A Globular Cluster Toward M87 with a Radial Velocity <

Total Page:16

File Type:pdf, Size:1020Kb

A Globular Cluster Toward M87 with a Radial Velocity < Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 A Globular Cluster toward M87 with a Radial Velocity < - 1000 km s-1: The First Hypervelocity Cluster Caldwell, N ; Strader, J ; Romanowsky, A J ; Brodie, J P ; Moore, B ; Diemand, J ; Martizzi, D Abstract: We report the discovery of an object near M87 in the Virgo Cluster with an extraordinary blueshift of -1025 km s-1, offset from the systemic velocity by >2300 km s-1. Evaluation of photometric and spectroscopic data provides strong evidence that this object is a distant massive globular cluster, which we call HVGC-1 in analogy to Galactic hypervelocity stars. We consider but disfavor more exotic interpretations, such as a system of stars bound to a recoiling black hole. The odds of observing an outlier as extreme as HVGC-1 in a virialized distribution of intracluster objects are small; it appears more likely that the cluster was (or is being) ejected from Virgo following a three-body interaction. The nature of the interaction is unclear, and could involve either a subhalo or a binary supermassive black hole at the center of M87. DOI: https://doi.org/10.1088/2041-8205/787/1/L11 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-98126 Journal Article Published Version Originally published at: Caldwell, N; Strader, J; Romanowsky, A J; Brodie, J P; Moore, B; Diemand, J; Martizzi, D (2013). A Globular Cluster toward M87 with a Radial Velocity < - 1000 km s-1: The First Hypervelocity Cluster. Astrophysical Journal Letters, 787:1-5. DOI: https://doi.org/10.1088/2041-8205/787/1/L11 The Astrophysical Journal Letters, 787:L11 (5pp), 2014 May 20 doi:10.1088/2041-8205/787/1/L11 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A GLOBULAR CLUSTER TOWARD M87 WITH A RADIAL VELOCITY <−1000 km s−1: THE FIRST HYPERVELOCITY CLUSTER Nelson Caldwell1, Jay Strader2, Aaron J. Romanowsky3,4, Jean P. Brodie4, Ben Moore5, Jurg Diemand5, and Davide Martizzi6 1 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Department of Physics and Astronomy, San Jose´ State University, San Jose, CA 95192, USA 4 University of California Observatories, Santa Cruz, CA 95064, USA 5 Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich, Switzerland 6 Department of Astronomy, University of California, Berkeley, CA 94720, USA Received 2014 February 25; accepted 2014 April 4; published 2014 May 6 ABSTRACT We report the discovery of an object near M87 in the Virgo Cluster with an extraordinary blueshift of −1025 km s−1, offset from the systemic velocity by >2300 km s−1. Evaluation of photometric and spectroscopic data provides strong evidence that this object is a distant massive globular cluster, which we call HVGC-1 in analogy to Galactic hypervelocity stars. We consider but disfavor more exotic interpretations, such as a system of stars bound to a recoiling black hole. The odds of observing an outlier as extreme as HVGC-1 in a virialized distribution of intracluster objects are small; it appears more likely that the cluster was (or is being) ejected from Virgo following a three-body interaction. The nature of the interaction is unclear, and could involve either a subhalo or a binary supermassive black hole at the center of M87. Key words: galaxies: clusters: individual (Virgo) – galaxies: individual (M87) – galaxies: kinematics and dynamics – galaxies: star clusters: general – globular clusters: general Online-only material: color figures 1. INTRODUCTION images, and sky was subtracted using dedicated fibers. Multiple observations were coadded; about half of the objects were Extreme astrophysical objects are occasionally found in large observed more than once. Velocities were measured through samples of data. While classifying a million galaxy images, the cross-correlation as described in Strader et al. (2011b). We Galaxy Zoo project found Hanny’s Voorwerp, an unusual cloud estimate that ∼1800 objects have secure velocities, though this ionized by an active galactic nucleus (Lintott et al. 2009). In number is not yet final. a study of blue horizontal branch stars in the Galactic halo se- Of these 1800, more than 1000 objects have measured lected from the Sloan Digital Sky Survey (SDSS), Brown et al. velocities between 500 and 3000 km s−1, with a clear median (2005) found hypervelocity stars that are thought to originate in ∼1300 km s−1. These are all likely Virgo Cluster members. three-body interactions with the supermassive black hole The remainder are Galactic stars (∼600 objects) or background (SMBH) at the center of the