MICRO/NANOENCAPSULATIONOFPROTEINS

WITHINALGINATE/CHITOSANMATRIXBYSPRAYDRYING

By BurakIErdinc ThesissubmittedtotheDepartmentofChemical Engineeringinconformitywiththerequirementsfor ThedegreeofMasterofScience(Engineering) Queen’sUniversity

Kingston,Ontario,Canada

October,2007

copyright©BurakIErdinc,2007 i

ABSTRACT Currently,therapeuticproteinsandpeptidesaredeliveredsubcutaneously,asthey are readily denatured in the acidic, protease rich environment of the stomach or gastrointestinal track and low bioavailability results from poor intestinal absorption through the paracellular route. Encapsulation of therapeutic peptides and proteins into polymericmicroandnanoparticlesystemshasbeenproposedasapossiblestrategyto overcome limitations to oral protein administration. Furthermore, it was shown that nanoparticleshavingdiameterslessthan5mareabletobetakenupbytheMcellsof

Peyer’s patches found in intestinal mucosa . However, the current methodologies to produceparticleswithindesiredrangeinvolvesorganicsolventsandseveralsteps.Inthis study,spraydryingwasinvestigatedasamicroencapsulationalternative,asitoffersthe potential for single step operation, producing dry particles, with the potential for extendingthemicroparticlesizeintothenanorange. The particles were produced by spray drying of alginate/protein solutions. The effect of spray drying operational parametersonparticlepropertiessuchasrecovery,residualactivityandparticlesizewas studied.Particlerecoverydependedontheinlettemperatureofthedrying air,whereas theparticlesizewasaffectedbythefeedrateandthealginateconcentrationofthefeed solution.Increaseinalginate:proteinratioincreasedproteinstabilityduringtheprocess andshelfliveexperiments.Presenceof0.2g/gparticleincreasedtheresidual activityupto90%.Theresultingsphericalmicroandnanoparticleshadsmoothsurfaces.

Stable glycolchitosancaalginate particles were produced with single step operation.

Theresultingparticleshadmeandiameteraround3.5mandreleased35%oftheinitial protein content to the simulated stomach environment within 2 hours. The protein ii distributionwithintheparticlewasstudiedbyconfocallaserscanningmicroscopewith florescentlabeledprotein.Theimageshowedproteindepositiontowardthesurfaceofthe particles.TotaldryingtimeandPecletnumberwascalculatedfortheparticlesandfound tobe8.5msand240,whichindicatesthatparticleformationwas governedmainlyby convection,whichresultedinahollowcentralregionandproteindistributiontowardthe particlesurface.Thisstudyshowsthatstablealginateparticlescontainingproteinscanbe producedinasinglestepbyspraydrying,wheretheparticleshadameansizelowerthan thecriticaldiameternecessarytobeorallyabsorbedbyMcell’softhePeyer’spatchesin thegastrointestinaltractandthuscanbeconsideredasapromisingtechnologyfororal peptideandproteindelivery.

iii

ACKNOWLEDGEMENTS

Firstofall,Iwouldliketoexpressmydeepestgratitudetomyresearchsupervisor

Dr. Neufeld for his superb guidance, teaching, patience, encouragement and understandingduringmygraduatestudies.

IwouldalsoliketosincerelythankCharlieCooney,Andrea LiskovaandMatt

Gordonfortheirhelpinscanningelectronmicroscope,particlesizerandconfocallaser scanningmicroscope.MywholeheartedthankstomylabmatesNatineeSuvanasingha,

ArielChanfortheirinvaluablehelp,adviceandinformation.Iwouldliketothankallmy closefriends,whoalwaysstoodbymyside.

Finally, I would like to give my special thanks to my family for their unconditionalloveandsupport.Iwouldliketodedicatemythesistomysister,Banu,for alwayslettingmydreamscomethrough.

iv

TABLEOFCONTENTS ABSTRACT………………………………………………….………….……….……....i ACKNOWLEDGEMENTS…..……………………………….………….………..…..iii TABLEOFCONTENTS……………………………………….………………….…...iv LISTOFFIGURES…...……………………………………………….……………….vi LISTOFTABLES..……………………………………………………...…………..…vii NOMENCLATURE…………………………………………………………………...viii CHAPTER1.0INTRODUCTIONANDLITERATUREREVIEW………………....1 1.1ProteinMicroencapsulation...... 1 1.2MicroencasulationofProteinsbySprayDrying...... 2 1.3SprayDrying ...... 6 1.4SprayDryingStages...... 8 1.4.1Atomization...... 8 1.4.2SprayAirContact ...... 10 1.4.3SeparationoftheDriedProduct...... 11 1.5Alginate ...... 12 1.6GlycolChitosan ...... 15 1.7Subtilisin,LysozymeandBovineSerumAlbumin(BSA) ...... 16 1.8Trehalose ...... 18 CHAPTER 2.0OBJECTIVES ……………………………………………………19 CHAPTER3.0MATERIALSANDMETHODS……..………………………………21 3.1Materials...... 21 3.2Methods...... 21 3.2.1PreparationofFeedSolution...... 21 3.2.2DeterminationofSubtilisinConcentrationandActivity ...... 22 3.2.3ProteinReleasefromMicroandNanoParticlesinGISimulated ...... 23 v

3.2.4CharacterizationofMicroandNanoAlginateParticles...... 24 3.2.4.1Determinationofresidualmoisturecontent...... 24 3.2.4.2Determinationofthesizedistributionoftheparticles ...... 24 3.2.4.3Particlemorphologyandproteindistributionwithintheparticles...... 25 CHAPTER 4.0RESULTSANDDISCUSSION ……………………………………26 4.1SpraydriedAlginateMicroparticlesCarryingActiveBiologicals...... 26 4.1.1StabilityofSubtilisinintheFeedSolution ...... 26 4.1.2ResidualActivityofSubtilisinwithinParticles ...... 28 4.1.3RetentionofSubtilisinActivitywithDifferentFormulationsofAlginate ...... 31 4.1.4EffectofFeedRateonParticleSize...... 33 4.1.5EffectofAlginateConcentrationonParticleSizeDistribution...... 35 4.1.6ResidualActivityofSubtilisinwithDifferentAmountsofTrehalose...... 39 4.1.7EffectofStorageTimeonResidualActivityofSubtilisin ...... 43 4.2AlginateMicroandNanoParticlesProducedbySprayDrying...... 44 4.2.1StabilityandSizeofAlginateMicroandNanoParticles ...... 47 4.2.2ProteinReleasefromMicroandNanoAlginateParticles ...... 50 4.2.3ProteinReleasefromParticlesFormulatedwithGlycolchitosanandCalcium Alginate ...... 51 4.2.4PhysicalPropertiesoftheChitosanAlginateParticles...... 55 4.2.5ProteinDistributionWithintheParticles ...... 56 4.2.5.1EstimationofTotalDryingTimeofSingleAlginateDroplet...... 61 4.2.5.2EstimationofTimeRequiredforaBSAMoleculetoDiffusefromthe SurfacetotheCenteroftheDroplet...... 66 4.2.5.3CalculationofPecletNumber ...... 67 4.2.6ComparisonofPresentStudywithaPreviousMethod ...... 67 CHAPTER5.0CONCLUSIONS……………………………………………..………..69 6.0REFERENCES…………………..…………………………………………………72 7.0APPENDIX………………………...... ……………...……………………………….78 vi

LISTOFFIGURES Figure1.1 Schematicillustrationofacocurrentspraydryer 7

Figure1.2 Particlesizerangesproducedbydifferentnozzlesystems 9 Schematicillustrationofdropletsurfacetemperatureandofthecrust Figure1.3 11 formationoftheparticles Figure1.4 Alginateblocktypes 13 ProbablebindingmodebetweenthecalciumionandtwoGresidues Figure1.5.I 14 ofalginate Figure1.5.II Theconversionofalginatechainstobuckledribbonlikestructures 14

Figure1.6.I Chemicalstructureofchitosan 15

Figure1.6.II Chemicalstructureofglycolchitosan 15

Figure1.7 Molecularstructureoftrehalose 18

Figure4.1.1 Activityretentionofsubtilisinin2%alginatefeedsolution. 27 Effectofproteinloadingandinlettemperatureonresidualactivity Figure4.1.2 32 ofsubtilisin. SEMimageofspraydriedalginateparticlescarryingsubtilisin, Figure4.1.3 38 preparedatdifferentalginateconcentrations. Effectoftrehaloseloadingonresidualactivityofsubtilisinwithin Figure4.1.4 40 particles.Proteinloading0.1g/gparticle Effectoftrehaloseloadingonresidualactivityofsubtilisinwithin Figure4.1.5 41 particles.Proteinloading0.33g/gparticle SEMimagesofspraydriedalginatetrehaloseparticlescarrying Figure4.1.6 42 subtilisin. Effectofformulationparametersonstorageresidualactivityof Figure4.1.7 43 alginateparticlescarryingsubtilisin. Figure4.2.1 SchematicdescriptionofCoppietal.(2001)andcurrentmethod 46 Effectofalginateconcentrationinthefeedsolutiononmorphology Figure4.2.2 50 ofcaalginateparticles. vii

Figure4.2.3 ReleaseprofileofBSAfromalginateparticlesproducedwith 50 differentamountsofCa ++ inthefeedsolution. ReleaseprofileofBSAfromglycolchitosanalginateparticles Figure4.2.4 54 producedbyspraydryingatdifferentformulationratios. Releaseprofileofmodelproteinsfromchitosanalginateparticlesin Figure4.2.5 56 hydrochloricacidbufferatpH1.2andphosphatebufferatpH6.8 Figure4.2.6 SEMimagesofproteinloadedchitosanalginateparticles. 57 FITClabeledBSAdistributionwithinglycolchitosanalginate Figure4.2.7 60 particles LISTOFTABLES Table1.1 Propertiesofmodelproteinsusedinthisstudy. 17

Residualactivityofsubtilisinwithinalginateparticlesproducedby Table4.1.1 28 spraydryingatdifferentT inlet Moisturecontentandrecoveryofthemicroparticlesproducedat Table4.1.2 30 differentT inlet Effectofliquidfeedrateonoutlettemperature,particlesizeand Table4.1.3 33 residualactivityofsubtilisin.

Table4.1.4 Sizeanddimensionaldistributionofalginatemicroparticles 35

Effectofalginateconcentrationonparticlesize,productrecovery, Table4.1.5 36 moisturecontentandresidualactivityofsubtilisin Sizeanddimensionaldistributionofalginateparticlespreparedat Table4.1.6 37 differentconcentrations.

Table4.2.1 Stabilityofmicroandnanoparticlesproducedbyspraydrying. 48

Sizedistributionofthealginatemicroandnanoparticleswith Table4.2.2 49 differentamountofalginateinthefeedsolution. Comparisonofparticlesizedistributionofchitosanalginate Table4.2.3 55 particlescarryingdifferentproteins.

Table4.2.4 Comparisonofsinglemethodwiththepreviouslyproposedmethod. 68

viii

NOMENCLATURE η Viscosityofthedroplet,cp D DiffusionrateofBSAmoleculewithindroplet,m 2/s

Dav Averagedropletdiameter,m

Dd Initialdropletdiameterduringconstantrateperiod,m

Dh Diameterofthehollowregionintheparticle

Dp Dropletandparticlediameterduringfallingrateperiod,m Thermalconductivityofthewatervaporinthestagnantlayeraroundthedroplet, k d kcal/mh oC Thermalconductivityoftheairinthestagnantlayeraroundtheparticle,kcal/mh k a d oC 23 2 2 k B Boltzmanconstant,1.3806503×10 m kg/s K P Pressureoftheatomizingair,psi Pe Pecletnumber,dimensionless

Qaa Atomizingairfeedrate,L/h 3 Qda Dryingairflowrate,m /h

Qlf Feedsolutionflowrate,mL/min

RH HydrodynamicradiusofBSAmolecule,nm R Radiusofthedroplet,m

tcr Dryingtimeduringcriticalperiod,ms

td Dryingtimeofconstantplusfallingrate,ms o Toutlet Outlettemperatureofthedryingair, C o Tinlet Inlettemperatureofthedryingair, C inlet o Twb Wetbulbtemperatureofthedryinginletair, C outlet o Twb Wetbulbtemperatureofthedryingoutletair, C

Wcr Totalmasslossduringconstantrateperiod,kg

W fr Totalmasslossduringfallingrateperiod,kg

Win Initialweightofthedroplet,kg

Wp Weightoftheparticleduringfallingrate,kg λ Latentheatofvaporizationofwater,kcal/kg 3 ρa Bulkdensityofalginate,kg/m 3 ρs Averagedensityofthedryparticle,kg/m 1

CHAPTER1.0INTRODUCTIONANDLITERATUREREVIEW

1.1ProteinMicroencapsulation Microencapsulationisaprocess,whereactivebiologicalssuchasenzymes,cellsor therapeutics such as antibiotics or vitamins, are entrapped within a semipermeable matrix. The resulting capsules or particles generally range from micrometers to millimetersinsize(Thies,2005).Applicationsofmicroencapsulationincludecontrolled release of the active components, particle coating, flavor stabilization, taste masking, physical/chemicalstabilization,improvementofshelflifeandpreventionofexposureof the active material to the surroundings (Benita, 1996). Many microencapsulation techniques have provided important innovations to the pharmaceutical, agricultural, cosmetics,medical,biotechnology,food,paperandtextileindustries.

A number of microencapsulation strategies have been described in the literature, whichresultinwetsuspensionsofmicroparticles,andofteninvolveseveralprocessing stepsincludingtheuseoftoxicsolvents.Thegoalofthepresentstudywastoexamine spraydryingasamicroencapsulationalternative,asitoffersthepotentialforsinglestep operation,producingdryparticles,withthepotentialforextendingthemicroparticlesize into the nanorange. Nanoparticles are becoming increasingly important in the pharmaceutical field, such as toward the oral dosage of peptide or protein based therapeutics. A variety of model proteins were nano/microencapsulated in the present investigation,usingalginateasabiodegradablematrixmaterial.

2

1.2MicroencapsulationofProteinsbySprayDrying

Currently,therapeuticproteinsandpeptidesaredeliveredsubcutaneously,asthey are readily denatured in the acidic, protease rich environment of the stomach or gastrointestinal track and low bioavailability results from poor intestinal absorption through the paracellular route. Encapsulation of therapeutic peptides and proteins into polymericmicroandnanoparticlesystemshasbeenproposedasapossiblestrategyto overcomelimitationstooralproteinadministration(Reis etal.,2006).Furthermore,it wasshownthatnanoparticleshavingdiameterslessthan5mareabletobetakenupby theMcellsofPeyer’spatchesfoundinintestinalmucosa(Hussein etal .,2001).

