed 1,2,4-Triazolo-Heterocycles
    Chemistry SYNTHESIS OF CONDENSED 1,2,4-TRIAZOLO-HETEROCYCLES MOHAMMED A. E. SHABAN ADEL Z. NASR MAMDOUH A. M. TAHA SUMMARY: Cyclization of 2-hydrazino-1, 3-benzothiazole, 2-hydrozinoquioline, 2-hydrazinolepidine, and 2-hydrazino-pyridine with one-carbon cyclizing agents such as triethyl orthoformate, ethyl chlorofor- mate, urea, phenylthiourea, and carbon disulfide gave 3-substituted-1,2,4-triazolo (3,4, -b) 1, 3-benzothia- zoles, 3-substituted-1,2,4-triazolo (4,3-a) quinolines, 3-substituted-1,2,4-triazolo (4,3-a) quinolines, 3-substituted-1,2,4-triazolo (4,3-a) lepidines and 3-substituted-1,2,4-triazolo (4,3-a) pyridines respectively. Reactions with acetic acid and acetic anhydride gave the corresponding acetyl hydrazines which were cyclized to the 3-methyl 1,2,4-triazolo-heterocyles. Ring closure with phenyl isocyanate and phenyl isothio- cyanate, gave the intermediate 4-phenylsemicarbazides and 4-phenylthiosemicarbazides which, upon fusion, afforded the corresponding 3-oxo- and 3-thioxo-1,2,4-triazolo-heterocyles. The 3-oxo-compounds were also obtained when 2-chloroquinoloni or 2-chlorolepidine was fused with semicarbazide hydrochloride. Key Words: Synthesis, amidrazones, triazolo-heterocycles. INTRODUCTION The synthesis and biological activities of condensed In an attempt to prepare 3-methyl-1,2,4-triazolo (3,4-b) 1,2,4-triazolo (3,4-z) heterocyles have recently been 1,3-benzothiazole (5a) by heating 2-hydrazino-1, 3- reviewed (14). Several condendes 1,2,4-triazolo-hetero- benzothiazole (1a) with an excess of acetic acid or acetic cyles exhibit various biological activities such as fungicidal anhydride, 1,1,2-triacetyl-2-(1,3-benzothiazol-2-yl) hyd- (1,9) bactericidal (1,9) analgesic (4,7,10) anxiolytic (8) razine (3a) was obtained.
    [Show full text]
  • Synthesis of [1,3,2]Dithiazolo[4,5-B][1,2,5]Oxadiazolo[3,4-E]Pyrazines
    General Papers ARKIVOC 2011 (xi) 69-81 Synthesis of [1,3,2]dithiazolo[4,5-b][1,2,5]oxadiazolo[3,4-e]pyrazines Lidia S. Konstantinova,a Vadim V. Popov,a Natalia V. Obruchnikova,a Konstantin A. Lyssenko,b Ivan V. Ananyev,b and Oleg A. Rakitina* aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia E-mail: [email protected] Abstract The reaction temperature has a strong impact on the results of chlorination of 5,6-bis(tert- butylthio)[1,2,5]oxadiazolo[3,4-b]pyrazine that is readily prepared from 5,6- dichloro[1,2,5]oxadiazolo[3,4-b]pyrazine and sodium tert-butylsulfide. Mono- and bis(sulfenylchlorides) were selectively obtained in high yield and their structure was confirmed by the reaction with morpholine. Treatment of [1,2,5]oxadiazolo[3,4-b]pyrazine-5,6-disulfenyl dichloride with primary aliphatic amines and benzylamine afforded N-substituted [1,3,2]dithiazolo[4,5-b][1,2,5]oxadiazolo[3,4-e]pyrazines in moderate yields. Novel pentacyclic [1,2,5]oxadiazolo[3'',4'':5',6']pyrazino[2',3':5,6][1,2,4]thiadiazino[3,4-b][1,3]benzothiazole, whose structure was confirmed by X-ray diffraction, was obtained by the reaction of this disulfenyl dichloride with 2-aminobenzothiazole. Keywords: Fused 1,3,2-dithiazoles, [1,2,5]oxadiazolo[3,4-b]pyrazines, disulfenyl dichlorides, primary amines, bis(tert-butylthio) derivatives, chlorination Introduction Amongst five-membered
    [Show full text]
  • Pressure Synthesis of Anti-Cancer Active Thiazolo[4,5-C]