Galaxy. In an extensive study galaxies (∼100 objects). Figure 1 shows a preliminary histogram of star clusters, planetary nebulae, and H ii regions in M31, of velocities in our survey, plus GCs from Strader et al. (2011b), Caldwell et al. (2010) found one star with the most negative showing clear peaks associated with the foreground star and velocity known (−780 km s−1), a probable member of the An- Virgo GC populations. The distribution of Virgo galaxies is also dromeda giant stream. plotted. The survey target with a velocity <−1000 km s−1 is the Here, we report on an object found in a different large subject of this Letter. survey that has an even more extreme negative velocity: an The J2000 decimal coordinates are (R.A., decl.) = apparent globular cluster (GC) toward the central Virgo Cluster (187.72791, +12.68295). It is located 17.6 north of M87, a galaxy M87. projected distance of ∼84 kpc if the object has the same dis- tance as M87 (we adopt 16.5 Mpc for consistency with Strader 2. OBSERVATIONS et al. 2011b). For reasons explained below, we dub the object HVGC-1 (for the first “hypervelocity globular cluster”); in the We have been collecting spectra of GC candidates in the nomenclature of Strader et al. (2011b) for M87 GCs, this object Virgo Cluster for several years, using Keck/DEIMOS and LRIS has the catalog designation H70848. and MMT/Hectospec (Romanowsky et al. 2012; Strader et al. We observed the object on three separate occasions, finding 2011b). Those papers reported roughly 500 new confirmed GCs. consistent results in each case. The final combined radial Our more recent data set, taken mostly with MMT/Hectospec velocity is −1026 ± 13 km s−1. This is the most negative, bulk from 2010–2013, contains more than 5000 separate observations velocity ever measured for an astronomical object not orbiting of 2500 candidate GCs and ultra-compact dwarfs, covering a another object. non-uniform area within 1◦ of M87 and 0◦.5 of M60. Details of the survey will be presented elsewhere, but in brief, − Hectospec with the 270 l mm 1 grating provided spectra with a 3. WHAT IS THIS OBJECT? resolution of 5 Å over the range 3700–9200 Å (Fabricant et al. 2005). The total exposure times were 1–4 hr per field. Data were The only reasonable possibilities are that this object is a GC extracted and wavelength calibrated from the two-dimensional in or near Virgo or an individual Galactic star. The extreme 1 The Astrophysical Journal Letters, 787:L11 (5pp), 2014 May 20 Caldwell et al. Figure 2. Two-color uiK diagram, derived for objects with Hectospec velocity classification. Objects with velocities between 500 and 2300 km s−1 are considered GCs; those <250 km s−1 stars. HVGC-1 clearly falls in the GC sequence. A CFHT g-band cutout (40) is inset. (A color version of this figure is available in the online journal.) Figure 1. Velocity distribution of objects toward Virgo, including all confirmed GCs, all Hectospec velocities, and galaxies (from Rines & Geller 2008). The (Larsen 1999) we fit King models with fixed c = 30 con- distinct stellar and GC distributions are clear, as is the broader galaxy distribution volved with a point-spread function made from bright stars near (dotted and shaded magenta). HVGC-1 is the marked extreme left outlier. HVGC-1. The r ∼ 20 pc objects are clearly resolved and we (A color version of this figure is available in the online journal.) h reproduce the published rh estimates to within ∼15%–20%. HVGC-1 shows modest evidence for being resolved with negative radial velocity is very difficult to explain if the source rh ∼ 6 pc. While we believe this measurement is too small is a star, and only somewhat easier to explain if not. to be reliable, the fitting—and the comparison to known objects—suggests an upper limit of rh ∼ 10–15 pc. This is 3.1. A Star? consistent with a GC, but rules out a larger, more distant galaxy infalling to Virgo. The known Galactic hypervelocity stars all have positive We have obtained photometry of HVGC-1 using ground- velocities (Brown et al. 2012), as expected if they have been based CFHT images taken for the Next Generation Virgo ejected by the central SMBH into the halo. A highly negative Cluster Survey (NGVS; Ferrarese et al. 2012) and the associated velocity for an ejected star would be observed only in the NGVS-IR K-band survey, but separately processed by CADC unlikely event that a star was ejected toward the Sun, and quite (Gwyn 2008). Foreground extinction corrections were taken recently (8 Myr, given a distance of ∼8 kpc). Our object has ◦ from Schlafly & Finkbeiner (2011). a galactic latitude of 74 , and thus is not in the direction of Munoz˜ et al.