Severalformulationtechniqueshavebeeninvestigatedpreviouslytoproducenano particles(<5m),includingnanoemulsiondispersion(Reis etal.,2004),ionotropicpre gelation (Sarmento et al., 2006) and spray drying (Coppi et al., 2001). Although, the desiredparticlesizeswereachievedthroughnanoemulsiondispersionandionotropicpre gelationtechniques,theyhavethedrawbackofrequiringorganicsolventsandmultiple steps.Howeverspraydryingisasinglestepprocess,whichcanbeoperatedcontinuously.

Spraydryingutilizesheatfromahotgasstreamto evaporate microdispersed droplets createdbyatomizationofcontinuouspolymer/proteinfeed,thustheencapsulationofthe desireddrugisachieved.

During the spray drying process, proteins can unfold due to dehydration stress

(CarpenterandManning,2002)althoughthedropletsreachonlytherelativelylowwet bulbtemperaturebyhighratesofmoistureevaporation (Broadhead et al ., 1992). This protein stability problem is prevented by using an additive such as , trehalose, or,whichremainintheamorphousphasewiththeproteinand/or 3 hydrogenbondtotheproteinintheplaceofwaterduringdrying,suchasisthecasewith sucrose or trehalose (DePaz et al., 2002). In addition to dehydration, there are also stressesthatleadtoproteindenaturation,suchasshearinthespraynozzle,andprotein adsorption at the water/air interface (Adler and Lee, 1998). However, shearing stress occurringduringpumping,flowandatomization,donotappeartocausemajordamageto proteins.Forexample,MaaandHsu(1997)studiedthehighshearandadsorptiontothe air/liquid interface. For recombinant human growth hormone (rhGH), shearing stress occurringduringpumping,flowandatomization,didnotappeartocausemajordamage.

Itwasconcludedthatproteinadsorptionattheair/liquidinterfaceistheprimarycauseof theobserveddenaturation.

Spray drying was studied previously to produce protein loaded polymer particles with diameters ranging from nanometers to several microns. In this context, several polymeric matrices have been studied such as poly (Dlactide) (Tanaka, 1994), poly(lactidecoglycolide) (Blanco et al. , 2005, Wang and Wang, 2003, Pavenetto et al. ,1993,Wageneer,1994),andpoly(εcaprolactone)(Blanco etal .,2003).Howeverthese polymers all require organic solvents such as dichloromethane to formulate the spray dryingfeedsolution.Usageofhydrogelssuchasalginateasanencapsulationmatrixis favorable, since they form aqueous solutions, are biocompatible, highly inert toward proteindrugsandare,increasingdrugresidencetimeatthesiteofintestinal absorption(GombotzandWee,1998,TønnesenandKarlsen,2002).Alginatesareknown to sustain release due to gelation with cations, such as Ca ++ (Kim and Lee, 1992).

However, the cation crosslinked alginate network can degrade through removal of calciumionswithchelatorssuchas,citrate,lactateandphosphate,howevertheseions 4 generallydonotappearinhumanintestinalfluid(Bhagat etal .,1994).Alginatesform strong complexes with polycations such as chitosan (Gombotz and Wee, 1998) and glycolchitosan(Sakai etal .,2000)andthesecomplexesdonotdissolveinthepresence ofCa ++ chelatorsandcanbeusedtostabilizethegelandreduceitsporosity.

Previously, spray drying was investigated to produce alginate based particles.

Takeuchi et al ., (1998, 2000) investigated the properties of chitosanalginate compositeparticlesproducedbyrotaryatomizerfordirecttablettingpurposes.Coppiet al .,(2001,2002,2004)studiedproductionofalginatemicroparticlesfororaldrugdelivery purposes,whereBSA,Llactadehydrogenaseandapeptideantibiotic,polymixcin,were used as model systems. In addition, several researchers studied spray dried alginate particlesystemsfocusingonproductionofparticleswithspecificapplications,suchas encapsulationofvolatilematerials(Rosenberg,1990),andimmobilizationofcells(Begin etal.,1990).

However, there have been no studies on alginate as spray dried encapsulation matrix, involving the effects of operational parameters on particle properties, such as size,morphology,residualactivityandparticlerecovery, particularly for production of nanoparticles where bioactive biologicals, such as enzymes are encapsulated. These operating parameters include formulation, concentration and feed rate of the feed solution,andinlettemperatureofthedryingair.Moreover,theproposedmethodologyof

Coppi et al . (2001,2002,2004) to produce alginate particles for oral protein delivery purposes,involvedspraydryingofanalginate/proteinsolutionformingparticleswhich weresubsequentlysubjectedtoseveraladditionalstepstoenhancetheproperties,suchas physicalcrosslinkingoftheparticlesinCaCl 2aqueoussolutionandsurfacetreatmentof 5 theparticleswithchitosantoreinforcethealginatenetworkandtoimproveadsorption acrosstheintestinalepithelia.Moreover,particlesweresubjectedtoasecondandfinal dryingstepinvolvingfreezedryingtoremovewaterandtorecovertheparticles.These multiple steps can alter some of the properties of the particles. For example, the entrappeddrugcanbereleasedtotheaqueousmediumduringthegellationstep,orpH sensitive proteins can be affected during surface treatment of the particles due to the solubilityrequirementsofchitosan(pH<5.5).Moreover,lypholizationcausesadditional stress on particles and proteins, such as changing the particle morphology and denaturationoftheproteinsduetodehydration(Wang,2000).

In the present study, alginate and alginate (trehalose) formulations were investigatedusingtheproteasesubtilisinasamodelprotein,intermsofhowtheycan affecttheresidualactivity,sinceitisimportantinspraydryingtodeterminetheresidual activity,whenheatsensitivematerials,suchasproteins,areneededtobeencapsulated.

Subtilisinwasselectedduetoit’ssimpleactivityassay.Theeffectofinlettemperature, feedrate,andprotein:polymerandprotein:polymer:ratio,ontheproperties of the resulting particles, including mean diameter, residual activity, storage stability, moisture content, and product recovery was studied. Moreover, an alternative single encapsulation step procedure was proposed for oral administration of proteins. The presentstudy,involvedintroductionofdiluteCa ++ ionstoadilutealginatefeedsolution, alongwiththeproteinandglycolchitosan,wherephysicalcrosslinking ofthealginate and polyion complex formation takes place forming sprayable low viscosity gel. The resultingparticleswereinvestigated,forsize,proteincontentandproteinreleasekinetics.

Twoothermodelproteinsystems(lysozyme,andbovineserumalbumin).werealsoused 6 alongwithsubtilisin,sinceit’sbeenknownthatthepropertiesoftheproteins,suchas molecularweightandpI,canplayanimportantrole during their release from alginate matrices(GombotzandWee,1998).Thedistributionofthemodelproteinthroughoutthe polymer matrix was examined by using confocal laser scanning microscopy with florescentlabeledprotein.

1.3SprayDrying Thefirstdetaileddescriptionofdryingofaliquidsystemthroughasprayandhot gassystemappearsinan1872patent.Howeverspraydryingstartedtobewidelyusedin thedairyanddetergentindustriesinthe1920’s.Currently,itisusedinmanyindustries suchaspharmaceutical,food,electronics,chemicalandcosmetics.Antibiotics(suchas penicillin), vitamins (such as ascorbic acid and vitamin B12) and enzymes (such as amylase, protease, lipase and trypsin) are some of the materials spray dried in the pharmaceuticalindustry(ÇelikandWendel,2006).Inspraydrying,aliquidslurryorlow viscositypasteisconvertedintoafreeflowingpowderinoneunitoperation.Figure1.1 shows a general schematic of the spraydrying process. The liquid feed is pumped throughanozzle,whereitisdispersedintofinedroplets.Inthedryingchamber,hotair promotes simultaneous mass and heat transfer forming dry particles. The resulting particlesareseparatedintoacollectionvessel.Abagfiltersystemisusedtopreventthe fineparticlesfromescapingtotheatmosphere. 7

Heating Unit Air

Fan

Feed Bag Tank Filter

Drying Chamber Cyclone Figure1.1.Schematicillustrationofacocurrentspraydryer,wherethe gasandthefeedareflowinginthesamedirection.Redarrowsrepresentheated air,whereasbluearrowsrepresentliquiddropletsformingparticles.

Spray drying is now used in many industries for several reasons. It can be operated as a batch or continuous process and may be operated for months without interruption(Masters,1991).Inaddition,thephysicalpropertiesoftheresultingproduct, suchasparticlesizeandshapeandmoisturecontentcanbecontrolledthroughequipment configuration and manipulation of the process variables. Also most evaporation takes placeinmillisecondstoafewseconds,wellsuitedforheatsensitiveproducts,suchas proteinsandenzymes. 8

1.4SprayDryingStages

Thespraydryingprocessconsistsofthreefundamentalstages.Thefirststageis atomizationofliquidfeedintofinedroplets.Inthesecondstage,spraydropletsencounter theheatedgasstreamandevaporationoftheliquidfromthedropletoccurs,resultingin thefinaldriedparticles.Thefinalstageinvolvesseparationofthedriedpowderfromthe gasstreamandrecoveryoftheparticlesinthecollectionvessel.

1.4.1Atomization

Theatomizationstageproducesasprayofdropletshavingahighsurfacetomass ratio.Thereareseveralatomizationsystemsavailablewhichmaybeclassifiedaccording tothenozzledesign.Examplesincluderotaryatomization,pressureatomizationortwo fluid(pneumatic)atomization.Theselectionofthenozzletypewillaffectdropletsize andsubsequentparticlesizedistributionasillustratedinFigure1.2(Masters,1991).In rotary atomization, the feed fluid is centrifugally accelerated to high velocity before being discharged into the drying air atmosphere, which creates a spray of droplets.

Spinning wheels are used in largerscale spray drying equipment (Masters, 1991). In pressureatomizationthefluidisfedtothenozzleunderpressurewhichcausesthefluid tobedispersedintodropletsasitleavesthenozzle.Theformationofdropletsoccursby conversionofpressureenergywithintheliquidfeedintokineticenergyofthinmoving liquidsheets.Thesheetsbreakupundertheinfluenceofthephysicalpropertiesandby thefrictionaleffectswiththeair(Masters,1991). 9

Rotary Wheel

Pressure Nozzle

2-Fluid Nozzle

2 3 5 10 20 30 50 100 200 300 500

ParticleSize,m Figure1.2Theparticlesizerangesproducedby differentnozzlesystems.FigureisadaptedfromÇelikandWendel(2006).

Theformationofdropletsisinfluencedbythephysicalpropertiesoftheliquid and by frictional effects with the air. In the two fluid nozzle, the liquid feed is transportedtothenozzleatalowflowratewhereitencountersahighvelocitygasstream

(Masters,1991).Themixingofthefeedandthegasstreamcausesthefeedtobreakup intofinedroplets.Twofluidnozzlesaregenerallyusedinlaboratoryscaleandsmallto mediumsizedpilotplantspraydryers.Thedropletsizeisalsoinfluencedbythesurface tensionandtheviscosityoftheliquidfeed,andmostimportantlybythefluidvelocityat thenozzleorificeandbytheair/liquidmassflowratio(Masters,1991).

10

1.4.2SprayAirContact

Immediatelyafteratomization,dropletsencountertheheatedgasstream,whichis usually air.The evaporationofwater fromthespray involves simultaneous heat and mass transfer. On contact between the atomized droplets and the drying air, heat is transferredbyconvectionfromtheairtothedropletsandconsumedaslatentheatduring moistureevaporation.Thevariablesthataffectthedryingofthedropletsinthedrying chamberofalaboratoryscaledryerareinlettemperatureofthedryingair(T inlet )andthe outlettemperature(T outlet ),togetherwiththerelativehumidityandtheflowrateofthe dryingair.Thedryingofadroplettoformaparticleisconsideredasathreestepprocess asillustratedinFigure1.3.Intheinitialrateperiod,thedryingrateincreasesuntilthe surfacetemperatureofthedropletreachesthewetbulbtemperatureofthedryingair,T wb, whichcorrespondsto100%relativehumidity.Intheconstantrateperiod,thedryingrate is constant, where the surface temperature of the droplet remains constant due to the continuousevaporationofthesolvent.Inthefallingrateperiod,thedryingratedecreases andcrustformationoccurs.Duringthisthirdstep, a high surface evaporation rate can leadtoformationofadrycrustsurroundingthedroplet(Masters,1991).Thecrustmay collapseduringfurtherdrying,resultinginparticleswithadeformedshape.

11

I II III End of Drying

Crust formation Sensible Heating

Air wet bulb temperature Dryingrate

DropletSurface Temperature Drying droplet with shrinkage

Drying Time Droplet at initial temperature Figure1.3Schematicillustrationofdropletsurfacetemperatureandofthecrust formationoftheparticles.I,IIandIIIrepresentsinitial,constantandfallingrateperiods. ThefigureisadaptedfromÇelikandWendel(2006).Blacklinesrepresentthesurface temperatureofthedropletsvstime,whereasreddotlinesrepresentthedryingrateofthe particlesvstime.

Thedryingrateofadropletduringtheconstantrateperiodisdependentonthe difference(∆T)betweentheairtemperatureandthetemperatureatthedropletsurface,

TS= Twb . A decrease in inlet temperature and hence also in outlet temperature, T out , resultsinalower∆T,andthereforeinalowerdryingrate(MaaandHsu,1997).T inlet is consideredasanindependentvariable,whereasthecorrespondingT out isdeterminedby

Tinlet andalsothedryingairflowrateandtheliquidflowrate,Q lf .T out isthedominating temperaturewithinthedryingchambersincethehighdryingrateduringtheconstantrate period consumes much heat energy and causes the air temperature to fall rapidly on contacting the droplets. In the second drying period, the drying rate continuously decreasesasillustratedinFigure1.3III,sincetheformationofanoutershelloccursat thesurface(Masters,1991).Theevaporationrateandthepropertiesoftheshellmaterial 12 particlescaninfluencethemorphologyoftheparticles,suchasfastdryingcandeform theparticlesandslowdryingcanleavethematerialwetandsticky(ÇelikandWendel

,2006).

