Petrogenesis of Neogene Basaltic Volcanism

Total Page:16

File Type:pdf, Size:1020Kb

Petrogenesis of Neogene Basaltic Volcanism PETROGENESIS OF NEOGENE BASALTIC VOLCANISM ASSOCIATED WITH THE LUT BLOCK, EASTERN IRAN: IMPLICATION FOR TECTONIC AND METALLOGENIC EVOLUTION by SAEED SAADAT M.Sc., Shahid Bahonar University, Kerman, Iran 1997 B.Sc., Ferdowsi University of Mashhad, Iran 1991 A dissertation submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2010 This thesis entitled: PETROGENESIS OF NEOGENE BASALTIC VOLCANISM ASSOCIATED WITH THE LUT BLOCK, EASTERN IRAN: IMPLICATION FOR TECTONIC AND METALLOGENIC EVOLUTION written by Saeed Saadat has been approved for the Department of Geological Sciences by _____________________________________ Charles R. Stern _______________________________________ G. Lang Farmer Date______________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Saadat, Saeed (Ph.D., Geological Sciences) Petrogenesis of Negene basaltic volcanism associated with the Lut block, eastern Iran: implication for tectonic and metallogenic evolution Dissertation directed by Professor Charles R. Stern This dissertation presents petrochemical data concerning Neogene olivine basalts erupted both along the margins and within the micro-continental Lut block, eastern Iran, which is a part of the active Alpine-Himalayan orogenic belt. These data demonstrate the following: 1) Basalts that erupted from small monogenetic parasitic cones around the Bazman stratovolcano, Makran arc area, in the southern Lut block, are low-Ti sub-alkaline olivine basalts. Enrichments of LILE relative to LREE, and depletions in Nb and Ta relatively to LILE, are similar to those observed for other convergent plate boundary arc magmas around the world and suggest that these basalts formed by melting of subcontinental mantle modified by dehydration of the subducted Oman Sea oceanic lithosphere. 2) Northeast of Iran, an isolated outcrop of Neogene/Quaternary alkali olivine basalt, containing mantle and crustal xenoliths, formed by mixing of small melt fractions from both garnet and spinel-facies mantle. These melts rose to the surface along localized pathways associated with extension at the junction between the N-S right-lateral strike-slip faults and E-W left-lateral strike slip faults. The spinel-peridotite mantle xenoliths contained in the basalts, which equilibrated in the subcontinental lithosphere at depths of 30 to 60 km and temperatures of 965°C to 1065°C, do not preserve evidence of extensive metasomatic enrichment as has been inferred for the mantle below the Damavand volcano further to the west in north-central Iran. iii 3) Neogene mafic rocks within the central Lut block represent the last manifestation of a much more extensive mid-Tertiary magmatic event. These basalts formed from both OIB-like asthenosphere and subcontinental lithosphere which preserved chemical characteristics inherited from mid-Tertiary subduction associated with the collision of the Arabian with the Eurasian plate and closing of the Neotethys Ocean. Neogene/Quternary alkali olivine basalts erupted mainly along the major faults that bound the Lut block on the east and west. These low-volumes, low- degree melts have been formed by low variable degrees of partial melting of mantle source produced by upwelling asthenosphere replaced the thinned lithospheric mantle. iv DEDICATION To my ever-patient and ever-loving wife, Fatemeh, and our children, Setareh and Soroush and to the memories of my mother v ACKNOWLEDGEMENTS First most, I thank God for all his blessings and allowing me to survey a small portion of the Earth. Second most, I would like to thank my academic advisor, Charles Stern, for providing me the topic, helping to introducing me to it, and also dedicating a lot of time for correcting this thesis. I am proud to have completed this research under his expert tutelage. I am also grateful for the time and support given to me by my other committee members: Lang Farmer, Roger Bilham, Mohammad Hassan Karimpour, Brian Hynek and Khalid Hussien. Special thanks also for Lang Farmer who let me work in isotope lab and for always having his door open to answer my questions and giving me very useful comments. In addition, I thank Karl Mueller for preparing the satellite image, Peter Molnar for useful references, Alex Skewes for kind advice and encouragement, and also Mary Kraus for her role in helping me with financial support from the Department of Geological Sciences during the first two years of my education. I want to thank several people at the University of Colorado for provided me technical support. Emily Verplank trained me for my work in the isotope lab, and without her endless patience and guidance I could not have completed the lab work required for this study. I am also grateful to John Drexler for his help with electron microprobe and Fred Luiszer for trace elements determination, Dan Mitchell for keeping my computers running, and Paul Boni for his help and advice for preparing the thin and polished thin sections. I wish to thank to all my other colleagues, who have helped me throughout my work and have been good friends. Here I would like to mention Alexis Ault, Kristin Halberg Jacob, Treasure Bailley and Kurt Refsnider. In addition, I would like to thank the Department of Geological Sciences office staff, Marcia Lynne Kelly, Babara Amaral, Tiernen Carter McConaughy, and Joanne Brunetti, and also special thank to Carrie Simon from the graduate office, who