Recommended publications
  • Structure and Kinematics of the Virgo Cluster of Galaxies? Olga G
    A&A 635, A135 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936172 & c ESO 2020 Astrophysics Structure and kinematics of the Virgo cluster of galaxies? Olga G. Kashibadze1;??, Igor D. Karachentsev1, and Valentina E. Karachentseva2 1 Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz, Karachay-Cherkessia 369167, Russia e-mail: [email protected] 2 Main Astronomical Observatory of the National Academy of Sciences, 27 Akademika Zabolotnoho St., Kyiv 03143, Ukraine Received 25 June 2019 / Accepted 24 January 2020 ABSTRACT Aims. This work considers the Virgo cluster of galaxies, focusing on its structure, kinematics, and morphological landscape. Our principal aim is to estimate the virial mass of the cluster. For this purpose, we present a sample of 1537 galaxies with radial velocities −1 ◦ ◦ VLG < 2600 km s situated within a region of ∆SGL = 30 and ∆SGB = 20 around M 87. About half of the galaxies have distance estimates. Methods. We selected 398 galaxies with distances in a (17 ± 5) Mpc range. Based on their 1D and 2D number-density profiles and their radial velocity dispersions, we made an estimate for the virial mass of the Virgo cluster. Results. We identify the infall of galaxies towards the Virgo cluster core along the Virgo Southern Extension filament. From a 1D 14 profile of the cluster, we obtain the virial mass estimate of (6:3 ± 0:9) × 10 M , which is in tight agreement with its mass estimate via the external infall pattern of galaxies. Conclusions. We conclude that the Virgo cluster outskirts between the virial radius and the zero-velocity radius do not contain significant amounts of dark matter beyond the virial radius.
    [Show full text]
  • SMG20 - Twenty Years of Submillimetre Galaxies Star-Forming Galaxies at High Redshifts 31St July – 2Nd August 2017
    SMG20 - Twenty years of Submillimetre Galaxies Star-forming galaxies at high redshifts 31st July – 2nd August 2017 Monday 31th July Session 1 Loretta Dunne “Results from Herschel on galaxy formation and evolution” Cardiff Review talk covering results from Herschel on galaxy formation and evolution. James Geach “The SCUBA-2 Cosmology Legacy Survey and beyond” University of Hertfordshire The SCUBA-2 Cosmology Legacy Survey (S2CLS) is the largest 850 mm survey to date, detecting 1000’s of sub-mm sources over about 5 square degrees and providing exceptionally deep 450+850 mm maps in several extragalactic fields. It is enabling detailed studies of the SMG population and feeds directly into ALMA follow-up programmes. Now complete, I will present an overview of S2CLS and highlight some of the key science results so far. I will conclude with a look to the future of large ground-based sub-mm surveys, in particular what could be achieved with a new large single dish located on the Chajnantor Plateau. SMG20 31st July - 2nd August 2017 2 Scott Chapman “Identifying the brightest galaxies in the SCUBA-2 Cosmology Legacy Survey” Dalhousie University Using the SMA and complemented by ALMA in the UDS, we have identified the 120 brightest SCUBA-2 sources in the SCUBA-2 Cosmology Legacy Survey. This consists of all sources with S850mm > 9 mJy, and includes several unlensed sources with single component fluxes close to 20 mJy. Previous studies have had little sta- tistical constraint on the true bright end count, and therefore on the properties of these maximal star formers. Spectroscopic surveys with Keck, Gemini, and VLT have measured redshifts and line properties for about 30% of these sources.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Downloading Rectification Matrices the first Step Will Be Downloading the Correct Rectification Matrix for Your Data Off of the OSIRIS Website
    UNDERGRADUATE HONORS THESIS ADAPTIVE-OPTICS INTEGRAL-FIELD SPECTROSCOPY OF NGC 4388 Defended October 28, 2016 Skylar Shaver Thesis Advisor: Dr. Julie Comerford, Astronomy Honor Council Representative: Dr. Erica Ellingson, Astronomy Committee Members: Dr. Francisco Müller-Sánchez, Astrophysics Petger Schaberg, Writing Abstract Nature’s most powerful objects are well-fed supermassive black holes at the centers of galaxies known as active galactic nuclei (AGN). Weighing up to billions of times the mass of our sun, they are the most luminous sources in the Universe. The discovery of a number of black hole-galaxy relations has shown that the growth of supermassive black holes is closely