    www.nature.com/scientificreports There are amendments to this paper OPEN The frst Q-Tube based high- pressure synthesis of anti-cancer active thiazolo[4,5-c]pyridazines via the [4 + 2] cyclocondensation of 3-oxo-2-arylhydrazonopropanals with 4-thiazolidinones Hamada Mohamed Ibrahim 1,2 & Haider Behbehani 1 A novel and efcient protocol for the synthesis of thiazolo[4,5-c]pyridazine derivatives was developed. The approach utilizes a high pressure Q-Tube reactor to promote cyclocondensation reactions between 3-oxo-2-arylhydrazonopropanals and 4-thiazolidinones. The process has a signifcantly high atom economy and a broad substrate scope, as well as being applicable to gram scale syntheses. The in vitro cytotoxic activities of the synthesized thiazolo[4,5-c]pyridazine derivatives were examined utilizing a MTT colorimetric assay with doxorubicin as a reference anti-cancer drug and three human cancer cell lines including HCT-116 (colon), MCF-7 (breast) and A549 (lung). The results show that thiazolopyridazines 7c, h, k and p have high cytotoxic activity against the MCF-7 cell line with respective IC50 values of 14.34, 10.39, 15.43 and 13.60 μM. Moreover, the thiazolopyridazine derivative 7s also show promising cytotoxic activity against the HCT-116 cell line with IC50 = 6.90 μM . Observations made in this efort serve as a basis for further investigations into the design and preparation of new anti-cancer drugs. Tiazolopyridazine derivatives comprise a broad range of structurally interesting substances that display a variety of medicinally interesting properties including activities against cancers1,2, microbes3,4, viruses5 and bacteria6, as well as antioxidant7, analgesic and pesticidal activities8,9.
    [Show full text]
  • Transforming Litmp Lithiation of Challenging Diazines Through Gallium Alkyl Trans-Metal-Trapping Marina Uzelac, Alan R
    Angewandte Communications Chemie International Edition: DOI: 10.1002/anie.201607284 Metalation German Edition: DOI: 10.1002/ange.201607284 Transforming LiTMP Lithiation of Challenging Diazines through Gallium Alkyl Trans-Metal-Trapping Marina Uzelac, Alan R. Kennedy, Eva Hevia,* and Robert E. Mulvey* Abstract: This study establishes a new trans-metal-trapping in a 1:1 base:pyrazine stoichiometry.[8] Moreover, a lack of (TMT) procedure based on a mixture of LiTMP (the base) and definitive structural information still impoverishes under- tris(trimethylsilylmethyl)gallium [Ga(CH2SiMe3)3, GaR3] (the standing of this area, which in the most extreme “black box” trap) that, operating in a tandem manner, is effective for the cases leads to a misidentification of the actual metalating regioselective deprotonation of sensitive diazines in hydro- base.[9] carbon solution, as illustrated through reactions of pyrazine, This paper reports a new trans-metal-trapping (TMT) pyridazine, and pyrimidine, as well as through the N-S procedure based on a mixture of LiTMP and tris(trimethylsi- heterocycle benzothiazole. The metallo-activated complexes lylmethyl)gallium [Ga(CH2SiMe3)3, GaR3] that is effective for of all of these compounds were isolated and structurally regioselective diazine and benzothiazole deprotonation in defined. hydrocarbon solution. Whereas alkyllithium reactions are generally irreversible, LiTMP reactions tend to be pKa- As one of the most used strategies in synthetic campaigns, dependent equilibria. In TMT, these equilibria are shifted
    [Show full text]
  • Wednesday, July 10, 2019 4:00Pm
    Wednesday, July 10, 2019 4:00pm Oklahoma Health Care Authority 4345 N. Lincoln Blvd. Oklahoma City, OK 73105 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review (DUR) Board Members FROM: Melissa Abbott, Pharm.D. SUBJECT: Packet Contents for DUR Board Meeting – July 10, 2019 DATE: July 3, 2019 NOTE: The DUR Board will meet at 4:00pm. The meeting will be held at 4345 N. Lincoln Blvd. Enclosed are the following items related to the July meeting. Material is arranged in order of the agenda. Call to Order Public Comment Forum Action Item – Approval of DUR Board Meeting Minutes – Appendix A Update on Medication Coverage Authorization Unit/SoonerPsych Program Update – Appendix B Action Item – Vote to Prior Authorize Jornay PM™ [Methylphenidate Extended-Release (ER) Capsule], Evekeo ODT™ [Amphetamine Orally Disintegrating Tablet (ODT)], Adhansia XR™ (Methylphenidate ER Capsule), and Sunosi™ (Solriamfetol Tablet) – Appendix C Action Item – Vote to Prior Authorize Balversa™ (Erdafitinib) – Appendix D Action Item – Vote to Prior Authorize Annovera™ (Segesterone Acetate/Ethinyl Estradiol Vaginal System), Bijuva™ (Estradiol/Progesterone Capsule), Cequa™ (Cyclosporine 0.09% Ophthalmic Solution), Corlanor® (Ivabradine Oral Solution), Crotan™ (Crotamiton 10% Lotion), Gloperba® (Colchicine Oral Solution), Glycate® (Glycopyrrolate Tablet), Khapzory™ (Levoleucovorin Injection), Qmiiz™ ODT [Meloxicam Orally Disintegrating Tablet (ODT)], Seconal Sodium™ (Secobarbital