1.4.3SeparationoftheDriedProduct

Particles are separated from the air stream by cyclonic air flow in a conical chamberbase,orbytheabilityoftheparticlestofalloutoftheairflowtoaflatchamber base.Irregardlessofthetypeofseparationused,someformofcollectionequipmentis requiredafterthedryingchamber.Collectionequipmentcanbedryorwetcyclonebags, bagfilters,scrubbersorelectrostaticprecipitators.Cycloneseparatorshavetangentialair entry, where the gasparticle stream enters a cyclindrical and conical chamber. The downwardspiralingmotionresultsinpowdercollectioninthebottomvessel,although some powders tend to persist on the cyclone wall. The air leaves through a central openingatthetop(Masters,1991).

1.5Alginate Alginateisoneofthemostwidelyusedandstudiedpolymersforencapsulation, since it is biochemically inert and gels under mild conditions. Alginate is a naturally occurring polysaccharide, produced commercially from algae or bacteria. It forms hydrogels in the presence of multivalent cations. Alginate consists of linear polysaccharide copolymer chains of 14 linked βD mannuronic acid (M) and αL guluronic acid (G) of widely varying composition and sequence (Gombotz and Wee,

1998).Themonomersarearrangedmainlyintothreetypesofblocks:G,MandMG blocksasshowninfigure1.4. 13

Figure1.4AlginateblocktypesG=guluronicacid M=mannuronicacid.ObtainedfromTønnesenandKarlsen(2002).

Alginatesaltofmonovalentionsuchassodium,iswatersoluble.Inthepresence ofmultivalentcationssuchasCa ++ ,strongbindingoccursbetweenthetwoneighboring

Gblocks,resultingintheformationofextendedalginatenetworkswheretheGblocks formstiffjunctionsasillustratedinFigure1.5.TheGblocksformcavitiesthatfunction asbindingsitesforions(SkjakBreak,1990). 14

Figure 1.5 I. Probable binding mode between the calcium ion and two G residues of alginate.ObtainedfromTønnesenandKarlsen2002.II Theconversionofalginatechains tobuckledribbonlikestructureswhichcontainarraysofCa ++ ions.(GombotzandWee, 1998) Theselectivebindingofcationstothealginateaccountsforitscapacitytoform gels.TheregionsofMandMGblocksarenotinvolvedinnetworkformation.Alginate

Ca ++ gelsconsistingofalginatesrichinGblocks(highGcontent)aregenerallyhardand relatively brittle, whereas gels containing alginate with a relatively high content of M blocks(lowGcontent)aresofterandcanundergolarger deformations (Gombotz and

Wee, 1998). Due to the viscosity limitation of the spray drying system, low viscosity alginatewasusedinthisresearch.

15

1.6GlycolChitosan Chitosan is a linear polysacharride composed of randomly distributed ß(14) linkedDandNacetlyDglucosamineasshowninFigure1.6.Chitosanis derived from the shells of and other sea (Illum,1998). It is biodegradable and biocompatible and able to form a polyion complex with anionic polymers,suchasalginate.Thesecomplexesdonotdissolveinthepresenceofcalcium chelatorsandareusedtobothstabilizeandreduceporosityofthealginatematrix(Wee andGombotz,1998).

I

II

Figure1.6ChemicalStructureofchitosan(I)(Hu etal ,2005) andglycolchitosan(II)(Sakai etal .,2000) 16

ChitosanisnormallyinsolubleinwaterabovepH6 due to its rigid crystalline structureandrequiresacidstobeprotonated(Leeetal.,2007).Thiscreatesalimitation when pH sensitive proteins are encapsulated, thus chemical modifications of chitosan have been studied to increase its water solubility. A poly(ethlyleneglycol)–chitosan hybridsystemwasproduced,whichiswatersolubleovertheentirepHrange(Hu etal .,

2005). In present study glycolchitosan was used mainly due to polymer solubility at neutralpH,andabilitytoformpolyioncomplexeswithalginate.Thestructureofglycol chitosanisillustratedinFigure1.6.Glycolchitosanalginatecomplexeswerealsostudied previously. Sakai et al. (2000) made glycolchitosan/alginate polyion complex microcapsulestoprotectimplantedencapsulatedisletsfromthehostimmuneresponse.

1.7Subtilisin,LysozymeandBovineSerumAlbumin(BSA)

MolecularweightandsizeoftheproteinsandtheirpIvaluesplayanimportant roleinthereleaseofproteinsfromalginatematrices(GombotzandWee,1998).Inthis study,threemodelproteinshavingdifferentmolecularweightswereused;bovineserum albumin(BSA),subtilisinandlysozyme.However,duringtheinvestigationoftheeffect ofspraydryingoperationalparametersonalginatenanoparticleproperties,subtilisinwith awellstudiedspraydryinghistoryandsimpleassaywasselected,sinceitisimportantto determine the residual activity of the particles in the spray drying process where heat sensitivematerialsareaffectedbyseveralstresses.Subtilisinisaproteaseandoneofthe most important groups of industrial enzymes as it accounts for 60% of industrial microbial enzyme sales (Banarjee, 1999). It is usedindetergentformulationstoaidin removing proteinaceous stains, has a molecular weight range of 2535 kDa and an isoelectic point of 9.4 (Ottessen, 1970). Subtilisins are produced by various Bacillus 17 speciessuchas Bacillussubtilus and Bacilluslicheniformis .Previously,polysaccharide

(dextran)sugar (trehalose,sucrose) mixtures were used in spray drying to encapsulate subtilisin into dry formulations to improve its process and storage stability. Several researchersstudiedthe effectofoperationalparameters on enzyme particle properties.

Samborska etal .(2005)investigatedtheeffectsofoperationalparametersonspraydried activity of αamlyase. In their study increasing feedsolutionrateandmaintaininglow outletairtemperatures,providedbetterprotectionofenzymeactivity.Depaz etal.(2002) focused on the effects of a number of additives including dissacharides (sucrose and trehalose), polymers (dextran and maltodextrin) and dissacharidepolymer mixtures on the stability of the subtilisin, both during drying and storage. It was reported that the additivescapableofhydrogenbondinginhibittheunfoldingofsubtilisinduringdrying, hence improved shelf life. Namaldi et al . (2006) studied the effect of temperature and additives(andmaltodextrin)onresidualactivityofserinealkalineprotease.It wasfoundthattheresidualactivityoftheproteincontinuouslydecreasedbyincreasing dryingtemperatureandpresenceofadditives,andincreasedtheresidualactivityatdrying temperaturesof110 oC.Thepropertiesoftheproteinsusedinthisstudyarerepresented inTable1.1.

Table1.1.Propertiesofmodelproteinsusedinthisstudy:BSA,Lysozyme,Subtilisin BSA Subtilisin Lysozyme Number 583 275 129 ofResidues Molecularweight 66.4kDA 2535kDA 14.7kDa TheoreticalpI 5.82 9.4 11.35 18

1.8Trehalose Oneofthechallengestopreservethestabilityoftheenzymesandproteinsduring dryingprocessesisthedehydrationstress.Thuswater replacing excipients are used as additives,suchassucrose,lactose,andtrehalose,whichformhydrogenbonds withproteins,duringwaterremoval(Allison etal ,1999).Trehaloseisadisaccharide,

o havinghighglasstransitiontemperature(T g=84 C,forparticlesproducedatT inlet =150 oC),makingitthemostsuitablesugarforprotectingproteinsfromdenaturationduring drying(AdlerandLee,1998).ThemolecularstructureoftrehaloseispresentedinFigure

1.9.Trehalosehasbeenusedpreviouslyasanprotectiveagentinproteinspraydrying applicationsinordertoimprovestabilityoftheproteins. Adler and Lee, (1998) spray driedlactatedehydrogenaseinthepresenceoftrehalose.Morethat90%oftheactivity wasretainedandwhentheparticleswerestoredatroomtemperaturefor25weeks,no activity loss was observed. Furthermore spray drying of recombinant human growth hormone was studied (Maa et al. , 1997). Broadhead et al ., (1994) spray dried β galactosidaseinthepresenceoftrehaloseandtheactivityoftheenzymewascompletely recovered.

Figure1.9Molecularstructureoftrehalose

19

CHAPTER2.0OBJECTIVES

A number of microencapsulation strategies have been described in the literature, whichresultinwetsuspensionsofmicroparticles,andofteninvolveseveralprocessing stepsincludingtheuseoftoxicsolvents.Thegoalofthepresentstudywastoexamine spray drying as a microencapsulation alternative, since it offers single step operation, producingdryparticles,withthepotentialforextendingthemicroparticlesizeintothe nanorange. Nanoparticles are becoming increasingly important in the pharmaceutical field,suchastowardtheoraldosageofpeptideorproteinbasedtherapeutics.Avarietyof modelproteinswerenano/microencapsulatedinthepresentinvestigation,usingalginate polysaccharide as a biodegradable matrix material, since it is water soluble, biocompatible, highly inert toward protein drugs, and is bioadhesive increasing drug residencetimeatthesiteofintestinalabsorption.

Specificobjectivesareasfollows:

1. Spray drying process parameters will be studied including protein to alginate

ratio,alginateconcentration,feedrate,andinlettemperature,intermsofhowthey

mayaffectthepropertiesofspraydriedmicroandnanoparticlessuchasmean

size and distribution, residual activity of the encapsulated subtilisin, water

content,productyieldandparticlemorphology.

2. Theresidualactivityofamodelprotein,subtilisin,willbeevaluatedintermsof

howactivityisaffectedbyspraydrying,withtheadditionofprotectants,suchas

trehalose. 20

3. The long term stability of the spray dried micro and nano particles will be

determined.

4. In vitro releaseoflowmolecularweightmodelproteins(bovineserumalbumin,

subtilisin and lysozyme) will be investigated in simulated gastrointestinal

environments.

5. Theeffectofadditivessuchasglycolchitosan,onreleaseprofiles,particlesize

andmorphologywillbeevaluated.

6. Thepotentialofspraydryingforthepreparationofnanoparticulateproteinsfor

oraladministrationwillbecomparedwithotherformulationmethodologies.

21

CHAPTER3.0MATERIALSANDMETHODS

3.1Materials

Low viscosity sodium alginate (NaA) (SigmaAldrich, Oakville, Canada) with specifications; 250 cP for 2% solution at 25 oC; molecular weight about 147 000; 61% mannuronic acid and 39% guluronic acid; batch number 112K0931. Subtilisin enzyme concentrate(PurafectUFconcentrate,LotL20031)wassuppliedbyGenencorInternational

Inc. (Palo Alto, USA). Bovine serum albumin (BSA), lysozyme, glycol chitosan, maltose, sucrose,trehalose,peptidesubstrate(NsuccinylLAlaLAlaProLPhepnitroanaline)and otherexcipientswerepurchasedfromSigmaAldrich(Oakville,Canada).

3.2Methods

3.2.1PreparationofFeedSolution

Sodiumalginateatnotedconcentrationswasdissolvedindeionizedwaterusinga magnetic stir plate, then dearated for 30 min. Model proteins at noted concentrations were dissolved in distilled water and added to the alginate solution. If the alginate solutionwasneededtobemixedwithCaCl 2andglycolchitosansolutions,thealginate solutionatvariousconcentrationscontainingamodelprotein(subtilisin,lysozymeand

BSA)atdesiredformulationratewasslowlymixedwithCaCl 2solutioninabeakeraided by mechanical mixer for 5 minutes. The threeblade upward directing marinetype impellerwasplacedclosetoonethirdoftheliquiddepthtoeliminateairentrainment, androtatedat250rpm.Fortheformulationswithglycol chitosan, glycolchitosanat 22 desired amount was dissolved in distilled water and added to the alginate solution containing the protein and dilute Ca ++ . The solution was mixed in a beaker aided by mechanical mixer for 5 minutes by a marinetype impeller at 250rpm. During spray drying, all the feed solution formulations were continuously mixed with a magnetic stirrer.Thedryernozzleandglasswallsoftheparticle collection vessel were cooled withtapwaterduringthedryingoperation.Activity,yield,particlesizeanddistribution andresidualmoisturecontentweredeterminedonformulatedparticles.

3.2.2DeterminationofSubtilisinConcentrationandActivity Subtilisin concentration was determined spectrophotomerically using ultravioletabsorbanceat280nm.Aproteinstandard curve was prepared with BSA in trisHCl buffer solution. The catalytic activity of subtilisin was determined spectrophotometricallyat410nmwith1mg/mlNsuccinylLAlaLAlaProLPhep nitroanalineassubstratein100mMTris,0.005%Tween80pH8.6(DelMarEG),as describedinChan,(2003).Theparticlesdissolvedintrisbuffersystem,andsolutionwas sampled to run activity assay. The residual activity of subtilisin within spray dryed particleswasdeterminedbydividingtheactivityafterrehydrationoftheparticles,bythe activityobtainedbythestocksolutionpriortospraydrying.

23

3.2.3ProteinReleasefromMicroandNanoParticlesinGISimulated Environment Protein release was carried out under simulated gastrointestinal (GI) conditions by suspending10mgparticlesinto20mL0.1MhydrochloricacidsolutionatpH1.2,37 oCfor

2h, followed by transfer to 0.05M phosphate buffer at pH 6.8 for 3h. Experiments were performed in triplicate with mixing. At appropriate time intervals, 1.2 mL aliquots were removed, centrifuged and supernatant removed to be assayed for protein content spectrophotometrically (Cary 1, Varian, Australia) at 595 nm using the Bradford modified method(Coomassiepluskit,Pierce,Fisher,Canada).Inordertokeepthevolumeconstant,1.2 mLofthebuffersolutionwasreplaced.Thepercentageofreleasedproteinandencapsulation efficiencywerecalculatedassumingthatalltheproteinwasreleasedafterthefirst4hours fromthepointwhentheparticleswereinitiallyaddedtopH1.2.Theproteinencapsulation efficiencyoftheparticleswasdeterminedbytheratiooftheinitialproteinloadtotheparticle formulation to the spectrometrically determined amount of the proteins after rehydration.

Particleyieldwasdeterminedbydividingtheamountofrecoveredspraydriedparticlesbythe initialmassofsolidsintroducedtothespraydryer.

24

3.2.4CharacterizationofMicroandNanoAlginateParticles

3.2.4.1Determinationofresidualmoisturecontent Theresidualmoisturecontentofthespraydryedparticleswasdeterminedbyratio oftheweightdifferencebeforeandafterlyophilization.Theparticleswereassumedtobe moisturefreeafterlyophilizingfor48hr.