dealt with problems and still smiled. vi Outside of the University of Colorado, I have benefited greatly from discussions and references provided by Mark Allen, Charles Verdel and Richard Walker. The completion of this thesis would not have been possible without my Iranian friends Ghaemi, Ghoorchi, Shojaei, Saadati, Kamkar, Hemmati, Abbasian, Abbasnia, Ajayebi, Asghari, Nazemi, Moradian, Ghazanfari, Shajiee, Anis and Siavash Karimpour: Thank you all for everything you have given me. I also would like to thank Malekzadeh for measuring the major elements in Ferdowsi University of Mashad (Iran) and Geological Survey of Iran, Kerman branch, for providing some samples from the study area. I am deeply indebted to my dear sister, Hekmat, who treated our father so well during my stay here. I gratefully acknowledge the financial support of the Department of Geological Sciences at University of Colorado, the Society of Economic Geologists (SEG), Shell Oil Company and the family of Jeffrey Deen for support. I reserve the deepest gratitude for my dear wife, Fatemeh, and our children, Setareh and Soroush, whose love, support and understanding are seemingly infinite. vii TABLE OF CONTENTS CHAPTER I .................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 1.1 Problems addressed ........................................................................................................... 1 1.2 General background and previous work ............................................................................ 4 1.3 Analytical techniques ......................................................................................................... 6 CHAPTER II ................................................................................................................................... 9 Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran ................................................................................. 9 Summary .................................................................................................................................. 9 2.1 Introduction ...................................................................................................................... 10 2.2 Geological and tectonic setting ........................................................................................ 10 2.3 Results.............................................................................................................................. 16 2.3.1 Petrography .......................................................................................................... 16 2.3.2 Mineral compositions ........................................................................................... 17 2.3.3 Whole rock compositions ..................................................................................... 18 2.3.4 Radiogenic isotopes .............................................................................................. 28 2.4 Discussion and conclusions ............................................................................................. 31 2.4.1 Makran arc basaltic magma genesis ..................................................................... 31 2.4.2 Variations in magma generation processes along the Makran arc ....................... 38 viii 2.4.3 Makran arc compared to other Iran volcanic arcs ................................................ 39 CHAPTER III ............................................................................................................................... 44 Petrochemistry of mantle xenoliths and
Recommended publications
  • Assessment of Agricultural Water Resources Sustainability in Arid Regions Using Virtual Water Concept: Case of South Khorasan Province, Iran
    water Article Assessment of Agricultural Water Resources Sustainability in Arid Regions Using Virtual Water Concept: Case of South Khorasan Province, Iran Ehsan Qasemipour 1 and Ali Abbasi 1,2,* 1 Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; [email protected] 2 Faculty of Civil Engineering and Geosciences, Water Resources Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands * Correspondence: [email protected] or [email protected]; Tel.: +31-15-2781029 Received: 30 December 2018; Accepted: 22 February 2019; Published: 3 March 2019 Abstract: Cropping pattern plays an important role in providing food and agricultural water resources sustainability, especially in arid regions in which the concomitant socioeconomic dangers of water shortage would be inevitable. In this research, six indices are applied to classify 37 cultivated crops according to Central Product Classification (CPC). The respective 10-year data (2005–2014) were obtained from Agricultural Organization of South Khorasan (AOSKh) province. The water footprint concept along with some economic indicators are used to assess the water use efficiency. Results show that blue virtual water contributes to almost 99 percent of Total Virtual Water (TVW). In this occasion that an increasing pressure is exerted on groundwater resources, improper pattern of planting crops has to be beyond reproach. The improper cropping pattern in the study area led to the overuse of 346 × 106 m3 of water annually. More specifically, cereals cultivation was neither environmentally nor economically sustainable and since they accounted for the largest share of water usage at the province level, importing them should be considered as an urgent priority.