    [Show full text]
  • A Simple, Rapid and Efficient One-Pot Protocol for the Synthesis of 2-Substituted Benzothiazole Derivatives and Their Antimicrobial Screening
    RESEARCH ARTICLE A. Rauf, S. Gangal, S. Sharma and M. Zahin, 63 S. Afr. J. Chem., 2008, 61, 63–67, <http://journals.sabinet.co.za/sajchem/>. A Simple, Rapid and Efficient One-pot Protocol for the Synthesis of 2-substituted Benzothiazole Derivatives and their Antimicrobial Screening Abdul Rauf,a* Saloni Gangal,a Shweta Sharmaa and Maryam Zahinb aDepartment of Chemistry, Aligarh Muslim University, Aligarh 2002002, India. bDepartment of Agricultural Microbiology, Aligarh Muslim University, Aligarh 2002002, India. Received 30 July 2007, revised 31 August 2007, accepted 14 May 2008. ABSTRACT A rapid and efficient condensation reaction of 2-aminothiophenol with various fatty acids in solvent-free conditions with or without microwave irradiation was carried out to afford the corresponding 2-substituted benzothiazole derivatives in good to excellent yields. The structures of the new products were established by elemental analyses, IR, 1H NMR, 13C NMR and mass spectral data. All the title compounds were screened for their antibacterial and antifungal activity. Most of the compounds exhibited good antimicrobial activity. KEYWORDS Fatty acids, 2-substituted benzothiazole, 2-aminothiophenol, antimicrobial activity, microwave irradiation. 1. Introduction in the presence of nitrobenzene/SiO2 , or nitrobenzene/montmo- 2-Substituted benzothiazoles are an important group of rillonite K10,18 or carboxylic acids.19 heterocyclic compounds that have widespread applications in To the best of our knowledge 2-substituted benzothiazole pharmaceutical and industrial research. The benzothiazoyl derivatives of fatty acids have not yet been reported. The present moiety is a structural element of compounds with potent and work is a continuation of our study on the derivatization of fatty selective antitumour activity,1 antiviral,2 anticonvulsant,3 neuro- acids.
    [Show full text]
  • Page 1 of 8 CONSENT ORDER for ESTABLISHMENT AND
    ANDHRA PRADESH POLLUTION CONTROL BOARD D.No. 33-26-14 D/2, Near Sunrise Hospital, Pushpa Hotel Centre, Chalamalavari Street, Kasturibaipet, Vijayawada 520010. Website :www.appcb.ap.nic.in CONSENT ORDER FOR ESTABLISHMENT AND OPERATION Order No. 135 /APPCB/CFE/RO-VSP/HO/2014 Dt: 26.04.2018 Sub: APPCB CFE - M/s. Torrent Pharmaceuticals Ltd., (Formerly M/s. Glochem Industries Ltd.,) Plot No: 77, JN Pharmacity, Thanam (V), Parawada (M), Visakhapatnam District Consent for Establishment (CFE) and Consent for Operation (CFO) for Change of Product Mix under Sec. 25 / 26 of Water (P & C of P) Act, 1974 and Under Sec. 21 of Air (P&C of P) Act, 1981 - Issued - Reg. Ref: 1) CFE expansion order dt. 10.06.2016. 2) received through A.P. Single Desk Portal on 27.03.2018. 3) 10.04.2018. 4) CFE Committee meeting held on 24.04.2018. 5) 25.04.2018. 1. In the reference 2nd cited, an application was submitted to the Board seeking Consent for Establishment (CFE) and Consent for Operation order (CFO) for Change of Product Mix within the existing premises to produce the products with installed capacities as mentioned below, with an additional investment of Rs. 0.34 Crore. As per CFE (expansion) order dt. 10.06.2016: S. Quantity Name of the Product No (kg/day) 1 RALOXIFINE HYDROCHLORIDE 16.66 2 AMLODIPINE BESILATE 27.77 3 CETIRIZINE DIHYDROCHLORIDE 1.389 4 CLOPIDOGREL BESILATE 2.22 5 RABEPRAZOLE SODIUM 4.166 6 OLANZAPINE 3.333 7 TRIENTINE DI HYDROCHLORIDE 0.277 8 ALFUZOSIN HYDROCHLORIDE 2.777 9 AMISULPRIDE 1.389 10 LEVOCETIRIZINE DIHYDROCHLORIDE 8.333 11 TERBINAFINE