3.2.4.2Determinationofthesizedistributionoftheparticles Spraydryedparticlesweresizedusingalaserdiffractionparticlesizer(Malvern

Mastersizer2000withdryparticlesizingaccessory,Sirocco2000).Around100mgof particleswereanalyzedforeachbatch.Theoperatingpressurewas3barsandvibration speedofthemicroplatetraywas30%ofmaximum.Foreachbatchofparticles,themean diameterswerecalculatedintriplicate.Thesizedistributionwasestimatedby aSPAN factor,whichisdefinedbytheratio;

(D − D ) SPAN = 90 10 D50 whereD 90% ,D 50% andD 10% ,arethemeandiametersatwhichcumulativevolumepercent of90,50and10%oftheparticlesaredetermined.AhighSPANindicatesawidesize distribution,whereasalowvalueindicatesanarrowsizedistribution.

25

3.2.4.3Particlemorphologyandproteindistributionwithintheparticles

Morphologywasexaminedbyscanningelectronmicroscopy (JEOL, JSM840) withgoldcoatedparticles.Proteindistributionwithintheparticlematrixwasdetermined byconfocallaserscanningmicroscope(LeicaTCSSP2,Germany).A3mLamountof

BSAFITCsolution(10mg/mL)wasaddedtoasodiumalginate,Ca ++ ,chitosansolution

(alginate/proteinratioof9:1,for0.3%NaAsolution)andtheparticleswereanalyzedby

“proplusbasic”Leicaoperatingsoftware.Theimagingwasperformedwithdryparticles inordertopreventswellingandreleaseoftheprotein.

26

CHAPTER4.0RESULTSANDDISCUSSION Spray drying was used to produce micro and nano particles carrying model proteins embedded within an alginate polymer matrix. One of the applications under consideration for protein loaded nanoparticles is oral drug delivery. The effect of operational parameters on the resulting properties of particles carrying an active biologicalwasinvestigated(chapter4.1)andasinglestepmethodproposedtoenhance thepropertiesofthemicroandnanoparticlesfororaldrugdeliveryapplications(chapter

4.2).

4.1SpraydriedAlginateMicroparticlesCarryingActiveBiologicals

4.1.1StabilityofSubtilisinintheFeedSolution Thestabilityofsubtilisinenzymeinthefeedsolutionduringtheprocessperiodis importanttoensurehighestlevelsofdryproductactivity.Theactivityofthesubtilisin feed solution was monitored for 1h, which is the total process time. Acitivity was assayedspectrophotometricallyat410nmwith1mg/mLNsuccinylLAlaLAlaPro

LPhepnitroanalineassubstrateinTris–HClbuffer(100mMTrisHCl,0.005%Tween, pH8.6)andresultantactivitiespresentedinFigure4.1.1. 27

110

100

90

80

70

ActivityofSubtilisin(%) 60

50 0 20 40 60 time(min)

Figure4.1.1Activityretentionofsubtilisinin2%alginatefeedsolution Alginate:subtilisin=9,pH=7.1at20 OC.Datashownrepresentmeanvaluesanderror barsrepresentonestandarddeviationaroundthemeanbasedonaminimumof3 replicates

TheoptimumactivityofsubtilisinisknowntobewithinthepHrangeof7and

8.5(Chan,2003),andsincethepHofthefeedsolutionwaswithinthisoptimalrange,the averageresidualactivityofthesubtilisinwasaround95%,duringthe1hperiod.Itmay beconcludedthatthesubtilisinremainshighly active during the spray drying process period.

28

4.1.2ResidualActivityofSubtilisinwithinParticles

Inlet temperature of the drying air (Tinlet ) is an important parameter for spray dryingprocessesandcanaffecttheproperties,suchasresidualactivityoftheproteinin theresultingparticles,especiallywiththermosensitivebiologicals.Tostudytheeffect ofinletairtemperatureonresidualactivityofsubtilisin,alginatesubtilisinsolution(2% alginate,subtilisin:alginateratio1:9)wasspraydriedatthreedifferentinlettemperatures.

Foreachbatch,liquidfeedrate(Q lf ), aspiratorrate(Q da ),atomizationpressure(P)and subtilisinloadingwerekeptconstant.Inaddition,freesolublesubtilisinsolution(0.2%)

o was spray dried at Tinlet =150 Ctodeterminetheactivitylossofsubtilisinwithout the presenceofalginate.Theresultingparticleswereassayedforresidualactivityandresults presentedinTable4.1.1.

Table4.1.1ResidualActivityofsubtilisinwithinalginatemicroparticles producedbyspraydryingatdifferentT in .Operatingconditions; 3 Qlf =5mL/min,Q da =38m /h,Q aa =600L/h,P=80psi, Proteinloading=0.1gsubtilisin/gparticle Tinlet ºC Toutlet ºC ResidualActivity[%] 125 63 76±2 150 69 81±2 175 81 77±3 150 * 75 34±4 * FreesolublesubtilisinC=0.2%,w/v

o o o o IncreasingT inlet from125 Cto175 C,consequentlyToutlet from63 C–81 C,did notsignificantlyaffectthefinalresidualactivityyieldofthesubtilisinwithinparticles,as forallthreeconditions,theactivity yieldrangedfrom76to81%.Insharpcontrast, 29 whensubtilisinwasspraydriedalone,morethan65%oftheinitialactivitywaslost.This showsthatalginateisplayingastabilizingrolefortheenzymeduringspraydrying.As mentionedearlier,stabilityoftheproteinscanbeaffectedbyseveralstressesduringspray drying,includingthermalstressduetothedryingair,shearstressduetotheshearforces in the nozzle during atomization, adsorption due to the generation of new air/water interfacesanddehydrationstresscausedbytherapidevaporationofthewater(Lee etal .,

2002).However,globularproteinssuchassubtilisinareconsideredtoberigidandtendto resist changes in conformation upon adsorption at interfaces (Tripp et al ., 1995) and showpressurestabilityupto200MPa(Webbetal .,2000).Therefore,activitylossdueto conformational changes as a result of adsorption and shear stresses might be minor comparedtodehydrationandthermalstresses.

Immediatelyafteratomization,thedroplet surface temperature approximates the wetbulbtemperatureoftheinletair.Forthefreesolublesubtilisinsolutionwhichhasa low solids concentration (0.2%,w/v), the enthalpyhumidity chart of the pure water

o systemcanbeused.Forinlettemperatureof150 C,thesurfacetemperature(T sur )value can be estimated to be 41 oC, thus subtilisin solution droplets experience much lower temperaturethanthehottestregionofthedryer.However,themaximumtemperatureof themicroparticlescanbeassumedtoattaintheoutlettemperatureofthedryingairwhere

o Toutlet = 75 C,andthetimeperiodofexposureofthedryingdroplets to the elevated temperatureisapproximately530sec.(Broadhead,1992).However,ithasbeenknown thatsuchasdextran,havetheabilitytoformanamorphousphasewith proteinswhichlimitstheconformationalchangesduetothestressesinvolvedinspray drying(DePaz etal., 2002).Asmentionedearlier,alginatewhichisapolysaccharide,may 30 also form an amorphous phase with subtilisin molecules creating a matrix structure around the subtilisin, through hydrogen bonds which limits conformational changes, causedbydehydrationandthermalstresses.

Recoveryoftheparticlesisalsoanimportantparameterintermsofinvestigation intothescalingupofthespraydryingprocess.Thewatercontentandproductyieldofthe finalmicroparticleswerealsostudiedandtheresultspresentedinTable4.1.2.

Table4.1.2Watercontentandrecoveryofthemicroparticlesproducedatdifferentinlet temperaturesbyspraydrying.Operatingconditions;Q lf =5mL/min, 3 Qda =38m /h,Q aa =600L/h,P=80psi,C=2%w/v Productrecovery Moisture T [ºC] T [ºC] inlet outlet [%] Content[%] 125 63 21±2 7.1±2 150 69 33±2 5.6±2 175 81 37±3 5.5±2

Ascanbeseen,thefinalwatercontentoftheparticleschangefrom7.1to5.5% whentheinlettemperatureofthedryingairincreased.Theproductyieldincreasedasthe inlettemperatureincreasedfrom125ºCto175ºC.At125 oC,depositionofparticleson thecyclonewallwasobserved,whichmightbeduetoinsufficientdroplet/particledrying withinthedryingchamberandhighermoisturecontentparticles,adheringtothecyclone wall,leadingtoalowerproductyield.Atinlettemperatures150ºCand175ºC,higher moistureremovalandproductyieldwasobserved.Inbothsystems,themoisturecontent oftheparticleswaslessaround6%andaround35%oftheparticlesarerecoveredinthe collection vessel. In terms of industrial scale up, higher inlet temperatures could be 31 selected,duetothebetterwatermoistureremovalandhigherproductrecovery,especially ashighertemperaturesto175ºCdonotsignificantlyaffectenzymeactivity.

4.1.3RetentionofSubtilisinActivitywithDifferentFormulationsofAlginate Inspraydryingofproteins,theratioofamorphousphasetoproteinisimportantas it affects the final residual activity within the microparticles. The subtilisin in the formulation was varied from 0.1 to 0.33 g subtilisin/g particle keeping the total solid concentration constant. The formulation was spray dried at two different inlet temperatures,150ºCand175ºC,andtheresultsarepresentedinFigure4.1.2.

32

90

80

70

60 Residual Activity (%) Residual

50 0.1 0.25 0.33 Subtilisin [g/g particle]

Figure4.1.2Effectofproteinloadingandinlettemperatureonresidualactivityof subtilisin.175ºC(lightcolumns),150ºC(darkcolumns).Operatingconditions; 3 Qlf=5mL/min,Q da =38m /h,Q aa =600L/h,P=80psi.

The formulations containing 0.1 g subtilisin/g particle showed around 80 % residual activity, and as the subtilisin concentration increased to 0.33 g subtilisin/ g particle,adecreaseintheresidualactivitywasobserved.Theresidualactivitiesfor0.25 and0.33gsubtilisin/gparticlewerearound75%and65%.Figure4.1.2alsoshowedthat theeffectofinlettemperatureontheresidualactivityofsubtilisinisminorcomparedto theratioofalginate:subtilisin.Asthesubtilisinintheformulationincreases,thealginate concentrationdecreases,asdoestheresidualactivity.

33

4.1.4EffectofFeedRateonParticleSize

Liquid feed rate is the major influencing factor on T out and together with atomization air pressure and liquid properties (viscosity and surface tension), it also determinesthespraydropletsize(Maa etal.,1997).Theeffectoffeedrateatconstant atomization pressure on moisture content, residual activity and product recovery is presentedinTable4.1.3.Foreachbatch,otherspraydryingparameterssuchasliquid feedrate,aspiratorrate,atomizationpressureandotherprocessparameterssuchastotal soluteconcentrationinthefeedsolutionandsubtilisinloadingwerekeptconstant.

Table 4.1.3 Effect of liquid feed rate on outlet temperature, particle size and residual 3 activityofsubtilisin.Operatingconditions;Q da =38m /h,Q aa =600L/h,P=80psi, Proteinloading=0.1gsubtilisin/gparticle Product Q Toutlet Water Residual lf D[0.1] D[0.5] D[0.9] SPAN Recovery mL/min [ºC] Content Activity[%] [%] 10 58 3.12 6.69 30.1 4.09 8.1±1 71±2 21±2 7 61 2.32 6.31 22.2 3.19 7.2±2 72±2 21±2 5 69 1.91 4.91 13.5 2.34 5.6±2 81±2 33±2

Liquid feed rate affected the mean particle size (D[0.5]), the particles size decreased from 6.69 to 4.91 m by decreasing the feed rate, whereas the outlet temperatureofthedryingairincreasedfrom58to69 oC.Theeffectofliquidfeedrate andtheatomizationairpressureonspraydropletsize is definedby the air/fluid mass ratio, which represents the energy available for atomization (Masters, 1991). When atomization pressure was kept constant and liquid feed rate decreased, the energy available for atomization increased, therefore spray droplet size decreased and consequentlythesizeofthedriedparticles.Asaresultofhigherliquidfeed rate,the 34 amount of water evaporated was increased, leading to a lower outlet temperature as observedinTable4.1.3.Thewatercontentoftheparticlesalsoincreasedwithincreasing liquid feed rate. Although, higher feed rates result in lower outlet temperatures, the residual activity in the final particles decrease about 10%. This difference can be explainedduetoparticledepositspresentinsidethewallsofthecyclone.Asmentioned earlier, when the particles leave the drying chamber with high moisture content, they adheretothewallsofthecyclone.However,thetemperatureofthecyclonewallisclose totheoutlettemperatureofthedryingair.Astheprocesscontinues,themoisturecontent oftheparticlesmightfurtherdecrease,andwiththehelpofdryingairtheymightfurther traveltothecollectionvessel.Thiswillaffectresidualactivity,duetothehighsurface temperatureofthecyclonewall.

Intermsofparticlesize,theBuchi290labscalespraydryeristhoughttobeable toproduceparticleswithdiameterrangeof110m(Lee,2002).FromTable4.1.3,it maybeconcludedthatinordertoproducealginatenanoparticleshavingmeandiameter lessthan5m,alowfeedrateof5mL/minshouldbeselected.Sizeanddimensional distributionoftheparticlesarepresentedinTable4.1.4.

35

Table4.1.4Sizeanddimensionaldistributionofalginatemicroparticles. 3 Operatingconditions;Q lf =5mL/min,Q da =38m /h,Q aa =600L/h,P=80psi, C=2%w/vProteinLoading=0.1gprotein/gparticle Diameter Distribution Range(m) <1 3% 12 25% 23 26% 34 18% 45 24% 510 10%

Around90%oftheparticleswerewithintheparticlesizerangedesiredfororal absorptionthoughtheintestinalmucosa.

4.1.5EffectofAlginateConcentrationonParticleSizeDistribution Inadditiontosolutionfeedrate,liquidpropertiessuchasviscosityandsurface tensioncanalsoaffecttheparticlesizeinspraydrying.Thealginateconcentrationwas thusvariedfrom0.2to2%,andtheparticlepropertiesarepresentedinTable4.1.5.

