Super-Resolution Microscopy Approaches for Live Cell Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Super-Resolution Microscopy Approaches for Live Cell Imaging View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 107 October 2014 1777–1784 1777 Biophysical Review Super-resolution Microscopy Approaches for Live Cell Imaging Antoine G. Godin,1,2 Brahim Lounis,1,2 and Laurent Cognet1,2,* 1University of Bordeaux, LP2N, UMR 5298, Talence, France; and 2Institut d’Optique Graduate School and Centre National de la Recherche Scientifique, LP2N, UMR 5298, Talence, France ABSTRACT By delivering optical images with spatial resolutions below the diffraction limit, several super-resolution fluores- cence microscopy techniques opened new opportunities to study biological structures with details approaching molecular structure sizes. They have now become methods of choice for imaging proteins and their nanoscale dynamic organizations in live cells. In this mini-review, we describe and compare the main far-field super-resolution approaches that allow studying endogenous or overexpressed proteins in live cells. INTRODUCTION The decryption of cell functions and subcellular processes has using saturable optical processes that deexcite emitters constantly benefited from advances in microscopy. In partic- formerly excited by a focused laser beam. These processes ular, the developments of fluorescence microscopy and of work to prevent fluorescence emission from specific regions numerous fluorescent probes allowing the study of specific of the excitation beam by driving the molecules in these biomolecules at work in their native environment were instru- regions between bright and dark states using a depletion light mental to the advance of live cell mechanism investigations. beam. One elegant and efficient strategy consists of using The optical resolution of microscopes is limited by the diffrac- stimulated emission by a high-intensity (>MW/cm2), tion of light, which commonly sets a limit of ~l/2 in far-field doughnut-shaped laser beam superimposed with the focused microscopy. By delivering optical images with spatial resolu- excitation laser beam, completely preventing fluorescence tions below the diffraction limit, super-resolution fluorescence emission from emitters in peripheral regions of the excitation microscopy offered new promises to study molecular pro- beam. This process was coined ‘‘stimulated emission deple- cesses with greater detail than with conventional microscopies tion’’ (STED) (3). A doughnut-shaped depletion beam is the (1,2). Most of these methods rely on the control of the number simplest design; however, in general, any depletion beam of emitting molecules in specific imaging volumes. This can featuring a spatial intensity distribution with one or several be achieved by controlling local emitter fluorescent state intensity zeroes can be used to perform STED images. populations or the labeling densities of fluorescing probes at To generate a super-resolved image with STED based on any given time during the image acquisition process. In this local excitation volumes, one must scan the excitation/deple- mini-review, we will discuss the key features of super-resolu- tion effective volumes over the sample in a deterministic tion techniques used for live-cell studies. We schematically point-by-point manner or by use of parallelized scanning divide them into three major groups: those based on highly schemes (4,5). STED was successfully applied in several localized fluorescence emission volumes; those based on live samples to study slow morphing and movements of structured illumination; and those based on single-molecule organelles such as reticulum endoplasmic or microtubules localizations. A didactic representation of the three families (6), subcellular organization in live cells (7), and synaptic of super-resolution approaches is presented in Fig. 1. structures in live samples (7–9). For live cell studies, one should bear in mind that relatively high laser powers are needed in STED, especially when using continuous wave SUPER-RESOLUTION BASED ON HIGHLY laser beams (e.g., ~MW/cm2 (10)). Using pulsed excitation LOCALIZED FLUORESCENCE EMISSION beam together with time-gating detection allowed a ~2–3- VOLUMES fold reduction in laser power (11). In addition, photobleach- Stimulated emission depletion (STED) and ing is a limiting factor for long-term live sample imaging reversible saturable optical fluorescence because each fluorescent molecule undergoes a large num- transition (RESOLFT) ber of exciting/de-exciting cycles in the depletion beam. An approach similar to STED using much lower inten- In a far-field confocal microscope, the effective fluorescence sities to deplete emitting molecular levels (~kW/cm2)(12) volume can be reduced below the diffraction