    [Show full text]
  • Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
    Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens.
    [Show full text]
  • Rare Birds in Iran in the Late 1960S and 1970S
    Podoces, 2008, 3(1/2): 1–30 Rare Birds in Iran in the Late 1960s and 1970s DEREK A. SCOTT Castletownbere Post Office, Castletownbere, Co. Cork, Ireland. Email: [email protected] Received 26 July 2008; accepted 14 September 2008 Abstract: The 12-year period from 1967 to 1978 was a period of intense ornithological activity in Iran. The Ornithology Unit in the Department of the Environment carried out numerous surveys throughout the country; several important international ornithological expeditions visited Iran and subsequently published their findings, and a number of resident and visiting bird-watchers kept detailed records of their observations and submitted these to the Ornithology Unit. These activities added greatly to our knowledge of the status and distribution of birds in Iran, and produced many records of birds which had rarely if ever been recorded in Iran before. This paper gives details of all records known to the author of 92 species that were recorded as rarities in Iran during the 12-year period under review. These include 18 species that had not previously been recorded in Iran, a further 67 species that were recorded on fewer than 13 occasions, and seven slightly commoner species for which there were very few records prior to 1967. All records of four distinctive subspecies are also included. The 29 species that were known from Iran prior to 1967 but not recorded during the period under review are listed in an Appendix. Keywords: Rare birds, rarities, 1970s, status, distribution, Iran. INTRODUCTION Eftekhar, E. Kahrom and J. Mansoori, several of whom quickly became keen ornithologists.
    [Show full text]
  • See the Document
    IN THE NAME OF GOD IRAN NAMA RAILWAY TOURISM GUIDE OF IRAN List of Content Preamble ....................................................................... 6 History ............................................................................. 7 Tehran Station ................................................................ 8 Tehran - Mashhad Route .............................................. 12 IRAN NRAILWAYAMA TOURISM GUIDE OF IRAN Tehran - Jolfa Route ..................................................... 32 Collection and Edition: Public Relations (RAI) Tourism Content Collection: Abdollah Abbaszadeh Design and Graphics: Reza Hozzar Moghaddam Photos: Siamak Iman Pour, Benyamin Tehran - Bandarabbas Route 48 Khodadadi, Hatef Homaei, Saeed Mahmoodi Aznaveh, javad Najaf ...................................... Alizadeh, Caspian Makak, Ocean Zakarian, Davood Vakilzadeh, Arash Simaei, Abbas Jafari, Mohammadreza Baharnaz, Homayoun Amir yeganeh, Kianush Jafari Producer: Public Relations (RAI) Tehran - Goragn Route 64 Translation: Seyed Ebrahim Fazli Zenooz - ................................................ International Affairs Bureau (RAI) Address: Public Relations, Central Building of Railways, Africa Blvd., Argentina Sq., Tehran- Iran. www.rai.ir Tehran - Shiraz Route................................................... 80 First Edition January 2016 All rights reserved. Tehran - Khorramshahr Route .................................... 96 Tehran - Kerman Route .............................................114 Islamic Republic of Iran The Railways
    [Show full text]
  • Iran's Foreign and Defense Policies