36

Table 4.1.5 Effect of alginate concentration on particle size and residual activity of 3 subtilisin.Operatingconditions;Q lf =5mL/min,Q da =38m /h,Q aa =600L/h,P aa =80 psi,ProteinLoading=0.1gsubtilisin/gparticle Residual Product Moisture C Viscosity T D[0.1] D[0.5] D[0.9] Span Activity Recovery Content [%] [cps] out [%] 0.2 43 85 1.31 2.15 3.58 1.05 68±3.6 21±2.2 5.2±2.4 0.5 93 78 1.57 3.67 7.3 1.56 73±3.4 19±2.5 5.3±2.1 1 127 73 1.83 4.12 11.8 2.41 74±2.2 37±2.4 5.3±2.2 2 189 69 1.91 4.91 13.5 2.34 81±2.4 33±2.1 5.6±2.2

Thetotalsolidcontentinthespraydryingfeedsolutionmayaffecttheparticlesize

sincehighersolidscontentindropletsshortenstheconstantrateperiodbecauselesswater

must evaporate to build a crust, consequently forming larger particles. This case will

occur,wherethesolutesdonothavelargeimpactonsolutionviscosity.Theviscosity

valuesofthefeedsolutionswithcorrespondingalginateconcentrationsarepresentedin

Table 4.1.5. As seen, higher alginate concentration, increases solution viscosity,

consequentlyproducinglargerparticles.Thechangeintotalsolidsconcentrationfrom0.2

to2%increasesthemeanparticlesize(D[0.5])from2.15to4.91m.Thespanvalue

alsoincreaseswithhigheralginateconcentration,andthusviscosityofthefeedsolution.

Thisindicatesthatthemicroparticlesproducedwithloweralginateconcentrationresulted

in a narrower size distribution. However, the residual activity and particle recovery

decreasedaround15%,asthealginateconcentrationdecreasedfrom2%to0.2%inthe

feed. As mentioned earlier, the particles are collectedthroughacyclonesystemunder

centrifugal force. However, when the particle size is less than 2 m, the gravitational

forcemaynotbesufficientforrecovery,allowingparticlesofdiameter<2mtopass 37 into the outlet air (Prinn et al. , 2002). Therefore for the particles prepared with low alginateconcentration,thereisahigherchancethattheparticlescanescape,leadingto lowerparticlerecovery.Inaddition,volumetricdistributionoftheparticlescanbealso affected,duetoinsufficienttrappingoftheparticleshavinglowerparticlesize.Recovery of the nanosize range particles can be increased with electrostatic filters. The outlet temperatureofthespraydryerwasincreasedto85 oCasthealginateconcentrationinthe feed solution decreased to 0.2% leading to a lower residual activity of subtilisin encapsulatedwithinparticles.

ThevolumetricsizedistributionoftheparticlesispresentedinTable4.1.6.Itcan be seen that for all theconditions tested, lessthan 5% of the particles are within the submicronrange.Forallconditions,around90%oftheparticlesarewithintherangeof

15m,whichisanappropriatesizefororalabsorptionwithintheintestinalmucosa.

Table4.1.6Sizeanddimensionaldistributionofalginatemicroparticles. 3 Operatingconditions;Q lf =5mL/min,Q da =38m /h,Q aa =600L/h, P=80psi,Proteinloading=0.1gprotein/gparticle.

TotalSolid 2% 1% 0.5% 0.2% Concentration[C] MeanDiameter[ m] 4.91m 4.12m 3.67m 2.15m <1 3% 3% 4% 5% 12 25% 31% 35% 43% 23 26% 24% 29% 31% 34 18% 17% 16% 15% 45 24% 17% 10% 4% 510 10% 8% 5% 2% 38

However,thevolumetricsizedistributionoftheparticlesmayextendmoreinto the nanorange, where lower alginate concentration was used. At lower alginate concentration, there is a higher probability that the particles will have a smaller size makingseparationmoredifficultaffectingtheparticlepopulationcollected.Theseresults showthatthemeanparticlesizeandthevolumetricpopulationoftheparticlesdependon the alginate feed solution concentration, and also particles prepared with low alginate concentrationhavenarrowersizedistribution.

SEMimagesoftheparticlesarepresentedinFigure4.1.3.Theparticleswere dimpledandsphericalmorphology.

Figure4.1.3.SEMimagesofspraydriedalginateparticlescarryingsubtilisin,Leftimage: Alginateparticlespreparedwith0.2%alginateinthefeedsolution.Scalebarrepresents 10 m. The right image show alginate particles prepared with 2% alginate. Scale bar represents10m. 39

4.1.6ResidualActivityofSubtilisinwithDifferentAmountsofTrehalose

As mentioned earlier, water removal can lead to conformational changes in the protein/peptide, leading to loss of activity. Many proteins/peptides have been successfullydriedwithminimalactivitylossbyuseofstabilizingadditives.Additives canprotectduringthedehydrationprocessbyforminghydrogenbondswiththeprotein.

Several monoand , and several polyols and amino acids are known stabilizers against water removal stress. Examples include lactose, trehalose, sucrose, mannitol,sorbitol,lysine,histidineorarginine(Arakawa et al ., 1993). Amongst these examples,trehaloseisknowntobethebestsugarforstabilizingproteinsduringspray dryingprocesses(AdlerandLee,1998).

The total solids concentration of the feed was kept constant and the trehalose amountchangedfrom0to0.25then0.33g/gparticle,withthesubtilisinloadingkept constant at 0.1g/g particle. The effect of trehalose loading on residual activity of subtilisinispresentedinFigure4.1.4. 40

100

90

80

70 Residual Activity (%) Activity Residual 60 0 0.20 0.33 Trehalose [g/g particle] Figure 4.1.4. Effect of trehalose loading on residual activity of subtilisin within 3 microparticles.Spraydryingoperatingconditions;Q lf =5mL/min,Q da =38m /h,Q aa = 667L/h,P aa =80psi,C=2%w/v,Proteinloading=0.1gsubtilisin/gparticle. Thepresenceof20%trehaloseintheformulationincreasestheresidualactivityof subtilisinupto90%.Furtherincreaseintrehalosedidnotaffecttheresidualactivity.It might be concluded that the mixture of alginate and trehalose appear to promote the stabilization of subtilisin during spray drying. This might be due to the ability of trehalosetohydrogenbondwiththeproteinsintheplaceofwaterduringdehydration.A secondstudywasdonewithahigherproteinloading(0.33gsubtilisin/gparticle),andthe resultsarepresentedinFigure4.1.5. 41

80

70

60 Residual Activity (%) Activity Residual

50 0 0.17 Trehalose [g/g particle]

Figure 4.1.5 Effect of trehalose loading on residual activity of subtilisin within 3 microparticles.Spraydryingoperatingconditions:Q lf =5mL/min,Q da =38m /h,Q aa = 667L/h,P aa =80psi,C=2%w/v,ProteinLoading=0.33gprotein/gparticle.

When the trehalose in the formulation was increased to 0.17 g/g particle, the residualactivityoftheparticlesincreasedby7%comparedtotheactivityoftheparticles withoutthepresenceoftrehalose.Itcanbeconcludedthatthepresenceoftrehalosein alginateincreasesthestabilityofsubtilisinwithintheparticles,whichresultsinhigher residualactivity.Itwasalsoshownthatmorethen60%oftheresidualacitivitycanbe recovered for particles having high protein concentration (0.33g/g particle). Similar trendswerealsoobservedusingsugarexcipientswithpolysachharides.Bare etal.(1999) spraydriedcoldadaptedsubtilisininthepresence of gum arabic and lactose mixture, observing about 55% absolute increase in residual activity of subtilisin. DePaz et al.

(2002)showedthatdextrantrehalosemixtureshowedfullrecoveryofsubtilisinactivity duringfreezedrying.

42

SEMimageofthetrehalosealginateloadedwithsubtilisinarepresentedinFigure

4.1.6.Theparticlesaresphericalandhaveasmoothsurfacemorphologyandthesmaller particlesweredimpled.

Figure 4.1.6. SEM image of the spray dried alginatetrehalose particles carrying subtilisin.Alginate:trehaloseratiowas9:1.Scalebarrepresents20m.

43

4.1.7EffectofStorageTimeonResidualActivityofSubtilisin Alongwiththestabilityoftheparticlesduringspraydrying,thestoragestability wasalsotested.Spraydriedpowderswerestoredat25oCand25%relativehumidityfor over4months.Figure4.1.7showstheresidualactivityoftheparticleswithstoragetime.

100

80 ResidualActivity(%)

60 0 4 8 12 16

Time(Weeks)

Figure4.1.7Theresidualactivityofsubtilisinloadedparticlesstoredat25 oCand 25%relativehumidityrelativetotheactivityoffreshlypreparedparticles.Formulation consistsoftrehalose:subtilisin(g/gparticle)of0.2:0.1(■),0:0.1(●),0:.0.25(▲),and 0:0.33(O) As may be seen in Figure 4.1.7 the alginatetrehalose loaded particles retained morethen90%oftheirinitialactivityduring4monthsofstorage.Asthesubtilisininthe formulationwasincreased(0.10.33subtilising/gparticle)adecreaseinthefinalresidual activitywasobserved.Alsopresenceoftrehaloseintheformulationhadapositiveeffect 44 on storage stability compared to particles produced without addition of any trehalose.

Withinthefirstmonthofthestorageperiod,allparticleshadmorethan90%residual activity,howevertrehaloseloadedparticlesshowednearlynoactivitylosswithinthefirst month,butactivitygraduallydecreasedduringthefollowing3months.Asimilartrend was observed for particles prepared without addition of trehalose, showing a slower residualactivitydecreaseratewithinthefirstmonth.Thesetrendsshowthatwithinthe fourmonthsofstorage,trehaloseloadedparticlesshowedthebeststoragestability.

4.2 AlginateMicroandNanoParticlesProducedbySprayDrying

Inthefirstsectionoftheresultsanddiscussion chapter some of the operating parameterseffectingtheprocessparameterand particlepropertieswerestudied.Inthis section an alternative single step procedure was proposed in order to enhance the propertiesthealginateparticlescarryingproteinsfororaldrugdeliverypurposes.

Spray drying has been used previously by Coppi et al. (2001, 2002, 2004) to producealginatemicroandnanoparticlescarryingproteins,suchasBSAandapeptide antibiotic, polymyxin. Although spray drying is a single step process, these earlier publishedmethodologiesinvolvedseveraladditionalstepstoproducethefinalparticulate product.Inthischapter,analternativespraydryingmethodisproposedanddiscussedto producealginatemicroandnanoparticlesinasinglestepoperation.

ThemethodproposedbyCoppi etal.(2001)asoutlinedinFigure4.2.1,involved spraydryingofanalginate/proteinsolutionformingparticleswhichweresubsequently 45 subjectedtoseveraladditionalstepstoenhancetheproperties,suchasioniccrosslinking of the particles in CaCl 2 aqueous solution and treatment of the particles in chitosan solutiontoreinforcethealginatenetworkandtoimproveadsorptionacrosstheintestinal epithelia.Inthefinalstep,freezedryingwasusedasaseconddryingstep,toremove waterandtorecovertheparticles.However,thesestepscanaltersomeoftheproperties oftheparticles.Forexample,theentrappeddrugcanbereleasedtotheaqueousmedium during the gellation step, and during surface treatment with chitosan. Moreover, pH sensitiveproteinscanbeaffectedduetothesolubilityrequirementsofchitosan(pH<5.5).

In addition, lyophylization (freeze drying) causes additional stress on particles and proteins,suchaschangingtheparticlemorphologyanddenaturationoftheproteinsdue todehydration(Wang,2000).

46

Coppietal.,2001 CurrentMethod

AlginateSolution AlginateSolution Model Drying Spray

Protein ModelProtein SprayDrying Ca ++ GlycolChitosan

Collectingparticles& CrosslinkingwithCa ++ Centrifugation

FinalProduct (MicroandNanoparticles)

Collectingparticles& CoatingwithChitosan Centrifugation

Collectingparticles Lyophylization

FinalProduct Figure4.2.1 : SchematicdescriptionofCoppi etal. (2001)andcurrentmethod. Thescalebarrepresents10microns. 47

Asanalternative,thesinglestepprocedurewhichformsthebasisofthepresent study,involvedintroductionofdiluteCa ++ ionstoadilutealginatefeedsolution,along withtheproteinandglycolchitosan,wherephysicalcrosslinkingofthealginatebydilute calcium solution takes place forming sprayable low viscosity gel. In addition, glycol chitosanwasusedasanadditive,tofurtherreinforcethealginatenetworkandimprove absorption of the particles. The SEM image of the particles produced is presented in

Figure 4.2.1. The final particles had smooth surface and spherical morphology, with particle size ranging from a couple hundred nanometers to several microns. In the following chapters, the stability, particle size distribution, morphology, formulation aspectsandproteinreleasefromtheparticleswillbepresentedanddiscussed.

4.2.1StabilityandSizeofAlginateMicroandNanoParticles

Oneapplicationfornanoparticlesisintheoraldelivery of therapeutic proteins.

Nanoparticlescanappearinthelymphorbloodcirculation,following10minto3hafter dosingdependingontheparticlesizeandnutritionalconditions(Hussein etal. ,2001), thusitisimportanttotestthestabilityandthepropertiesoftheparticles,asaffectedby formulation parameters. The effect of Ca ++ present in the alginate feed solution, on stability and properties of micro and nano particles, such as particle size and protein release, was examined. The amount of Ca ++ (310 mM) and alginate solution concentration(0.20.5%)wasvaried.AlginateandCa ++ concentrationswerelowdueto theviscositylimitationofthespraynozzle.AtCa++ ionconcentrationsgreaterthan10 mM, immediate viscous gel formation occurred, which was not suitable for atomization.The stability of the resulting particles was tested by suspending in saline 48 solution(0.9%)atpH6.8,andparticleswereobservedunderlightmicroscope.Results arepresentedinTable4.2.1.

Table4.2.1.Stabilityofmicroandnanoparticlesproducedbyspraydrying. 3 Spraydryeroperatingconditions;Q lf =5mL/min,Q da =38m /h,Q aa =600L/h,P =80psi.Theparticlesweresuspendedinsalinesolution(0.9%)for3h.The““ signrepresentscompletedissolutionoftheparticlesandthe“+”signrepresents presenceofparticles. Ca ++ Concentration AlginateConcentrationintheFeed intheFeedSolution Solution(%,w/v) 0.2% 0.3% 0.5% 3mM 5mM + + 10mM + + + Table4.2.1showsthatthestabilityofthemicroandnanoparticleswasaffected bytheconcentrationofCa ++ ions.Theparticlespreparedwith3mMCa ++ completely dissolvedatpH6.8in3h.However,theparticlespreparedwithhigherCa ++ showed stabilityduring3hofthetest.Crosslinkingofthealginatechainswithcalciumionstakes placeinthefeedsolution.Withincreasingcalciumionconcentration,thereisahigher degreeofcrosslinking,increasedthestabilityoftheresultingparticles.Whenthereis insufficientcrosslinkingandentanglementsofthepolymerchains,theparticlesswelland disolvewhendispersedintoasalinesolution,particularlyasthenongellingsodiumin thesalinedisplacesthecalciumintheparticlematrix.Itwasobservedthattheparticles producedwithhighercalciumconcentrationsweremorestableinsalinesolution(0.9%), thereforepreparationofparticleswithhighercalciumconcentrationinthefeedsolutionis moresuitablefororaldeliverypurposes. 49

Theobjectivewastoproduceparticleswithinanappropriatesizerangetobe takenupbytheintestinalmucosa.Thus,theeffectofalginateconcentrationonparticle sizewasexamined.Theparticlesweresizedbylaserdiffractionandthesizedistribution ispresentedinTable4.2.2.Themeansizeofparticlesincreasedfrom3.17mto4.18

masthealginateconcentrationinthefeedsolutionincreasedfrom0.2%to0.5%, whilekeepingthecalciumconcentrationconstant.Asthealginateconcentration increased,higherSPANvalueswereobtained,whichindicatesbroadersizedistribution.