related to the evolution of galaxies. This evidence has opened a new debate in which the fundamental questions concern the interactions between the central black hole and the interstellar medium within the host galaxy and can be addressed by studying two crucial processes: feeding and feedback. Due to the nature of AGN, high spatial resolution observations are needed to study their properties in detail. We have acquired near infrared Keck/OSIRIS adaptive optics-assisted integral field spectroscopy data on 40 nearby AGN as part of a large program aimed at studying the relevant physical processes associated with AGN phenomenon. This program is called the Keck/OSIRIS nearby AGN survey (KONA). We present here the analysis of the spatial distribution and two-dimensional kinematics of the molecular and ionized gas in NGC 4388. This nearly edge-on galaxy harbors an active nucleus and exhibits signs of the feeding and feedback processes. NGC 4388 is located in the heart of the Virgo cluster and thus is subject to possible interactions with the intra-cluster medium and other galaxies.
    [Show full text]
  • Detection of Intergalactic Red-Giant-Branch Stars in the Virgo Cluster
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University Publications Summer 8-28-1998 Detection of Intergalactic Red-Giant-Branch Stars in the Virgo Cluster Henry C. Ferguson Space Telescope Science Institute, [email protected] Ted von Hippel University of Wisconsin, [email protected] Nial R. Tanvir University of Cambridge, [email protected] Follow this and additional works at: https://commons.erau.edu/publication Part of the Stars, Interstellar Medium and the Galaxy Commons Scholarly Commons Citation Ferguson, H. C., von Hippel, T., & Tanvir, N. R. (1998). Detection of Intergalactic Red-Giant-Branch Stars in the Virgo Cluster. Nature, 391(). https://doi.org/10.1038/35087 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Detection of Intergalactic Red Giant Branch Stars in the Virgo Cluster Henry C. Ferguson Space Telescope Science Institute, Baltimore, MD 21218, USA [email protected] Nial R. Tanvir University of Cambridge, Institute of Astronomy Madingley Road, Cambridge CB3 0HA, UK [email protected] Ted von Hippel Department of Astronomy, University of Wisconsin Address: WIYN Telescope, NOAO, PO Box 26732, Tucson, AZ 85726, USA [email protected] August 28, 2018 It has been suspected for nearly 50 years that clusters of galax- ies contain a population of intergalactic stars, ripped from galaxies during cluster formation or when the galaxies’ orbits take them through the cluster center.1, 2, 3 Support for the existence of such a population of free-floating stars comes from measurements of the diffuse light in clusters 4, 5, 6, 7, 8, 9, and from recent detections of planetary nebulae with positions and/or velocities far removed from any observed cluster galaxy.
    [Show full text]
  • Inverse and Joint Variation 9.1.1
    Inverse and joint variation 9.1.1 One of the first things that scientists do with data is to graph it in various ways to see if a pattern emerges. If two variables are selected that lead to a smooth curve, the variables can be shown to lead to ‘correlated’ behavior that can either represent a direct, or inverse, variation. The specific shape of the curve indicates the exponent. The example to the left shows that for Cepheid variable stars, the Log of the star’s luminosity, L, is proportional to its period because the slope of the curve is ‘fit’ by a linear equation. Problem 1 – The radius of a black hole, R, is proportional to its mass, M, and inversely proportional to the square of the speed of light, c. If the constant of proportionality is twice Newton’s constant of gravity, G, what is the mathematical equation for the black hole radius? Problem 2 – The luminosity, L, of a star is proportional to the square of its radius, R, and proportional to its surface temperature, T, to the fourth power. What is the equation for L if the proportionality constant is C? Problem 3 – The thickness of a planetary atmosphere, H, is proportional to temperature, T, and inversely proportional to the product of its molecular mass, m, and the local acceleration of gravity, g. What is the equation for H if the constant of proportionality is k? Problem 4 – The temperature of a planet, T, to the fourth power is proportional to the luminosity, L, of the star that it orbits, and inversely proportional to the square of its distance from its star, D.