    Iran’s Foreign and Defense Policies Updated May 8, 2019 Congressional Research Service https://crsreports.congress.gov R44017 SUMMARY R44017 Iran’s Foreign and Defense Policies May 8, 2019 Iran’s national security policy is the product of many overlapping and sometimes competing factors such as the ideology of Iran’s Islamic revolution, perception of threats Kenneth Katzman to the regime and to the country, long-standing national interests, and the interaction of Specialist in Middle the Iranian regime’s factions and constituencies. Iran’s leadership: Eastern Affairs x Seeks to deter or thwart U.S. or other efforts to invade or intimidate Iran or to bring about a change of regime. x Has sought to take advantage of opportunities of regional conflicts to overturn a power structure in the Middle East that it asserts favors the United States, Israel, Saudi Arabia, and other Sunni Muslim Arab regimes. x Seeks to enhance its international prestige and restore a sense of “greatness” reminiscent of ancient Persian empires. x Advances its foreign policy goals, in part by providing material support to regional allied governments and armed factions. Iranian officials characterize the support as helping the region’s “oppressed” and assert that Saudi Arabia, in particular, is instigating sectarian tensions and trying to exclude Iran from regional affairs. x Sometimes disagrees on tactics and strategies. Supreme Leader Ali Khamene’i and key hardline institutions, such as the Islamic Revolutionary Guard Corps (IRGC), oppose any compromises of Iran’s national security core goals. Iran’s elected president, Hassan Rouhani, and Foreign Minister Mohammad Javad Zarif support Iran’s integration into regional and international diplomacy.
    [Show full text]
  • Panthera Pardus) Range Countries
    Profiles for Leopard (Panthera pardus) Range Countries Supplemental Document 1 to Jacobson et al. 2016 Profiles for Leopard Range Countries TABLE OF CONTENTS African Leopard (Panthera pardus pardus)...................................................... 4 North Africa .................................................................................................. 5 West Africa ................................................................................................... 6 Central Africa ............................................................................................. 15 East Africa .................................................................................................. 20 Southern Africa ........................................................................................... 26 Arabian Leopard (P. p. nimr) ......................................................................... 36 Persian Leopard (P. p. saxicolor) ................................................................... 42 Indian Leopard (P. p. fusca) ........................................................................... 53 Sri Lankan Leopard (P. p. kotiya) ................................................................... 58 Indochinese Leopard (P. p. delacouri) .......................................................... 60 North Chinese Leopard (P. p. japonensis) ..................................................... 65 Amur Leopard (P. p. orientalis) ..................................................................... 67 Javan Leopard
    [Show full text]
  • Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト
    Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト ● Asia 4 Bangladesh 7 China アジア バングラデシュ 中国 1 Afghanistan 9 Khulna 6 Hangzhou アフガニスタン クルナ 杭州(ハンチォウ) 1 Herat 10 Kotwalipara 7 Wuhan ヘラート コタリパラ 武漢(ウハン) 2 Kabul 11 Meherpur 8 Cyprus カブール メヘルプール キプロス 3 Nili 12 Moulvibazar 1 Aglantzia ニリ モウロビバザール アグランツィア 2 Armenia 13 Narayanganj 2 Ammochostos (Famagusta) アルメニア ナラヤンガンジ アモコストス(ファマグスタ) 1 Yerevan 14 Narsingdi 3 Kyrenia エレバン ナールシンジ キレニア 3 Azerbaijan 15 Noapara 4 Kythrea アゼルバイジャン ノアパラ キシレア 1 Agdam 16 Patuakhali 5 Morphou アグダム(県) パトゥアカリ モルフー 2 Fuzuli 17 Rajshahi 9 Georgia フュズリ(県) ラージシャヒ ジョージア 3 Gubadli 18 Rangpur 1 Kutaisi クバドリ(県) ラングプール クタイシ 4 Jabrail Region 19 Swarupkati 2 Tbilisi ジャブライル(県) サルプカティ トビリシ 5 Kalbajar 20 Sylhet 10 India カルバジャル(県) シルヘット インド 6 Khocali 21 Tangail 1 Ahmedabad ホジャリ(県) タンガイル アーメダバード 7 Khojavend 22 Tongi 2 Bhopal ホジャヴェンド(県) トンギ ボパール 8 Lachin 5 Bhutan 3 Chandernagore ラチン(県) ブータン チャンダルナゴール 9 Shusha Region 1 Thimphu 4 Chandigarh シュシャ(県) ティンプー チャンディーガル 10 Zangilan Region 6 Cambodia 5 Chennai ザンギラン(県) カンボジア チェンナイ 4 Bangladesh 1 Ba Phnom 6 Cochin バングラデシュ バプノム コーチ(コーチン) 1 Bera 2 Phnom Penh 7 Delhi ベラ プノンペン デリー 2 Chapai Nawabganj 3 Siem Reap Province 8 Imphal チャパイ・ナワブガンジ シェムリアップ州 インパール 3 Chittagong 7 China 9 Kolkata チッタゴン 中国 コルカタ 4 Comilla 1 Beijing 10 Lucknow コミラ 北京(ペイチン) ラクノウ 5 Cox's Bazar 2 Chengdu 11 Mallappuzhassery コックスバザール 成都(チォントゥ) マラパザーサリー 6 Dhaka 3 Chongqing 12 Meerut ダッカ 重慶(チョンチン) メーラト 7 Gazipur 4 Dalian 13 Mumbai (Bombay) ガジプール 大連(タァリィェン) ムンバイ(旧ボンベイ) 8 Gopalpur 5 Fuzhou 14 Nagpur ゴパルプール 福州(フゥチォウ) ナーグプル 1/108 Pages