limit (3)by is based on reversible photoswitching of marker proteins between a fluorescence-activated and a nonactivated state Submitted June 18, 2014, and accepted for publication August 7, 2014. (13–15), whereby one of the transitions is accomplished *Correspondence: [email protected] by means of a spatial intensity distribution featuring a Editor: Brian Salzberg. Ó 2014 by the Biophysical Society 0006-3495/14/10/1777/8 $2.00 http://dx.doi.org/10.1016/j.bpj.2014.08.028 1778 Godin et al. C RESOLFT/STED A Object Excitation over the sample Depletion Scanning laser beams D Structured illumination microscopy (SIM) 3 patterns*3 modulations = 9 images Software B Diffraction Reconstruction limited image E Single molecule approaches Acquired Images ... ... Image Reconstruction from localizations Single molecule localization FIGURE 1 Schematic description of the superresolution microscopy approaches. All images for this didactic description are computer-generated. Object to be imaged consisted of fluorescent emitters (A) and corresponding diffraction-limited image (B). (C) In RESOLFT/STED, a focused excitation beam (cyan) superimposed with a doughnut-shaped depletion beam (red) are scanned over the sample to acquire an image at high resolution (down to ~50– 80 nm in live cells). (D) In SIM, after the required software reconstruction, multiple wide-field images are acquired using sinusoidal illumination grid patterns to obtain high-resolution images (down to ~50–100 nm in live cells using nonlinear saturated illumination). (E) In single-molecule localization microscopy, a large number of wide-field images containing a few isolated single fluorescent emitters are successively acquired. A high-resolution image is reconstructed from the localizations of each individual molecule. Resolutions down to ~50 nm are commonly achieved in live cells. In the example provided, we considered the detection of 80% of the molecules present in the object image. Scale bar represents 1 mm. To see this figure in color, go online. zero. This generalized approach was named after ‘‘revers- vides only an approximately twofold resolution enhance- ible saturable optical fluorescence transition’’ (RESOLFT). ment of standard wide-field microscopy as compared to Bright photostable switchable fluorophores and fluorescent other super-resolution methods (19). Nonlinear saturated proteins development were particularly instrumental in the SIM using fluorophore saturation or photoswitchable pro- development of these techniques (14–16). Importantly, fluo- teins as in RESOLFT can achieve higher resolution rescent proteins provide specific 1:1 protein labeling and enhancement (~50 nm), but requires an increased number offer the possibility of intracellular live cell imaging. of image acquisitions (up to 63) and a complex reconstruc- tion process (20,21). SIM has been demonstrated for long- term, live cell imaging in microtubules and other dynamic STRUCTURED ILLUMINATION MICROSCOPY (SIM) structures (21–23). Three-dimensional SIM imaging has Structured illumination microscopy (SIM) is based on stan- been further achieved using 15 different pattern acquisitions dard wide-field microscopy and is compatible with most per axial planes for reconstruction instead of nine images to standard fluorophores and labeling protocols. It uses reject the out-of-focus light (24). Whole-cell volume imag- nonuniform illuminations with known spatial patterns ing has been performed using three-dimensional SIM in two (e.g., originally a sinusoidal grid, but other illumination dis- colors (25). And, interestingly, fast SIM imaging (11 Hz) tributions can also be used (17)). From multiple acquisitions has even been developed with a 100-nm resolution for a (e.g., nine images, incorporating three phase shifts for three small field of view (~8 Â 8 mm2)(18). pattern orientations (18)), high spatial frequency informa- tion is retrieved with a dedicated algorithm, comprising a SINGLE-MOLECULE LOCALIZATION method inaccessible with standard illumination schemes MICROSCOPY APPROACHES (19). Contrary to standard laser scanning modalities like STED/RESOLFT, SIM allows acquisition of a large field It is well known that the position of isolated single fluores- of view over limited times. However, SIM routinely pro- cent emitters can be determined by image analysis with Biophysical Journal 107(8) 1777–1784 Live Cell Super-resolution Imaging 1779 greater precision than is available from the diffraction limit with the use of reducing/oxidizing buffers that can affect alone. This feature, which has been used for more than 20 cell integrity (41). Of special interest is that STORM has years in live cell, single-particle/-molecule studies (26), is been shown to take advantage of some reduction in thiol key to providing today’s super-resolved images. Super-res-