Thistrendmightbeduetotheincreaseintheviscosityofthesolution,sincethehigher thealginateconcentrationinthefeedsolution,thehigheristheviscosityofthefeed, consequentlyleadingtolargerdropletsandlargerparticles.Alltheresultingparticles preparedwithdifferentamountsofalginatehadappropriatesizefororalabsorption.

Table 4.2.2 Size distribution of the alginate micro and nano particles with different amount of alginate in the feed solution. The particles were produced with different amounts of alginate , 0.2, 0.3 and 0.5%. The Ca ++ ion concentration was 3 constantat10mM.Spraydryingoperatingconditions;Q lf =5mL/min,Q da =38m /h, Qaa =600L/h,P=80psi. Alginateconcentrationinthe D[0.1] D[0.5] D[0.9] SPAN feedsolution 0.2 1.61 3.17 11.5 3.12 0.3 2.12 3.41 13.2 3.25 0.5 2.72 4.18 19.1 3.92 Inordertofurtherinvestigateandimprovetheparticleproperties,0.3%alginateand

10mMCa ++ inthefeedsolutionformulationwereselectedforfurtherstudy,duetothe lowerrecoveryoftheparticleswith0.5%alginate,whichmightbeduetotheinsufficient drying.

50

4.2.2ProteinReleasefromMicroandNanoAlginateParticles Fororaldelivery,itisimportanttoexaminethereleaseprofileofproteinsfromthe encapsulated matrix. In order to study the effect of Ca++ on protein release, Ca ++ concentrationwasvaried(5mM,10mM)andacontrolbatchpreparedwithoutcalcium.

BSA was added along with 0.3% alginate, where the protein:alginate ratio was held constantat1:9.TheeffectofCa ++ onproteinreleaseispresentedinFigure4.2.2,where thereleasedpercentageisplottedwithtime.Thereleasestudieswerecarriedoutinsaline solution(0.9%)atpH6.8.

120

100

80

60

40 ProteinReleased(%) 20

0 0 15 30 45 60 75 90 time(min)

Figure4.2.2:ReleaseprofileofBSAfromalginateparticlesproducedwith0(●),5 (▲)and10mM(■)Ca ++ .ReleasewascarriedoutinsalinesolutionatpH6.8.Particles were formed from 0.3% alginate at protein to alginate ratio 1:9. Data shown are the standarddeviationofthemeanvaluesofaminimumof3repeatedexperiments. 51

Alloftheprofilesshowedaburstreleaseprofile,withabout60%oftheBSAreleased inthefirst5min.ParticleswithoutCa ++ dissolvedin15minandmorethan90%ofthe

BSAwasreleased.Particlespreparedwith10mMCa ++ showedanearlyconstantrelease rateafter15minandmorethan90%oftheproteinwasreleasedattheendof75min.

Initially,theburstreleaseprofilemightbeduetotheswellinganddisintegrationofthe particlestructure,howeverparticlesprepared withcalcium,showedasustainedrelease profileafter15min.Theeffectofcalciumonthe release profile, is likely due to the changeinpermeabilityoftheparticlesduetothehigherdegreeofphysicalcrosslinking takingplaceinthefeedandpolymerentanglementsduringtheformationoftheparticles.

4.2.3ProteinReleasefromParticlesFormulatedwithGlycolchitosanandCalcium

Alginate

Asmentionedearlier,theobjectivewastoinvestigateanencapsulationmethodthat wouldformnanoparticlesinsinglestepoperation.Glycolchitosan,apositivelycharged polysaccharide,wasusedasanadditivetoenhancethepropertiesoftheparticles,sinceit is known to reinforce the negatively charged alginate network and to improve the intestinal uptake of the particles, while decreasing the particle permeability. Glycol chitosanwasselectedasitiswatersolubleatpH7.4andformspolyioncomplexeswith negativelychargedpolymers,suchasalginate(Sakai etal., 2000).

Theaimofthisexperimentwastounderstandtheeffectthattheamountofglycol chitosanhadonthereleaseprofileofBSA.Theratioofglycolchitosan:alginate:protein wasvariedandproteinreleaseplottedwithtimeinFigure4.2.3.Releasewascarriedout indifferentsimulatedpHenvironmentofthegastrointestinaltrack. 52

100 pH=1.2 80

60

40

ProteinReleased(%) 20 pH=6.8

0 0 30 60 90 120 150 180 210 240 270

time(min)

Figure4.2.3:ReleaseprofileofBSAfromglycolchitosanalginateparticlesproducedby spraydryingpreparedatformulationratiosof glycol chitosan:protein:alginate, 0:2:18 (O);2:2:16(▲);3:2:15(●);and4:2:14(■)inhydrochloricacidatpH1.2andphosphate bufferatpH6.8.Thefeedsolutionconsistedof0.3%alginateand10mMCa ++ . Data shown are the standard deviation of the mean values of a minimum of 3 repeated experiments. Particlesformulatedwithglycolchitosanshowedaround40%releaseafter2hin the low pH, stomach simulation medium. When the particles were transferred into a simulatedintestinalmedia,asharpreleasewasobservedwithinthefirst5min,which mightbeduetoparticleswelling.Theparticlesformulatedwithoutglycolchitosanorlow glycol chitosan content, reached equilibrium within the first 30 min of the simulated intestinalenvironment,whereastheformulationhavinghigher glycolchitosan(4:2:14) reached the equilibrium after 120 min. Figure 4.2.5 indicates that protein release was affectedbyincreasedglycolchitosanintheformulation.Thisresultwasexpected,since glycolchitosancanformapolyioncomplexwithalginatedecreasingsolutediffusivity. 53

However,thebuffersystemusedcanalsoaffectproteinrelease,sincephosphateionscan remove calcium ions from the crosslinked alginate network, consequently the permeabilityoftheparticlesisaffected.Inaddition,Ca ++ concentrationwasnotchanged asthechitosantoalginateamountwasvaried,effectivelyincreasingtheratioofCa ++ to alginate,consequentlythecrosslinkingofthealginatechainsmightalsoincrease,which wouldaffectsolutediffusivity.

Alginateparticleswerealsoformulatedwithsubtilisinandlysozyme,whichare smallerproteinsthanBSA.Intheseexperimentstheratioofchitosan:protein:alginatewas

4:2:14.ReleaseprofileoftheparticlesispresentedinFigure4.2.4.

54

100 pH=1.2

80

60

40

ProteinReleased(%) 20 pH=6.8

0 0 30 60 90 120 150 180 210 240 270

time(min) Figure4.2.4ReleaseprofileofBSA(●),subtilisin(▲)andlysozyme(■)fromchitosan alginateparticlesinhydrochloricacidbufferatpH1.2andphosphatebufferatpH6.8. Particles were formulated from 0.3% alginate and 10 mM Ca ++ . Data shown are the standarddeviationofthemeanvaluesofaminimumof3repeatedexperiments. Allparticles released more than 35% of theprotein load within 30 min in the simulatedstomachenvironment.After2h,theparticlesweretransferredtoasimulated intestinalenvironmentatpH6.8.Withinthefirst5 min, a second burst release profile was observed, possibly due to the swelling of the particles. Although the positively chargedlysozyme(pI=11.4)andsubtilisin(pI=9.4)haddifferentmolecularweights, theyshowedsimilarreleaseprofiles,possiblyduetothelargeporesizeoftheresulting particles compared to the molecular size of the proteins. However, BSA showed a slightlyslowerreleaseprofile,whichmightbedueto the larger molecular size of the proteincomparedtotheporesizeoftheparticles. 55

4.2 .4PhysicalPropertiesoftheChitosanAlginateParticles. Chitosanalginate particles were tested for particle size, protein loading and morphology. The final protein loading within the particles and the particle size distributionispresentedinTable4.2.3.

Table4.2.3Comparisonofparticlesizedistributionofchitosanalginateparticles carryingdifferentproteins.Thechitosan:protein:alginateratiowas4:2:14.The feedsolutioncontained0.3%alginateand10mMCa ++ .Spraydryingoperating 3 conditions;Q lf =5mL/min,Q da =38m /h,Q aa =600L/h,P=80psi. Encapsulation Protein D[0.1] D[0.5] D[0.9] SPAN [%] BSA 2.16 3.17 12.8 3.36 96±2 Subtilisin 2.11 3.53 12.1 2.83 94±1 Lysozyme 2.01 3.16 13.1 3.51 95±2 The mean particle size D[0.5], was found to be around 3.5 m for subtilisin loadedparticles,whilethoseloadedwithBSAandlysozymehadmeansizearound3.16

m. SPAN values showed a relatively broad size distribution. For all of the particles, encapsulationyieldwasmorethan94%.

The protein loaded particles showed spherical morphology with smooth surface as illustratedinFigure4.2.5. 56

Figure 4.2.5. SEM images of protein loaded particles. The scale bar represents 10 microns.Theparticlesareloadedwithlysozyme(a),subtilisin(b)andBSA(c).

4.2.5ProteinDistributionWithintheParticles

Thedistributionoftheproteinthroughoutthe polymer matrix was examined by confocal laser scanning microscopy with florescent labeled BSA, as shown in Figure

4.2.6. The particles show a donutlike structure with hollow center, and protein deposition toward the particle surface. This might be due to evaporation of the water 57 from the droplet surface, carrying solutes from the particle core to the surface during formation.

Figure 4.2.6 Confocal laser scanning microscope image of glycolchitosan alginate micro and nano particles carrying BSA. The green sections represent the presence of FITClabeledBSA.Scalebarrepresents3 m.

As mentioned earlier, in lab scale spray dryers, the time required to dry a single atomizeddropletisexpressedinmilliseconds.Duringthatextremelyshortperiodoftime, solutes such as proteins can be assumed to be stationary during the formation of the particles, however this may not be the case for formulations where total solid concentration is low and the selected encapsulation matrix material can form porous networks,suchasthepresentalginate/protein(BSA)system.

During the formation of particles in spray drying, two characteristic times are important,thefirstbeingthetimerequiredforasolutetodiffusefromtheedgeofthe 58 droplettoit’scenter,definedbyR 2/D,whereRistheradiusofthedropletandDisthe solutediffusioncoefficient,andsecondbeingthetotaldryingtime,t d,foradroplet.The

2 ratioofthesetwocharacteristictimesdefinesthe peclet number, Pe = R / t d D which characterizestherelativeimportanceofdiffusiontoconvection.Ifthedryingofadroplet is sufficiently slow, Pe<1, and solutes have time to diffuse throughout the droplet, yielding relatively dense particles. When Pe>1 the particles have insufficient time to diffusefromthesurfacetothecenterofthedroplet(Tsapis etal., 2002).AlsowhenPe>1, thewatermoleculesmustdiffusefromthecentertothesurface,sinceevaporationonly occurs from the surface, carrying along solutes from within the droplet towards the surface.ThereforewhenPe>1,thediffusionofthesolutesfromthecentertothesurface oftheparticlemightbemorefavorablethandiffusionofsolutesfromthesurfacetothe center,duetothemobilephase,water,whichisdiffusingfromtheparticlecoretothe surface.Thiswouldbeastrongerpossibility,ifthesolidconcentrationislow.Inaddition, the encapsulation matrix material, which tends to form porous polymeric network structure,canalsoplayanimportantroleinthefinaldistributionofthesoluteswithinthe particlematrix.For example,iftheproteinshave asmallersizethantheporesofthe encapsulatedpolymericnetwork,asthewatermigratestothesurfaceforevaporation,the proteincanmigrateaswellwithoutinterruption.

Forthepresentsystem,thetotaldryingtimeofthedropletwascalculatedas8.5 ms, whereas the diffusion coefficient of the BSA molecule was estimated to be 990

m 2/s. Pe was calculated as 240, (calculations appear in sections to follow) which indicates that for proteins, the driving force is dominated by convention, instead of diffusion.Itmightbeconcludedthattheproteinswhichwereatthesurfaceofthedroplet duringformationoftheparticle,didnothavesufficienttimetodiffusefromthesurfaceto 59 thecenter.Moreover,themobilephase,water,continuouslydiffusedfromthecenterto thesurfaceofthedroplet,whileitcarriedtheothersolutes,suchaspolymerchainsand proteinsasillustratedinFigure4.2.7.Thehollowregionatthecenteroftheparticlesalso confirmsthistheorythattheothersolutes,suchas polymer chains, were being drawn outwardsduringevaporation,formingahollowcore.

60

inlet Twb

Tinlet

Waterevaporates fromthesurface carryingsolutes

Constantrateperiodwhere rateofevaporationisconstant

outlet Twb

Toutlet

Fallingrateperiodwhere particlesizedoesnotchange Duringfallingrate period,shell Polymer formationoccurs. Chains Waterstillmigrates tothesurfaceand Ca ++ carriessolutes. ModelProtein Figure4.2.8Schematicillustrationofparticleformationinspraydryingandthenatureof proteindepositionatthesurfaceoftheparticles. 61

Inordertodiscussproteindistributionwithintheparticle,thePecletnumberwas calculated.Thetotaldryingtimeofasingledropletwascalculatedthrough aseriesof heat and mass balance equations, and diffusion coefficient of the protein solute, was estimatedthroughtheStokesEinsteinequation.

4.2.5.1EstimationofTotalDryingTimeofSingleAlginateDroplet.