    [Show full text]
  • Messier 58, 59, 60, 89, and 90, Galaxies in Virgo
    Messier 58, 59, 60, 89, and 90, Galaxies in Virgo These are five of the many galaxies of the Coma-Virgo galaxy cluster, a prime hunting ground for galaxy observers every spring. Dozens of galaxies in this cluster are visible in medium to large amateur telescopes. This star hop includes elliptical galaxies M59, M60, and M89, and spiral galaxies M58 and M90. These galaxies are roughly 50 to 60 million light years away. All of them are around magnitude 10, and should be visible in even a small telescope. Start by finding the Spring Triangle, which consists of three widely- separated first magnitude stars-- Arcturus, Spica, and Regulus. The Spring Triangle is high in the southeast sky in early spring, and in the southwest sky by mid-Summer. (To get oriented, you can use the handle of the Big Dipper and "follow the arc to Arcturus"). For this star hop, look in the middle of the Spring Triangle for Denebola, the star representing the back end of Leo, the lion, and Vindemiatrix, a magnitude 2.8 star in Virgo. The galaxies of the Virgo cluster are found in the area between these two stars. From Vindemiatrix, look 5 degrees west and slightly south to find ρ (rho) Virginis, a magnitude 4.8 star that is easy to identify because it is paired with a slightly dimmer star just to its north. Center ρ in the telescope with a low-power eyepiece, and then just move 1.4 degrees north to arrive at the oval shape of M59. Continuing with a low-power eyepiece and using the chart below, you can take hops of less than 1 degree to find M60 to the east of M59, and M58, M89, and M90 to the west and north.
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • SPACETIME & GRAVITY: the GENERAL THEORY of RELATIVITY
    1 SPACETIME & GRAVITY: The GENERAL THEORY of RELATIVITY We now come to one of the most extraordinary developments in the history of science - the picture of gravitation, spacetime, and matter embodied in the General Theory of Relativity (GR). This theory was revolutionary in several di®erent ways when ¯rst proposed, and involved a fundamental change how we understand space, time, and ¯elds. It was also almost entirely the work of one person, viz. Albert Einstein. No other scientist since Newton had wrought such a fundamental change in our understanding of the world; and even more than Newton, the way in which Einstein came to his ideas has had a deep and lasting influence on the way in which physics is done. It took Einstein nearly 8 years to ¯nd the ¯nal and correct form of the theory, after he arrived at his 'Principle of Equivalence'. During this time he changed not only the fundamental ideas of physics, but also how they were expressed; and the whole style of theoretical research, the relationship between theory and experiment, and the role of theory, were transformed by him. Physics has become much more mathematical since then, and it has become commonplace to use purely theoretical arguments, largely divorced from experiment, to advance new ideas. In what follows little attempt is made to discuss the history of this ¯eld. Instead I concentrate on explaining the main ideas in simple language. Part A discusses the new ideas about geometry that were crucial to the theory - ideas about curved space and the way in which spacetime itself became a physical entity, essentially a new kind of ¯eld in its own right.