Recommended publications
  • Fluorescent Probes for RESOLFT-Type Microscopy at Low Light Intensities
    Generation of Novel Photochromic GFPs: Fluorescent Probes for RESOLFT-type Microscopy at Low Light Intensities Dissertation for the award of the degree “Doctor rerum naturalium” Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen submitted by Tim Grotjohann from Hannover Göttingen, 2012 Thesis committee members: - Prof. Dr. Stefan Jakobs (1st Referee) Max Planck Institute for Biophysical Chemistry, Göttingen Department of NanoBiophotonics Mitochondrial Structure and Dynamics Group - Prof. Dr. Kai Tittmann (2nd Referee) Georg August University Göttingen Albrecht von Haller Institute Department of Bioanalytics - Dr. Dieter Klopfenstein Georg August University Göttingen Third Institute of Physics Department of Biophysics Date of oral examination: 18th April, 2012 Affidavit I hereby ensure that the presented thesis “Generation of novel photochromic GFPs: fluorescent probes for live cell RESOLFT-type microscopy at low light intensities” has been written independently and with no other sources and aids than quoted. ___________________________________ (Tim Grotjohann) 10th February 2012, Göttingen Table of Contents I. Summary ............................................................................ 4 II. Introduction ........................................................................ 5 1. Fluorescence Microscopy ................................................................................................ 6 a. Fluorescence ..............................................................................................................
    [Show full text]
  • Photocontrollable Fluorescent Proteins for Superresolution Imaging
    BB43CH14-Lippincott-Schwartz ARI 19 May 2014 15:54 Photocontrollable Fluorescent Proteins for Superresolution Imaging Daria M. Shcherbakova,1,2 Prabuddha Sengupta,3 Jennifer Lippincott-Schwartz,3 and Vladislav V. Verkhusha1,2 1Department of Anatomy and Structural Biology, and 2Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461; email: [email protected] 3Section on Organelle Biology, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; email: [email protected] Annu. Rev. Biophys. 2014. 43:303–29 Keywords The Annual Review of Biophysics is online at PALM, RESOLFT, PAGFP, PAmCherry, EosFP biophys.annualreviews.org This article’s doi: Abstract 10.1146/annurev-biophys-051013-022836 Superresolution fluorescence microscopy permits the study of biological Copyright c 2014 by Annual Reviews. processes at scales small enough to visualize fine subcellular structures All rights reserved that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. Annu. Rev. Biophys. 2014.43:303-329. Downloaded from www.annualreviews.org The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysi- by Yeshiva University - Albert Einstein College of Medicine on 06/06/14. For personal use only. cal properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitch- able fluorescent proteins, and we detail their particular usefulness in single- molecule localization–based and nonlinear ensemble–based superresolution techniques.
    [Show full text]
  • Two Approaches for a Simpler STED Microscope Using a Dual-Color Laser Or a Single Wavelength Ancuţa Teodora Şcheul
    Two approaches for a simpler STED microscope using a dual-color laser or a single wavelength Ancuţa Teodora Şcheul To cite this version: Ancuţa Teodora Şcheul. Two approaches for a simpler STED microscope using a dual-color laser or a single wavelength. Other [cond-mat.other]. Université de Grenoble, 2013. English. NNT : 2013GRENY040. tel-01558306 HAL Id: tel-01558306 https://tel.archives-ouvertes.fr/tel-01558306 Submitted on 7 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Specialit´ e´ : Optique, Nanophysique Arretˆ e´ ministeriel´ : 7 aoutˆ 2006 Present´ ee´ par S¸cheul Ancut¸aTeodora These` dirigee´ par Jean-Claude Vial et codirigee´ par Irene` Wang prepar´ ee´ au sein du Laboratoire interdisciplinaire de Physique et de l’Ecole Doctorale de Physique, Grenoble Two approaches for a simpler STED microscope using a dual- color laser or a single wavelength These` soutenue publiquement le 22 Novembre 2013, devant le jury compose´ de : Dominique Bourgeois Directeur de Recherche
    [Show full text]
  • Super-Resolution Microscopy 1