Thedryingofaspraydropletcontaininglowconcentrationofalginate(0.3%)can bedividedintotwophases,initialconstantrateperiodandfallingrateperiod.Previously total drying time of a droplet was calculated by Adler and Lee (1999), during these calculationsheatandmasstransferequationspresentedinMaster’s(1991)wasused.In ordertoestimatethePenumberofthealginatedropletsduringspraydryingprocessthe regardingequationswasused.Intheinitialconstantrateperiod,therateofevaporation was assumed to be constant, whereas in the falling rate period, the particle size was assumedtobeconstantduetothecrustpresentatthedropletsurface(Masters,1991).In theinitialconstantrateperiod,waterconcentrationatthedropletsurfaceandhencethe rateofevaporation,dW/dtwascalculatedwiththeregardingequation;

dW 2πk D T = d av dt cr λ

where, T isthelogmeantemperaturedifference;

62

inlet outlet (Tinlet − Twb )− (Toutlet − Twb ) T = inlet outlet ln[]()()Tinlet − Twb / Toutlet − Twb

inlet outlet Twb isthewetbulbtemperatureofthespraydropletsurfaceand Twb isthewebbulb temperatureofthedriedparticlesurface.ForthelowsolidsalginatesystemT inlet =150C,

o inlet andtheenthalpyhumiditychartofwatercanbeused.T inlet =150 Candthus Twb =41 o o outlet o C, from the enthalpyhumidity chart. For T outlet = 85 C, Twb = 55 C. The T is

o determinedtobe61 C.Thethermalconductivityofthewatervapor,k dinthestagnant layeraroundthedropletis0.565kcal/mh oCat T =61 oC.

Dav istheaveragedroplet/particlediameter(D d/D p).Thedropletdiametercanbe estimated through a back calculation, since the final mean diameter of the particle is known,3.5m.Itcanbeassumedthatthetotalsolidconcentrationwithinthedropletis thesameasthesolidconcentrationinthefeedsolution,0.3%,w/v.Thedropletdiameter couldbecalculated,iftheweightoftheparticleisknown.Byusingtheconfocallaser scanningmicroscopeimageofasingleparticle,theweightofthesinglealginatenano particle,W p,canbeestimatedthroughthefollowingequation;

3 3 Wp=4/3π(D p –D h )/8ρ a

whereD pistheparticlediameter,3.5mandD histhediameterofthehollowregion,1

3 m , and ρ a is the bulk density of the alginate, 754 kg/m (Sriamornsak and

14 Sungthongjeen,2007).W p wasfoundtobe3.6310 kg.Thediameterofthedroplet,D d 63 canbecalculatedasfollows.Iftheinitialfeedsolutiontotalconcentrationis0.3%,w/v, whatisthevolumerequiredtoproduceaparticleweighing3.6310 14 kg.

4 .3 63*10−14 kg V = π (r )3 = *100ml = 12 1. *10 9 cm3 d 3 d 3.0 g rd = 14 2. m

Dd = 28 4. m

ByaveragingtheD dandD pwhichareassumedtobe28.4mand3.5mrespectively,

Dav =16m.λisthelatentheatofvaporizationofwater=540kcal/kg.Theevaporation ratecanbecalculatedtobe;

dW 2πk D T cr = d av dt λ 2π *0.565kcal/mh oC * 16m *61o C = 540kcal / kg

=6.4kg10 6/h

Thetotalmassofwaterremoved, Wcr ,inconstantrateperiodcanbecalculatedthrough;

4 W = π (r 3 − r 3 )ρW cr 3 w d 1

where r d is the droplet radius, r p is the particle radius, ρ is the density of the

3 alginate/watersolutionequalto996kg/m .r wisthediameterofthedropletandassumed tobe10mandr d =3.5m.W 1isthewatercontentofthespraysolution(0.997kg/kg).

Wcr canbecalculated; 64

4 W = π (r 3 − r 3 )ρW cr 3 d p 1 4 = π (14 2. 3 m3 − .1 8753 m3 *) 996kg/m3* 0.997kg/kg 3

=1.18510 11 kg

The drying time of the droplet in the constant rate period, t cr , can be calculated by

(Masters,1991);

W t = cr = 1.18510 11 kg/6.410 6kg/hr=6.7ms cr dW / dt cr

Duringthecalculationofthefallingrate,thecrustorsolidshellformationoccursand itisassumedthattheparticlesizedoesnotchangefurther,andtherateofevaporationis givenby dW / dt fr ;

dW dW = * wtofdryparticle dt fr dt

where,

dW 12k d T = 2 dt λDc ρ s

65

and kd aisthethermalconductivityofthedryingairaroundtheparticle,0.0236kcal/hm o o Cat T =61 C.D cisthecriticalparticlediameterwhichisequaltothefinaldiameter oftheparticle,3.5m.ρ sistheaverageparticledensityduringthefallingrateperiod,and theparticledensityisassumedtobe773kg/m 3,byvolumetricaverageofthewaterand alginatecontentoftheparticlesatthecriticalpoint.dW/dtcanbecalculatedasfollows;

dW 12k T 12* .0 0236kcal / h.moC * 61o C = d = = 937 / s 2 2 3 dt λDc ρ s 540kcal / kg *()5.3 m *774kg / m dW fr = 937 / s * .3 63*10−14 kg = 4.3 *10−11 kg / s dt

Thetotalmassofwaterremovedduringthefallingrateperiodcanbecalculatedby differenceininitialweightofthedroplet(W in )andthewaterremovedduringconstant period(W cr )andthefinalweightoftheparticle(W p).

W fr =W in –(W cr +W p)

For a droplet having diameter of 28.4 m, where ρ is the density of alginate/water solution,996kg/m 3.

3 Win =4/3π(D d/2) ρ

=1.19510 11 kg

11 11 14 W f =1.19510 kg–(1.18510 kg+3.6310 kg) 66

=6.3710 14 kg

W t = fr = 6.3710 14 kg/3.410 11 kg/s=1.87ms fr dW / dt fr

Thetotaltimerequiredtodryananoalginateparticleis

t d=6.7ms+1.87ms~8.5ms

4.2.5.2EstimationofTimeRequiredforaBSAMoleculetoDiffusefromtheSurface totheCenteroftheDroplet

ThediffusionofBSAwithinthedropletcanbecalculatedbyStokesEinsteinEquation:

k BT Ds = 6πηRH

where k B is Boltzman’s constant, η the viscosity of the solvent (water), T is the

temperatureand RH isthehydrodynamicradiusofthesolute.

ForBSAsystem

23 2 2 1 k B =1.3806503×10 m kgs K

T = 41+85 / 2 = 63 oC = 331.3 K (the average of wet bulb temperature and outlet temperature)

η =0.544cpat63 oC

RH =4.5nmacquiredfromBöhmeandScheler,2007

2 23 m kg 1.3806503× 10 2 * 331.13 K D = s * K = 99m 2/s s g 6π * .0 544 5.4* x10−9 m ms 67

4.2.5.3CalculationofPecletNumber

2 Pe=R /t dD

WhereRistheradiusofthedropletandtdisthetotaldryingtimeofthedropletandDis thediffusitivtyconstantofaBSAmolecule.

Pe=(14.2m) 2/(99m 2/s*8.5ms)=240

4.2.6ComparisonofPresentStudywithaPreviousMethod Asmentioned,severalmethodshavebeenproposedtoproducemicroandnano particlesbyspraydrying.Buttheproposedmethodsinvolveduseoforganicsolventsand several process steps. Previously, Coppi et al .,(2001) proposed production of alginate microandnanoparticlesbyspraydryingfororaldrugdeliverypurposes.However,the proposedmethodincludedseveraladditionalstepstoenhancepropertiesofthealginate particles,includingcrosslinkingtheparticlesinCaCl 2aqueoussolutionandtreatmentof theparticleswithchitosantoreinforcealginatenetworkandafinallyophilizationstep wasusedforrecovery.(schematicdescriptionoftheprocessillustratedinFigure4.2.1).

Several attempts were made in the present investigation to reproduce the method proposedbyCoppi etal., 2001.Duringaqueoustreatmentoftheparticleswithcalcium and chitosan, particle aggregation and disintegration were observed. Furthermore, the lyophilizationstepalteredthemorphologyoftheparticlesandfabriclikestructureswere formed.TheCoppimethodwasdifficulttoreproduceduetoadditionalstepsinvolved.

Moreover,thepublisheddatashowedaround30%proteinreleaseduringtheseadditional steps.

68

Thecurrentproposedmethodandthepreviouslypublishedmethodarecompared inTable4.2.4.Thepresentstudyandthepreviouslyproposedmethodologyarecompared basedonthemodelprotein,BSA,whichwasusedinbothprotocols.

Table4.2.4.ThecomparisonofcurrentproposedmethodwithCoppi etal., 2002.

Coppi et al. ,(2002) PresentStudy

TotalProcessTime 14hours 100minutes FinalProteinLoading 63% 94% TotalProteinReleasedin SimulatedStomach 30% 35% Environment MeanParticleSize 2.5m 3.5m Thetotaltimerequiredtoproduce2gramsofmicroandnanoalginateparticles carryingproteins.Assuming12hourlyophilizationprocess.

Thepresentproposedmethodwasmuchfasterbeingasinglestepprotocol,thusitis relatively easier to reproduce. The two methods showed similar release profiles in simulatedstomachenvironment,around30%oftheencapsulatedBSAwasreleasedin thepreviousworkdonebyCoppi etal., 2002,whereasinthepresentstudyaround35% proteinreleasewasobserved.However,itshouldbenotedthatinthepresentstudythe proteinassociationoftheparticlesisaround30%higher,thusaround30%moreprotein islikelytobecarriedtotheintestinalenvironment.Forbothsystems,themeanparticle size (<5m) was within the desired range for oral absorption across the intestinal epithelia.Thecomparisonofthetwosystemshowsthatthepresentsinglestepprotocol ismoreefficient,intermsofprocesstimeandproteinencapsulation.

69

CHAPTER5.0CONCLUSIONS Stable calcium alginate/chitosan proteinloaded micro and nanoparticles were produced using a proposed single step methodology involving the spray drying of a polymer/proteinsolution.Thismethodeliminatestheneedfortoxicsolventsandmultiple processing steps involved in alternative methods, and leads directly to a stable dry productwithinashortprocessingtime.Thefollowingfindingsandconclusionsrepresent contributions to our understanding of the production of alginate micro and nanoparticulateproteinsbyspraydrying.

1 Increaseininletairtemperatureupto175 oCofthespraydryerdidnotsignificantly

affectsubtilisinresidualactivity,butimprovedtheproductyield.Thehighestparticle

yieldof40%wasachievedat175 oCandhighestactivityyieldof80%achievedat

150 oC.Particleyieldwasalsofoundtobedependantonthefeedrate,withhighest

yieldat5mL/min.

2 Themoisturecontentofthespraydriedparticleswasfoundtobedependentonthe

o inlettemperatureofthedryingair.Themoisturecontentwas7%forT inlet =125 C,

o o whereasitwasdecreasedto5.5%forT inlet =150 Cand175 C.

3 Subtilisin residual activity increased with increase in alginate:subtilisin ratio.

Presence of alginate in the feed solution increased the residual activity of the

subtilisinbymorethan50%comparedtospraydryingoffreesubtilisinfeedsolution.

Theparticlescontaining0.33gsubtilisin/gparticle,exibitedmorethan65%residual

activity.Theencapsulationyieldofsubtilisinwasmorethan95%. 70

4. The formulations containing 0.2g trehalose /g showed residual activity of 90%.

Increaseintheamountoftrehaloseintheformulation(0.33gtrehalose/gparticle)did

notsignificantlyaffecttheresidualactivity.

5. Particlesformulatedwith0.2gtrehalose/gparticleexhibitedgreaterproteinstability

thantheformulationswithoutpresenceoftrehalose,withover4monthsofstorage,

maintainingmorethan80%oftheirinitialactivity.Theformulationspreparedwith

higher subtilisin:alginate ratio showed less protein stability during the shelf life

experiments.

6. Spray dried particles showed spherical morphology. The larger particles showed

more spherical morphology, whereas smaller particles were dimpled. Trehalose

loadedparticlesshowedasmoothersurface.

7. The alginate concentration in the feed solution affected the particle size. Particles

preparedwithlessalginatehadsmallermeandiameterandnarrowersizedistribution.

Thesizerangedfrom2.51mto4.91m,whichwaswithinthedesirablerangefor

absorptionacrosstheintestinalmucosa.

8. ChitosanCaalginate particles were produced in a single step process by spray

drying. The mean diameter was around 3.5 m and particles had spherical

morphology and smooth surface. The particles showed 35 % protein release in a

simulatedstomachenvironment. 71

9. In vitro releaseprofilesoftheresultingparticlesdidnotshowsignificantvariationfor

differentmolecularweightproteins.

10. Theconfocallaserscanningmicroscopyimageoftheparticlesshowedthepresence

offluroscentlabeledproteintowardstheoutersurfaceoftheparticles.Theparticles

hadadonutshapedstructurewithahollowcentralregion.

11. Pecletnumberanddryingtimewascalculatedfortheparticlesandfoundtobe340

and8.5ms.Theseresultsshowthatduringparticleformation,convectionwasmore

dominantthandiffusionofthesolutes,leadingtotheformationofahollowcentral

regionandproteindistributiontowardthesurfaceoftheparticle.

12. The smallest mean particle size of 2.5 m was achieved with 0.2% alginate feed

concentrationwiththespraydryingoperationconditions;Qlf =5mL/min,

3 Qda = 38, m /h, Qaa = 600 L/h, P = 80 psi. The formulation consisting of an

alginate:trehalose:subtilisinratioof7:2:1gavethehighestsubtilisinresidualactivity.

72

6.0REFERENCES

AdlerM.,andLeeG,1999.Stabilityandsurfaceactivityoflactatedehydrogenasein

spraydriedtrehalose,J.Pharm.Sci.88:2,199208.

AllisonS.D.,ChangB.,RandolphT.W.andCarpenterJ.F.,1999.Hydrogenbonding

between sugar and protein is responsible for inhibition of dehydrationinduced

proteinunfolding.Arch.Biochem.Biophys.365,pp.289–298.

Banerjee,U.C.,Sani,R.K.,Azmi,W.&Soni,R.,1999.Thermostablealkalineprotease

from Bacillus brevis and its characterization as a laundry detergent additive.

ProcessBiochem.35,213219..(Ottessen,1970).

BarreG,DiakieseA,ZgoulliS,SabriA,GerdayC,ThonartP.,1999.Modificationof

thethermoresistancetospraydryingofacoldadaptedsubtilisinbygenetic

engineering.Appl.Biochem.andBiotech.7779,857865.