    [Show full text]
  • Phosphate Occurrence and Potential in the Region of Afghanistan, Including Parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan
    Phosphate Occurrence and Potential in the Region of Afghanistan, Including Parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan By G.J. Orris, Pamela Dunlap, and John C. Wallis With a section on geophysics by Jeff Wynn Open-File Report 2015–1121 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Orris, G.J., Dunlap, Pamela, and Wallis, J.C., 2015, Phosphate occurrence and potential in the region of Afghanistan, including parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan, with a section on geophysics by Jeff Wynn: U.S. Geological Survey Open-File Report 2015-1121, 70 p., http://dx.doi.org/10.3133/ofr20151121. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents
    [Show full text]
  • Ali Asghar Semsar Yazdi Majid Labbaf Khaneiki Construction And
    Ali Asghar Semsar Yazdi Majid Labbaf Khaneiki Qanat Knowledge Construction and Maintenance Qanat Knowledge Ali Asghar Semsar Yazdi • Majid Labbaf Khaneiki Qanat Knowledge Construction and Maintenance Ali Asghar Semsar Yazdi Majid Labbaf Khaneiki International Center on Qanats and Historic International Center on Qanats and Historic Hydraulic Structures (UNESCO ICQHS) Hydraulic Structures (UNESCO ICQHS) Yazd , Iran Yazd , Iran ISBN 978-94-024-0955-0 ISBN 978-94-024-0957-4 (eBook) DOI 10.1007/978-94-024-0957-4 Library of Congress Control Number: 2016959456 © Springer Science+Business Media Dordrecht 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • 7. Rickards, Wright, Hamedi.Pdf
    Records of the Western AustralIan Museum Supplement No. 58: 103-122 (2000). Late Ordovician and Early Silurian graptolites from southern Iran R.B. Rickardsl, A.J. Wright2 and M.A. HamedP I Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3 EQ, England 1 School of Geosciences, University of Wollongong, Wollongong, N.s.W. 2522, Australia "Department of Geology, Tarbiet Modares University, Tehran, Iran Abstract - Graptolites are described for the first time from the Faraghun mountains (Kuh-e-Faraghun) and the Gahkum mountains (Kuh-e-Gahkum) on the northern edge of the southeast part of the Zagros Mountains, Iran. 38 taxa are recorded, including 4 Ordovician and 34 Silurian species; the latter are the first Silurian graptolites described from Iran. Ashgill (Late Ordovician) graptolite assemblages from Kuh-e-Faraghun include: Persclllptograptlls persculptlls and Orthograptlls amplexicalllis, indicating a persculptlls Biozone age; and Orthograptus amplexicalllis abbreviatlls, indicating the latest Ordovician anceps Biozone. Kuh-e-Faraghun Early Silurian faunas include representatives of the L1andovery leptotheca Biozone; another assemblage, including Monograptlls convollltus and Pselldorthograptlls inopinatlls, indicates the slightly younger L1andovery convollltlls Biozone. Graptolites from Kuh-e-Gahkum comprise a rich Stimlllograptlls sedgwickii assemblage, indicating a slightly higher L1andovery level again (sedgwickii Biozone); a convollltlls Biozone fauna is also probably represented in our collections. INTRODUCTION the Kerman district, East-Central Iran; the fauna Late Ordovician and Early Silurian graptolites, they reported is that described in part from the from two areas in the northern part of the Zagros Katkoyeh Formation by Rickards et al. (1994), now belt (Figures 1, 2, 3), are described for the first time being fully described on the basis of collections from Iran.