    [Show full text]
  • Distance and Mass of the M104 (Sombrero) Group
    Astronomy & Astrophysics manuscript no. somb_toastroph c ESO 2020 September 1, 2020 Distance and mass of the M104 (Sombrero) group Igor D. Karachentsev1, Lidia N. Makarova1, R. Brent Tully2, Gagandeep S. Anand2, Luca Rizzi3, and Edward J. Shaya4 1 Special Astrophysical Observatory, The Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167, Russia 2 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3 W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743, USA 4 Astronomy Department, University of Maryland, College Park, MD 20743, USA September 1, 2020 ABSTRACT Aims. Distances and radial velocities of galaxies in the vicinity of the luminous early-type galaxy M 104 (Sombrero) are used to derive its dark matter mass. Methods. Two dwarf galaxies: UGCA 307 and KKSG 30 situated near M 104 were observed with the Advanced Camera for Surveys +0.84 +0.44 on the Hubble Space Telescope. The distances 9.03−0.51 Mpc (UGCA 307) and 9.72−0.41 Mpc (KKSG 30) were determined using the tip of the red giant branch method. These distances are consistent with the dwarf galaxies being satellites of Sombrero. Results. Using radial velocities and projected separations of UGCA 307, KKSG 30, and a third galaxy with an accurate distance (KKSG 29), as well as 12 other assumed companions with less accurate distances, the total mass of M 104 is estimated to be (1.55 ± 13 11 0.49)10 M⊙. At the K-band luminosity of the Sombrero galaxy of 2.410 L⊙, its total mass-to-luminosity ratio is MT /LK = (65 ± 20)M⊙/L⊙, which is about three times higher than that of luminous bulgeless galaxies.
    [Show full text]
  • The Densest Galaxy
    San Jose State University SJSU ScholarWorks Faculty Publications Physics and Astronomy 1-1-2013 The densest galaxy J. Strader Michigan State University A. C. Seth University of Utah J. P. Brodie University of California Observatories D. A. Forbes Swinburne University G. Fabbiano Harvard-Smithsonian Center for Astrophysics See next page for additional authors Follow this and additional works at: https://scholarworks.sjsu.edu/physics_astron_pub Part of the Astrophysics and Astronomy Commons Recommended Citation J. Strader, A. C. Seth, J. P. Brodie, D. A. Forbes, G. Fabbiano, Aaron J. Romanowsky, C. Conroy, N. Caldwell, V. Pota, C. Usher, and J. A. Arnold. "The densest galaxy" Astrophysical Journal Letters (2013). https://doi.org/10.1088/2041-8205/775/1/L6 This Article is brought to you for free and open access by the Physics and Astronomy at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Authors J. Strader, A. C. Seth, J. P. Brodie, D. A. Forbes, G. Fabbiano, Aaron J. Romanowsky, C. Conroy, N. Caldwell, V. Pota, C. Usher, and J. A. Arnold This article is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/physics_astron_pub/21 The Astrophysical Journal Letters, 775:L6 (6pp), 2013 September 20 doi:10.1088/2041-8205/775/1/L6 ©C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE DENSEST GALAXY Jay Strader1, Anil C. Seth2, Duncan A. Forbes3, Giuseppina Fabbiano4, Aaron J. Romanowsky5,6, Jean P. Brodie6 , Charlie Conroy7, Nelson Caldwell4, Vincenzo Pota3, Christopher Usher3, and Jacob A.
    [Show full text]
  • Hats Off to Space Day from NASA's Spitzer Space Telescope 5 May 2005
    Hats Off to Space Day From NASA's Spitzer Space Telescope 5 May 2005 ring. The Sombrero is one of the most massive objects at the southern edge of the Virgo cluster of galaxies. It is equal in size to 800 billion suns. This spiral galaxy is located 28 million light-years away and is 50,000 light-years across. Viewed from Earth, it is just six degrees away from its equatorial plane. The Hubble images were taken by the Hubble Heritage Team in May through June 2003, with the telescope's advanced camera for surveys. Spitzer's images were taken in June 2004 and January 2005 as part of the Spitzer Infrared Nearby Galaxies Survey, using the telescope's infrared array camera. NASA salutes Space Day, observed this year on May 5, with a new dramatic image of the Sombrero The survey is one of the six Spitzer Legacy Science galaxy. Space Day, held the first Thursday each projects designed to reveal how stars form in May, is designed to inspire the next generation of different types of galaxies, and to provide an atlas explorers. of galaxy images and spectra for future archival The galaxy, called Messier 104, is commonly investigations. The Sombrero is one of 75 galaxies known as the Sombrero galaxy because in visible being observed by the survey team. light it resembles a broad-brimmed Mexican hat called a sombrero. The new Sombrero picture The Spitzer Space Telescope and Hubble Space combines a recent infrared observation from Telescope are part of NASA's Great Observatories NASA's Spitzer Space Telescope with a well- program, which also includes the Chandra X-ray known visible light image from NASA's Hubble Observatory and the previously operating Compton Space Telescope.
    [Show full text]