Begin A, Castaigne F, Goulet J. 1991. Production of alginate beads by a rotative

atomizer.BiotechnolTech5:459–464.

BenitaS,1996,,Microencapsulationmethodsandindustrialapplication,MarcelDekker,

Inc.,NY

Bhagat, H.R., Mendes, R.W., Mathiowitz, E., Bhargava, H.N., 1994. Kinetics and

Mechanism of Drug Release from Calcium Alginate Membrane Coated Tablets.

DrugDev.Ind.Pharm.20,387–394.

BlancoM.D.,BernardoM.V.,SastreR.L.,OlmoR.,MuñízE.andTeijónJ.M.,2003.

Preparation of bupivacaineloaded poly(εcaprolactone) microspheres by spray

drying:drugstudiesandbiocompatibility,Eur.J.Pharm.Biopharm.55,pp.229–

236. 73

Blanco, M.D., Sastre, R.L., Teijón, C., Olmo, R., Teijón,J. M., 2005. 5Fluorouracil

loadedmicrospherespreparedbyspraydryingpoly(d.llactide)andpoly(lactideco

glycolide)polymer:characterizationanddrugrelease.J.Microencapsul.22,671–

682

BroadheadJ,EdmondRouanS.K.,andRhodesC.T.,1992.Thespraydryingof

pharmaceuticals.DrugDevelopmentandIndustrialPharmacy18(11):11691206

BöhmeU.andSchelerU.,2007.Effectivechargeofbovineserumalbumindetermined

byelectrophoresisNMR.ChemicalPhysicsLetters.Vol435,(4),342345

Carpenter J.F. and Manning M.C., 2002,, Rational Design of Stable Protein

Formulations,TheoryandPractice,KluwerAcademic/PlenumPublishers

ChanA.GranulationofActiveSubtilisin,2003Master’sThesis,Queen’sUniversity.

Coppi G., Iannuccelli V., Leo E., Bernabei T.M., Cameroni R., ChitosanAlginate

microparticlesasaProteinCarrier,DrugDev.Ind.Pharm,2001,27(5),393400

CoppiG.,IannuccelliV.,SalaN,BondiM.,2004AlginatemicroparticlesforPolymyxin

BPeyer'spatchesuptake:microparticlesforantibioticoraladministration.Journal

ofMicroencapsulation,(8):21

CoppiG,IannuccelliV,LeoE.,BernabeiM.T.,CameroniR.2002.Protein

immobilizationincrosslinkedalginatemicroparticles.Journalof

Microencapsulation.Vol.19,(1).

Çelik M. and Wendel S., 2005. Spary Drying and Pharmecuticals Applications.

HandbookofPharmecuticalGranulationTechnology,ed.ParikhD.P.,Taylorand

Francis,NY.129155 74

DePazR.A.,DaleD.A.,BarnettC.C.,CarpenterJ.F.,GaertnerA.L.,RandolphT.W,

2002.EnzymeandMicrobialTechnology,Volume31,Number6,1Novemberpp.

765774(10)

HuY.,JiangH.,Xu,C.,WangY.andZhuK.,2005.Preparationandcharacterizationof

poly(ethylene glycol)gchitosan with water and organosolubility,

Polymer,61:472–479.

HussainN,JaitleyV,FlorenceAT.2001.Recentadvancesintheunderstandingofuptake

microparticulatesacrossthegastrointestinallymphatics.AdvDrugDelivRev

50:107–142.

Illum L., 1998, Chitosan and its use as a pharmaceutical excipient, Pharm. Res. 15:

1326–1331

Kim,C.K.andLee,E.J.,1992.TheControlledReleaseofBlueDextranfromAlginate

Beads.Int.J.Pharm.79:11–19.

Lee G., 2002 “SprayDrying of Proteins” . In:Carpenter, John ; Manning, Mark :

Rational Design of Stable Protein Formulation. 13. New York: Kluwer

Academic/PlenumPublishers,:135158.

Lee S.E.,Park K.H.,Park I.S.andNaK.,2007.Glycolchitosanasastabilizerfor

protein encapsulated into poly(lactidecoglycolide) microparticle. International

JournalofPharmaceutics,338:310–316

MaaY.andHsuC.C.,1997.Proteindenaturationbycombinedeffectofshearandair–

liquidinterface.BiotechnolBioeng54:503–512.

MaaY.F.andPrestrelskiS.J.,2000.Biopharmaceuticalpowders:particleformulation

andformulationconsiderations,Curr.Pharm.Biotechnol.1:283–302. 75

MaaYF,CostantinoHR,NguyenPA,HsuCC.Theeffectofoperatingandformulation

variablesonthemorphologyofspraydriedproteinparticles.PharmDevTechnol.

1997;2(3):213223

Maa,Y.F.andHsu,C.C.,1997.Proteindenaturationbycombinedeffectofshearand

airliquidinterface.Biotech.Bioeng.54,503512.

Masters K., 1991. SprayDrying Handbook. Longman Scientific and Technical, Essex

U.K.5 TH ed.

Namaldi,A.,Çalik,P.,andUludag,Y.2006.Effectsofspray dryingtemperatureand

additivesonthestabilityofserinealkalineproteasepowders.DryingTechnology:

24:1495.

Pavenetto F, Genta I, Giunchedi P, Conti B. 1993. Evaluation of spray drying as a

method for polylactide and polylactidecoglycolide microspheres preparation.

JournalofMicroencapsulation10:487–497.

PintoReis,C.,RonaldJ.Neufeld,A.J.RibeiroandF.Veiga.2006.NanoencapsulationI.

Methodsforpreparationofdrugloadedpolymericnanoparticles.Nanomedicine:

Nanotechnology,Biologyand,2:821

ReisCP,RibeiroAJ,NeufeldRJ,VeigaF.2004.Insulinloadedalginatenanoparticles

obtainedbyemulsification/internalgelation.XIIInternationalworkshopon

bioencapsulation;24–26September2004;Vitoria.Spain:Servicioeditorial

universidaddelPaı´sVasco.p251.

Rosenberg, M., Kopelman, I.J., and Talmon, Y. 1990. Factors affecting retention in

spray drying microencapsulation of volatile materials. J. Agric. Food Chem. 38:

12881294. 76

SakaiS.,OnoT.,IjimaH.andKawakamiK.,2000.“Controlofmolecularweightcutoff

forimmunoisolationbymultilayeringglycolchitosanalginatepolyioncomplexon

alginatebasedmicrocapsulesControlofmolecularweightcutofffor

immunoisolationbymultilayeringglycolchitosanalginatepolyioncomplexon

alginatebasedmicrocapsules”.JournalofMicroencapsulation.691699

Samborska,K.;WitrowaRajchert,D.;Gonc¸alves,A.Spraydryingofaamylase—The

effect of process variables on the enzyme inactivation. Drying Technology 2005,

23,941–953.

Sarmento,B.,S.Martins,A.Ribeiro,F.Veiga,R.J.NeufeldandD.Ferreira.2006.

Developmentandcomparisonofdifferentnanoparticulatepolyelectrolyte

complexesasinsulincarriers.Intern.J.PeptideResearchandTherapeutics,12:131

138

Smidsrød, O. and SkjåkBræk, G , 1990. Alginate as immobilisation matrix for cells.

TrendsBiotechnol.8:7178.

SriamornsakP.andSungthongjeenS.,2007.ModificationofTheophyllineReleaseWith

AlginateGelFormedinHardCapsules. AAPSPharmSciTech ;8(3),article51

TakeuchiH.,YasujiT.,YamamotoH.andKawashimaY.,2000.SprayDriedLactose

Composite Particles Containing an Ion Complex of AlginateChitosan for

Designing a DryCoated Tablet Having a TimeControlled Releasing Function

Pharm.Res.2000,17,94–99

TakeuchiH.,YasujiT.,HinoT.,YamamotoH.andKawashimaY.,1998.Spraydried

composite particles of lactose and sodium Alginate for direct tabletting and

controlledreleasing,InternationalJournalofPharmaceutics,174,91100 77

ThiesC,2005,Microencapsulation,KirkOthmerEncyclopediaofChemical

Technology,4thEdition,JohnWiley,Vol.16,p.628651

TønnesenHHandKarlsenJ.,2002.Alginateindrugdeliverysystems,DrugDev.Ind.

Pharm.28pp.621–630.

TrippB.C.,MagdaJ.J.andAndradeJ.D.,1995.Adsorptionofglobularproteinsatthe

air/waterinterfaceasmeasuredviadynamicsurfacetension—Concentration

dependence,masstransferconsiderations,andadsorptionkinetics,Journalof

ColloidandInterfaceScience173,1,pp.16–27.

TsapisN,BennetD.,JacksonB.,WeitzD.A.andEdwardsD.A.,2002.Trojanparticles:

largeporouscarriersofnanoparticlesfordrugdelivery, Proc.Natl.Acad.Sci.

U.S.A., 99 ,pp.12001–12005.

Wagenaar B.W. and Müller B.W., 1994. Proxicam Release from Spray Dried

biodegradablemicrospheres,Biomaterials,15,1,4954

WangFJ,WangCH.2003.Etanidazoleloadedmicrospheresfabricatedbyspraydrying

different poly(lactide/glycolide) polymers: Effects on microsphere properties.

JournalofBiomaterialsScience,PolymerEdition14:157–183.

Wang W. Lyophilization and development of solid protein pharmaceuticals. Int. J. of

Pharmaceutics,Vol.203,pp.160(2000).

WebbJ.N.,CarpenterJ.F.andRandolphT.W.,2000.Stabilityofsubtilisinand

lysozymeunderhighhydrostaticpressure.Biotechnol.Prog.16,630636.

WeeS.GombotzWR.1998.ProteinreleasefromAlginateMatrices.AdvDrugDeliv

Rev.31(3):267285

78

7.0APPENDIX

7.1CalculationofResidualActivityofSubtilisinwithAlginatemicroparticlesafter spraydrying.

Thecatalyticactivityofsubtilisinwasdeterminedspectrophotometricallyat410nmwith

1mg/mlNsuccinylLAlaLAlaProLPhepnitroanalineassubstratein100mMTris,

0.005%Tween80pH8.6.Theactivitywasalsoexpressedininternationalunits(IU), whichisdefinedasmolesofsubstratehydrolyzedperminuteat25 oCandpH8.6.The activityoftheproteasewasdeterminedthroughLambertlaw.

A=εcl

C/t=A/εl

C/t=slope/εl

Aistheabsorbancereading,εisthemolarextinctioncoefficient(8480M 1cm 1 for subtilisin),cistheconcentrationofproductandlistheopticalpathlengthofthecuvette.

(1cm)

7.2DeterminationofActivityofSubtilisinwithinMicroparticles

Initially1mLoftrisbuffersolutionwasaddedtocuvette.Thecuvettewasplacedintoa

25 oC waterbath (set point 25.2 oC)andincubatedfor10minutes.Then10LofN succinylLAlaLAlaProLPhepnitroanalinestocksolutionwasadded.Around20mg 79 ofparticles,having0.1gsubtilisin/gparticlewasdissolvedintrisbuffersystem(at25 oC). 10 L of enzyme solution was sampled and added to the cuvette for sphectrometricallydeterminationoftheactivity.Alsoastandardcuvettewasplacedin theblankphotometerscell.Absorbancereadingsweretakenat0.33sec timeintervals andoveralldataacquisitionwas1minutes..Slopeoftheabsorbancevstimecurvewas determinedforthelinearabsrangeof0.20.8.Theresidualactivityoftheparticlecanbe determinedbydividingtheacitiviyofthestocksolutionbytheexperimentalactivityof thesubtilisinafterspraydrying.

7.3SampleCalculationforActivityoftheSubtilisinStockSolution

C/t=A/εl

=slope/εl

=0.81/(8480*1)

=0.0000963M/min

=0.0963mM/min

TotalVolumeincuvetteis1020L

ReactionRate=0.0963mM/min*1020L=0.0982mole/min

10Lsamplecanconvertthesyntetickproteinsubtrateinto0.0982mole/minproduct permin,1Lproteasecancatalyse:

=0.0982mole/min(1L/10L)

=9820mole/min/L

80

Theactivitycanbealsoexpressedasininternationalunits(IU),whichcanbedefinedas the amount of enzyme that catalyzed the production of 1moles of pnitroaniline per minuteat25 oCin100MmTris/HClbufferatpH8.6.

=9820mole/min/Lprotease=9820IU/L

=9.82IU/mL

Thedilutionfoldappliedtotheenzymewas1981

Theproteaseactivityofthestocksolution=9.82IU/mL*1891=18569IU/ml

o 7.4SampleCalculationforT inlet =150 C,with0.1gsubtilisin/gparticle.

Thesamecalculationprocedurecanbefollowedtodeterminetheexperimental

o Activityofthesubtilisinencapsulatedwithinthemicroparticles.ForTinlet =150 C,with

0.1 g subtilisin/g particle. The slope was determined to be 0.89 26 mg of particles dissolvedin10mLtris/HClbuffersolution.

C/t=A/εl

=slope/εl

=0.89(8480*1)

=0.0001049M/min

=0.1049mM/min

TotalVolumeincuvetteis1020L

ReactionRate=0.1049mM/min*1020L=0.1070mole/min

10Lsamplecanconvertthesyntetickproteinsubtrateinto0.1070mole/minproduct permin,1Lproteasecancatalyse:

81

=0.1070mole/min(1L/10L)

=10700mole/min/L

Theactivitycanbealsoexpressedasininternationalunits(IU),whichcanbedefinedas the amount of enzyme that catalyzed the production of 1moles of pnitroaniline per minuteat25 oCin100MmTris/HClbufferatpH8.6.

=10700mole/min/Lprotease=10700IU/L

=10.70IU/mL

Thedilutionofthesamplecanbecalculatedthroughtheproteinloadingandthe dissolutionvolumeofthemedium.26mgofparticleswasdissolvedin10mLoftris/HCl buffersystem,wheretheparticleshadaproteinloadingof0.1gsubtilisin/gparticle.

Proteinconcentrationofthesampledsolutioncanbecalculatedas;

=0.1gsubtilisin/gparticle*26mgparticle/10mL

=0.26mg/mL

Theinitialstocksolutionoftheenzymewas359mg/mL.

Thedilutionfoldisfoundtobe;=359mg/mL/0.26mg/mL=1380times

Theproteaseactivityoftheoriginalsolution=10.70IU/mL*1380=14774IU/mL

Residualactivity%=(experimentalactivity/stocksolutionactivity)*100

=(14774IU/mL/18569IU/ml)*100

=79.5%