    Semrock White Paper Series: Super-resolution Microscopy 1. Introduction Fluorescence microscopy has revolutionized the study of biological samples. Ever since the invention of fluorescence microscopy towards the beginning of the 20th century, significant technological advances have enabled elucidation of biological phenomenon at cellular, sub- cellular and even at molecular levels. However, the latest incarnation of the modern fluorescence microscope has led to a paradigm shift. This wave is about breaking the diffraction limit first proposed in 1873 by Ernst Abbe. The implications of this development are profound. This new technology, called super-resolution microscopy, allows for the visualization of cellular samples with a resolution similar to that of an electron microscope, yet it retains the advantages of an optical fluorescence microscope. This means it is possible to uniquely visualize desired molecular species in a cellular environment, even in three dimensions and now in live cells – all at a scale comparable to the spatial dimensions of the molecules under investigation. This article provides an overview of some of the key recent developments in super-resolution microscopy. 2. The problem So what is wrong with a conventional fluorescence microscope? To understand the answer to this question, consider a Green Fluorescence Protein (GFP) molecule that is about 3 nm in diameter and about 4 nm long. When a single GFP molecule is imaged using a 100X objective the size of the image should be 0.3 to 0.4 microns (100 times the size of the object). Yet the smallest spot that can be seen at the camera is about 25 microns. Which corresponds to an object size of about 250 nm.
    [Show full text]
  • RESOLFT Light-Sheet Microscopy
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Diplom-Physiker Patrick Hoyer Born in Weiden i. d. OPf. Oral examination: December 17, 2014 RESOLFT Light-sheet Microscopy Referees: Prof. Dr. Stefan W. Hell Prof. Dr. Wolfgang Petrich «φύσις κρύπτεσθαι φιλεῖ.» (“Nature loves to hide.”) Heraklit, Fragmentum, B 123. Abstract e concept of RESOLFT was introduced to break the resolution limit in fluo- rescence microscopy, which is set by the physical phenomenon of diffraction. It enables the separation of fluorophores inside a focal volume by driving re- versible optical transitions between two discernible states. e family of re- versibly switchable fluorescent proteins (RSFPs) with long-lived on- and off- states allows for RESOLFT imaging at low light levels. Up to now, RESOLFT involving RSFPs as fluorescent markers has been exclusively demonstrated to enhance the resolution in the lateral dimension. In this work, a novel RSFP- based RESOLFT microscope is presented, that, for the first time, breaks the diffraction barrier in the axial direction by switching fluorophores in the vol- ume of a light-sheet. It is realized with the optical arrangement of a selec- tive plane illumination microscope (SPIM), that illuminates only a thin sec- tion of a sample perpendicular to the detection axis and thus reduces the overall light exposure in volume recordings. e symbiotic combination of RSFP-based RESOLFT and SPIM, the so called RESOLFT-SPIM nanoscope, offers highly parallelized, fast imaging of living biological specimens with low light doses and sub-diffraction axial resolution.
    [Show full text]
  • Experimental Stochastics in High-Resolution Fluorescence
    High-Resolution Fluorescence Microscopy with Photoswitchable Fluorescent Proteins Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades ”Doctor rerum naturalium” der Georg-August-Universitat¨ Gottingen¨ vorgelegt von Hannes Bock aus Hamburg Gottingen,¨ 2008 . D 7 Referent: Prof. Dr. M. Munzenberg¨ Koreferent: Prof. Dr. S. W. Hell Tag der mundlichen¨ Prufung:¨ High-Resolution Fluorescence Microscopy with Photoswitchable Fluorescent Proteins Summary The diffraction limit in far-field fluorescence microscopy can be overcome by photoswitch- ing the marker molecules between a fluorescent and a non-fluorescent state. Photoswitching enables the successive generation and readout of nano-sized fluorescent areas in the sample. Subsequently, these areas can be assembled to form a super-resolution image of the speci- men. For the first time in this work, one and the same molecular switching mechanism of a reversibly switchable fluorescent protein (RSFP) was used to realize two alternative varia- tions of this general nanoscopy principle: one based on the targeted switching of ensembles of molecules and the other based on the stochastic switching of single emitters. RSFPs are of particular interest for these techniques because they allow the non-invasive study of pro- cesses in living cells and can be efficiently switched using low light intensities, thus minimiz- ing photo stress and possible photo-induced damage of the cell. Furthermore, the protein’s photoswitching properties can be improved via targeted mutagenesis. In the case of both nanoscopy techniques presented here, image acquisition could be significantly improved and accelerated as compared to related approaches. For the first time, two-color far-field fluores- cence nanoscopy based on the photoswitching of single emitters was successfully realized in biological samples.