    [Show full text]
  • Modern Approaches to the Synthesis and Transformations of Practically Valuable Benzothiazole Derivatives
    molecules Review Modern Approaches to the Synthesis and Transformations of Practically Valuable Benzothiazole Derivatives Larisa V. Zhilitskaya, Bagrat A. Shainyan * and Nina O. Yarosh E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; [email protected] (L.V.Z.); [email protected] (N.O.Y.) * Correspondence: [email protected] Abstract: The review is devoted to modern trends in the chemistry of 2-amino and 2-mercapto substituted benzothiazoles covering the literature since 2015. The reviewed heterocycles belong to biologically active and industrially demanded compounds. Newly developed synthesis methods can be divided into conventional multistep processes and one-pot, atom economy procedures, realized using green chemistry principles and simple reagents. The easy functionalization of the 2-NH2 and 2-SH groups and the benzene ring of the benzothiazole moiety allows considering them as highly reactive building blocks for organic and organoelement synthesis, including the synthesis of pharmacologically active heterocycles. The review provides a summary of findings, which may be useful for developing new drugs and materials and new synthetic approaches and patterns of reactivity. Keywords: benzothiazole; 2-aminobenzothiazole; 2-mercaptobenzothiazole; synthesis; reactivity; biological activity Citation: Zhilitskaya, L.V.; Shainyan, B.A.; Yarosh, N.O. Modern Approaches to the Synthesis and 1. Introduction Transformations of Practically Benzothiazoles, as a bicyclic heterocycles with fused benzene and thiazole rings con- Valuable Benzothiazole Derivatives. taining electron-rich heteroatoms, nitrogen and sulfur, attract great interest from researchers Molecules 2021, 26, 2190. https:// for drug design due to their high biological and pharmacological activity [1–5].
    [Show full text]
  • Imports of Benzenoid Chemicals and Products in 1977
    IMPORTS OF BENZENOID CHEMICALS, AND PRODUCTS 1977 United States General Imports of Intermediates, Dyes, Medicinals, Flavor and Perfume Materials, and Other Finished Benzenoid Products Entered in 1977 Under Schedule 4, Part 1, of the . Tariff Schedules of the United States USITC PUBLICATION 900 . JULY 1978 United States International Trade Commission I Washington, D.C. 20436 UNITED ST ATES INTERNATIONAL· TRADE. COMMISSION COMMISSIONERS Joseph 0. Parker, Chairman Bill Alberger, Vice Chairman George M. Moore Catherine Bedell ltalo H. Ablondi Daniel Minchew Kenneth R. Mason, Secretary to the Commission OFFICE OF INDUSTRIES Norris A. Lynch, Director This report was principally prepared by Frances Battle, Virginia Bailey, Judy Bryant, Ralph Gray, Sharon Greenfield, Mildred Higgs, Kenneth Kozel, Ross Lewis, Linda Mudd, and Loretta Willis of the Energy and Chemical Division. Antomatic Data Processing imput was provided by James Gill and Dean Stout. Address all communications to Office of the Secretary United States International Trade Commission Washington, D.C. 20436 For Release Contact: Mr. James O'Connor July 21, 1978 (202) 523-0496 USITC 78-076 UNITED STATES INTERNATIONAL TRADE COMMISSION RELEASES FIGURES ON IMPORTS OF BENZENOID CHEMICALS AND PRODUCTS IN 1977 The U.S. International Trade Commission today issued a re~ port on U.S. imports of benzenoid chemicals and products in 1977. The report includes data on articles entered under schedule 4, parts lB and lC, of the Tariff Schedules of the United States. It provides detailed statistics on imports of 2,670 products, including benzenoid intermediates, dyes, organic pigments, medic­ inals and pharmaceuticals, flavor and pe~fume materials, and other benzenoid products.