    [Show full text]
  • Gall-Inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Acta Phytopathologica et Entomologica Hungarica 54 (1), pp. 113–126 (2019) DOI: 10.1556/038.54.2019.010 Gall-inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran A. NAJMI1, H. S. NAMAGHI1*, S. BARJADZE2 and L. FEKRAT1 1Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran 2Institute of Zoology, Ilia State University, Tbilisi, Georgia (Received: 11 November 2018; accepted: 16 November 2018) A survey of gall-inducing aphids on elm and poplar trees was carried out during 2017 in Razavi Kho- rasan province, NE Iran. As a result, 15 species of gall-inducing aphids from 5 genera, all belonging to the subfamily Eriosomatinae, were recorded on 6 host plant species. The collected species included the genera Eriosoma, Kaltenbachiella, Pemphigus, Tetraneura and Thecabius. Pemphigus passeki Börner (Hemiptera: Aphididae) and Pemphigus populinigrae (Schrank) (Hemiptera: Aphididae) on Populus nigra var. italica (Sal- icaceae) were new records for the Iranian aphid fauna. Both new recorded species belong to the tribe Pem- phigini, subfamily Eriosomatinae. Among the identified species, 8 aphid species were new records for Razavi Khorasan province. Keywords: Aphid, elm, poplar, fauna, gall-inducing aphid. Many insect groups, around 13,000 species, are known as plant gall makers (Nyman and Julkunen-Tiitto, 2000; Suzuki et al., 2009). Among them, Aphidoidea is a very large superfamily in the hemipteran suborder Sternorrhyncha with about 5000 known species (Blackman and Eastop, 2000; Ge et al., 2016).
    [Show full text]
  • Data Collection Survey on Tourism and Cultural Heritage in the Islamic Republic of Iran Final Report
    THE ISLAMIC REPUBLIC OF IRAN IRANIAN CULTURAL HERITAGE, HANDICRAFTS AND TOURISM ORGANIZATION (ICHTO) DATA COLLECTION SURVEY ON TOURISM AND CULTURAL HERITAGE IN THE ISLAMIC REPUBLIC OF IRAN FINAL REPORT FEBRUARY 2018 JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) HOKKAIDO UNIVERSITY JTB CORPORATE SALES INC. INGÉROSEC CORPORATION RECS INTERNATIONAL INC. 7R JR 18-006 JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) DATA COLLECTION SURVEY ON TOURISM AND CULTURAL HERITAGE IN THE ISLAMIC REPUBLIC OF IRAN FINAL REPORT TABLE OF CONTENTS Abbreviations ............................................................................................................................ v Maps ........................................................................................................................................ vi Photos (The 1st Field Survey) ................................................................................................. vii Photos (The 2nd Field Survey) ............................................................................................... viii Photos (The 3rd Field Survey) .................................................................................................. ix List of Figures and Tables ........................................................................................................ x 1. Outline of the Survey ....................................................................................................... 1 (1) Background and Objectives .....................................................................................
    [Show full text]