    [Show full text]
  • Far-Field Optical Imaging and Manipulation of Individual Spins with Nanoscale Resolution
    Far-Field Optical Imaging and Manipulation of Individual Spins with Nanoscale Resolution The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Maurer, P. C., J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, et al. 2010. Far-Field Optical Imaging and Manipulation of Individual Spins with Nanoscale Resolution. Nature Physics 6, no. 11: 912–918. Published Version doi:10.1038/nphys1774 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12724044 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Far-field optical imaging and manipulation of individual spins with nanoscale resolution P. C. Maurer1;∗, J. R. Maze1;7;∗, P. L. Stanwix2;8;∗, L. Jiang6, A.V. Gorshkov1, A.A. Zibrov1, B. Harke3, J.S. Hodges1;4, A.S. Zibrov1, A. Yacoby1, D. Twitchen5, S.W. Hell3, R.L. Walsworth1;2, M.D. Lukin1 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138 USA 2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 USA 3Max Planck Institute for Biophysical Chemistry, Gottingen, Germany. 4Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cam- bridge, Massachusetts 02139, USA 5Element Six Ltd, Ascot, Berkshire, UK. 6Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA. 7Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Casilla 306, Santiago, Chile.
    [Show full text]
  • Achromatic Light Patterning and Improved Image Reconstruction for Parallelized RESOLFT Nanoscopy
    Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy Andriy Chmyrov1,2,§†, Marcel Leutenegger1†, Tim Grotjohann1, Andreas Schönle2, Jan Keller-Findeisen1, Lars Kastrup2, Stefan Jakobs1,3, Gerald Donnert2, Steffen J. Sahl1 & Stefan W. Hell1* 1 Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany. 2 Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany. 3 University of Göttingen, Medical Faculty, Department of Neurology, Robert-Koch-Str. 40, 37075 Göttingen, Germany. § Present address: Helmholtz-Zentrum München, Institute of Biological and Medical Imaging, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany. † These authors contributed equally. *Correspondence should be addressed to S.W.H. ([email protected]). Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between ‘on’ and ‘off’ states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells at ~60–80 nm resolution for ~100×100 μm2 fields of view.
    [Show full text]
  • The Positive Switching RSFP Padron2 Enables Live-Cell RESOLFT Nanoscopy Without Sequential Irradiation Steps
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318733; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Positive Switching RSFP Padron2 Enables Live-Cell RESOLFT Nanoscopy Without Sequential Irradiation Steps Timo Konen¹, Tim Grotjohann¹, Isabelle Jansen¹, Nickels Jensen¹, Stefan W. Hell¹, Stefan Jakobs¹,²* ¹Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany ²Department of Neurology, University of Göttingen, Göttingen, Germany *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318733; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Reversibly switchable fluorescent proteins (RSFPs) can be repeatedly transferred between a fluorescent on- and a non-fluorescent off-state in response to irradiation with light of different wavelengths. Negative switching RSFPs are switched from the on- to the off-state with the same wavelength which also excites fluorescence. Positive switching RSFPs have a reversed light response where the fluorescence excitation wavelength induces the transition from the off- to the on-state. Reversible saturable optical linear (fluorescence) transitions (RESOLFT) nanoscopy utilizes these switching states to achieve diffraction-unlimited resolution, but so far has primarily relied on negative switching RSFPs by using time sequential switching schemes.