    [Show full text]
  • Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
    International Journal of Molecular Sciences Article The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical 1, 1, 1,2 1 1,2, 3 Xuan Li y, Yixiang Gao y, Chenpeng Zuo , Siyuan Zheng , Fei Xu *, Yanhui Sun and Qingzhu Zhang 1 1 Environment Research Institute, Shandong University, Qingdao 266237, China; [email protected] (X.L.); [email protected] (Y.G.); [email protected] (C.Z.); [email protected] (S.Z.); [email protected] (Q.Z.) 2 Shenzhen Research Institute, Shandong University, Shenzhen 518057, China 3 College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-58631992 These authors contributed equally to this article. y Received: 11 August 2019; Accepted: 28 October 2019; Published: 31 October 2019 Abstract: Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600 1200 K, using canonical − variational transition state theory with a small-curvature tunneling contribution (CVT/SCT).
    [Show full text]
  • Wednesday, June 12, 2019 4:00Pm
    Wednesday, June 12, 2019 4:00pm Oklahoma Health Care Authority 4345 N. Lincoln Blvd. Oklahoma City, OK 73105 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review (DUR) Board Members FROM: Melissa Abbott, Pharm.D. SUBJECT: Packet Contents for DUR Board Meeting – June 12, 2019 DATE: June 5, 2019 Note: The DUR Board will meet at 4:00pm. The meeting will be held at 4345 N. Lincoln Blvd. Enclosed are the following items related to the June meeting. Material is arranged in order of the agenda. Call to Order Public Comment Forum Action Item – Approval of DUR Board Meeting Minutes – Appendix A Update on Medication Coverage Authorization Unit/Use of Angiotensin Converting Enzyme Inhibitor (ACEI)/ Angiotensin Receptor Blocker (ARB) Therapy in Patients with Diabetes and Hypertension (HTN) Mailing Update – Appendix B Action Item – Vote to Prior Authorize Aldurazyme® (Laronidase) and Naglazyme® (Galsulfase) – Appendix C Action Item – Vote to Prior Authorize Plenvu® [Polyethylene Glycol (PEG)-3350/Sodium Ascorbate/Sodium Sulfate/Ascorbic Acid/Sodium Chloride/Potassium Chloride] – Appendix D Action Item – Vote to Prior Authorize Consensi® (Amlodipine/Celecoxib) and Kapspargo™ Sprinkle [Metoprolol Succinate Extended-Release (ER)] – Appendix E Action Item – Vote to Update the Prior Authorization Criteria For H.P. Acthar® Gel (Repository Corticotropin Injection) – Appendix F Action Item – Vote to Prior Authorize Fulphila® (Pegfilgrastim-jmdb), Nivestym™ (Filgrastim-aafi),
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/00094.65 A1 Edgar Et Al
    US 2006OOO9465A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/00094.65 A1 Edgar et al. (43) Pub. Date: Jan. 12, 2006 (54) TREATMENT OF SLEEP DSORDERS USING Related U.S. Application Data SLEEPTARGET MODULATORS (60) Provisional application No. 60/349,912, filed on Jan. 18, 2002. Provisional application No. 60/357,320, (76) Inventors: Dale Edgar, Wayland, MA (US); David filed on Feb. 15, 2002. G. Hangauer, East Amherst, NY (US); Harry Jefferson Leighton, Rockport, Publication Classification ME (US) (51) Int. Cl. A61K 31/496 (2006.01) Correspondence Address: C07D 471/04 (2006.01) MINTZ, LEVIN, COHN, FERRIS, GLOWSKY (52) U.S. Cl. ...................................... 514/253.04; 544/362 AND POPEO, PC. ONE FINANCIAL CENTER (57) ABSTRACT BOSTON, MA 02111 (US) The invention is directed to compositions used for treating Sleep disorders. In addition, the invention provides conve Appl. No.: 10/501,855 nient methods of treatment of a sleep disorder. Furthermore, (21) the invention provides methods of treating Sleep disorders using compositions that remain active for a discrete period (22) PCT Fed: Jan. 21, 2003 of time to reduce side effects. More specifically, the inven tion is directed to the compositions and use of ester deriva tized traZOdone compounds for the treatment of Sleep dis (86) PCT No.: PCT/US03/01845 orders. Patent Application Publication Jan. 12, 2006 Sheet 1 of 8 US 2006/00094.65 A1 IGHRIQ?INH Patent Application Publication Jan. 12, 2006 Sheet 2 of 8 US 2006/00094.65 A1 ZCHRI[10][H Patent Application Publication Jan. 12, 2006 Sheet 3 of 8 US 2006/00094.65 A1 $GIRI[10IH cHEETSWERIN N nOH ad W&N (%) Patent Application Publication Jan.
    [Show full text]