    [Show full text]
  • Three Dimensional Parallelized RESOLFT Nanoscopy for Volumetric Live Cell Imaging Andreas Bodén1, Francesca Pennacchietti1, Ilaria Testa1,†
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898510; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Three dimensional parallelized RESOLFT nanoscopy for volumetric live cell imaging Andreas Bodén1, Francesca Pennacchietti1, Ilaria Testa1,† 1 Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; † Corresponding authors: [email protected] Abstract The volumetric architecture of organelles and molecules inside cells can only be investigated with microscopes featuring sufficiently high resolving power in all three spatial dimensions. Current methods suffer from severe limitations when applied to live cell imaging such as long recording times and/or photobleaching. By introducing a novel optical scheme to switch reversibly switchable fluorescent molecules, we demonstrate volumetric nanoscopy of living cells with resolution below 100 nm in 3D, large field of view and minimal illumination intensities (W-kW/cm2). bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898510; this version posted January 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Optical microscopes primarily convey higher spatial information in the lateral directions due to the intrinsic principles of lens-based imaging. The advent of optical nanoscopy has demonstrated the possibility to extract isotropic axial and lateral information beyond the diffraction limit using interferometry1-3 and point spread function engineering4-6 approaches in both deterministic and single molecule stochastic switching methods.
    [Show full text]
  • Stefan W. Hell
    Nanoscopy with Focused Light Nobel Lecture, December 8, 2014 by Stefan W. Hell Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany & German Cancer Research Center (DKFZ), Optical Nanoscopy Division, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. e are all familiar with the sayings “a picture is worth a thousand words” W and “seeing is believing.” Not only do they apply to our daily lives, but certainly also to the natural sciences. Terefore, it is probably not by chance that the historical beginning of modern natural sciences very much coincides with the invention of light microscopy. With the light microscope, mankind was able to see for the frst time that every living being consists of cells as basic units of structure and function; bacteria were discovered with the light microscope, and also mitochondria as examples of subcellular organelles. However, we learned in high school that the resolution of a light micro- scope is limited to about half the wavelength of the light in use [1–4], which typically amounts to about 200–350 nanometres (Fig. 1). If we want to see de- tails of smaller things, such as viruses, we have to resort to electron microscopy. Electron microscopy has achieved a much higher spatial resolution—ten-fold, hundred-fold or even thousand-fold higher; in fact, down to the size of a single molecule. Terefore the question comes up: Why do we bother with the light mi- croscope and its spatial resolution, now that we have the electron microscope? Te answer to this question is given in Fig.
    [Show full text]
  • Diffraction-Unlimited All-Optical Imaging and Writing with a Photochromic GFP
    ARTICLE doi:10.1038/nature10497 Diffraction-unlimited all-optical imaging and writing with a photochromic GFP Tim Grotjohann1*, Ilaria Testa1*, Marcel Leutenegger1*, Hannes Bock1, Nicolai T. Urban1, Flavie Lavoie-Cardinal1, Katrin I. Willig1, Christian Eggeling1, Stefan Jakobs1,2 & Stefan W. Hell1 Lens-based optical microscopy failed to discern fluorescent features closer than 200 nm for decades, but the recent breaking of the diffraction resolution barrier by sequentially switching the fluorescence capability of adjacent features on and off is making nanoscale imaging routine. Reported fluorescence nanoscopy variants switch these features either with intense beams at defined positions or randomly, molecule by molecule. Here we demonstrate an optical nanoscopy that records raw data images from living cells and tissues with low levels of light. This advance has been facilitated by the generation of reversibly switchable enhanced green fluorescent protein (rsEGFP), a fluorescent protein that can be reversibly photoswitched more than a thousand times. Distributions of functional rsEGFP-fusion proteins in living bacteria and mammalian cells are imaged at ,40-nanometre resolution. Dendritic spines in living brain slices are super-resolved with about a million times lower light intensities than before. The reversible switching also enables all-optical writing of features with subdiffraction size and spacings, which can be used for data storage. 22 In a fluorescence microscope, diffraction prevents (excitation) light example, d , 40 nm typically entails Im 5 100–500 MW cm (ref. 6). being focused more sharply than l/(2NA), with l being the wavelength Although intensities of this order have been demonstrated to be live- of light and NA the numerical aperture of the lens.
    [Show full text]