ARTEMISIA / Artemisia Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combinative Effect of Salvia Sclarea L., Artemisia Annua and Dracocephalum Heterophyllum B
Vol. 7(26), pp. 1916-1925, 10 July, 2013 DOI: 10.5897/JMPR12.1043 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Combinative effect of Salvia sclarea L., Artemisia annua and Dracocephalum heterophyllum B. essential oils against Salmonella enterica in raw chicken Richa Arora, Girish Korekar, Konchok Targais, Ravi B Srivastava and Tsering Stobdan* Defence Institute of High Altitude Research, Defence R & D Organisation, Leh-Ladakh, Jammu & Kashmir, India. Accepted 9 July, 2013 Antibacterial properties of essential oils (EOs) extracted from Salvia sclarea, Artemisia annua and Dracocephalum heterophyllum against 17 food borne pathogens was studied. EOs of the three plants showed a broad spectrum of antimicrobial activity with different degrees of inhibition against the tested Gram-positive and Gram-negative bacteria. EOs of Salvia and Dracocephalum depicted bactericidal mode of action while that of Artemisia inhibited the bacteria with bacteriostatic mode. Salmonella enterica MTCC 733 was the most sensitive strain to Salvia, Artemisia and Dracocephalum EOs with minimum inhibitory concentration (MIC) values of 2000, 2000 and 8000 µg/ml, respectively. The antimicrobial activity of EOs individually and in combinations based on their respective MIC values against S. enterica was tested in raw chicken. Treatment of food sample with 20 times MIC value of S. sclarea, A. annua and D. heterophyllum EOs individually caused reduction of bacterial load to 3.36, 3.64 and 4.22 log cfu/g after 180 min. In contrast the bacterial cell loads reduced to an undetectable level by the combinative effect ( Salvia + Dracocephalum and Salvia + Artemisia ) of EOs at MIC value after 120 and 180 min, respectively. -
Types of Sagebrush Updated (Artemisia Subg. Tridentatae
Mosyakin, S.L., L.M. Shultz & G.V. Boiko. 2017. Types of sagebrush updated ( Artemisia subg. Tridentatae, Asteraceae): miscellaneous comments and additional specimens from the Besser and Turczaninov memorial herbaria (KW). Phytoneuron 2017-25: 1–20. Published 6 April 2017. ISSN 2153 733X TYPES OF SAGEBRUSH UPDATED (ARTEMISIA SUBG. TRIDENTATAE , ASTERACEAE): MISCELLANEOUS COMMENTS AND ADDITIONAL SPECIMENS FROM THE BESSER AND TURCZANINOV MEMORIAL HERBARIA (KW) SERGEI L. MOSYAKIN M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] LEILA M. SHULTZ Department of Wildland Resources, NR 329 Utah State University Logan, Utah 84322-5230, USA [email protected] GANNA V. BOIKO M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] ABSTRACT Corrections and additions are provided for the existing typifications of plant names in Artemisia subg. Tridentatae . In particular, second-step lectotypifications are proposed for the names Artemisia trifida Nutt., nom. illeg. (A. tripartita Rydb., the currently accepted replacement name), A. fischeriana Besser (= A. californica Lessing, the currently accepted name), and A. pedatifida Nutt. For several nomenclatural types of names listed in earlier publications as "holotypes," the type designations are corrected to lectotypes (Art. 9.9. of ICN ). Newly discovered authentic specimens (mostly isolectotypes) of several names in the group are listed and discussed, mainly based on specimens deposited in the Besser and Turczaninov memorial herbaria at the National Herbarium of Ukraine (KW). The Turczaninov herbarium is particularly rich in Nuttall's specimens, which are often better represented and better preserved than corresponding specimens available from BM, GH, K, PH, and some other major herbaria. -
What's the Difference Between Sage and Sagebrush?
Sagebrush in Prisons Project Newsletter Vol 1, Issue 7, September 2019 Sagebrush in Prisons is an ecological education program for incarcerated adults and youth, a partnership of the Institute for Applied Ecology, Bureau of Land Management, and State and Federal Correctional Institutions and is a part of the Sustainability in Prisons Project. What should we be doing? What’s the difference between sage and sagebrush? Written by Oregon SPP staff Sagebrush Crew to-do list: One of the most common misconceptions about the Sagebrush in Prisons program is about which species of plant we are growing. People might say: ⬜ Water daily-make sure the “Oh, you’re growing sage? I love sage, especially on potatoes or in conetainers in the corners get marinara.” Then you have to explain that “No, we aren’t growing sage the water too! spice, but sagebrush the high desert shrub.” Sagebrush and sage aren’t even related, but their common names confuse people into thinking that ⬜ Fertilize once a week- make they are. Culinary sage, or Salvia officinalis, is an herb native to the sure you rinse the leaves Mediterranean region, and is used as a spice and for its medicinal afterwards to prevent burning! properties. Sage is a member of the mint family (Lamiaceae, to botanists). But sagebrush, Artemisia tridentata, is in another family altogether, the sunflower family (Asteraceae). But of course sagebrush flowers look ⬜ Test soil pH every other nothing like sunflowers, and in fact they are wind pollinated instead of week- the ideal range is 5-8. insect pollinated. The Artemisia genus is named after Artemis, the Greek Add lime if pH is 5.0 or below. -
Antibacterial Activity of Spent Substrate of Mushroom Pleurotus Ostreatus Enriched with Herbs
Journal of Agricultural Science; Vol. 7, No. 11; 2015 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Antibacterial Activity of Spent Substrate of Mushroom Pleurotus ostreatus Enriched with Herbs Maricela Ayala Martínez1, Deyanira Ojeda Ramírez1, Sergio Soto Simental1, Nallely Rivero Perez1, 2 1 Marcos Meneses Mayo & Armando Zepeda-Bastida 1 Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, México 2 Facultad de Ciencias de la Salud (Nutrición), Universidad Anáhuac México-Norte, México Correspondence: Armando Zepeda-Bastida, Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad s/n km 1, Tulancingo, Hidalgo, C.P. 43600, México. Tel: 52-771-717-2000 ext. 2449. E-mail: [email protected] Received: August 10, 2015 Accepted: September 11, 2015 Online Published: October 15, 2015 doi:10.5539/jas.v7n11p225 URL: http://dx.doi.org/10.5539/jas.v7n11p225 Abstract The recurrent use of antibiotics has given the guideline so that bacteria will develop resistance to drugs used in medicine, which is why recent investigations have been directed to evaluate natural sources such as plants or fungi, which can fight the bacteria. Here the antibacterial activity of spent substrate of Pleurotus ostreatus combined with medicinal plants was evaluated. We designed six mixtures (barley straw, barley straw/Chenopodium ambrosioides L., barley straw/Mentha piperita L., barley straw/Rosmarinus officinalis L., barley straw/Litsea glaucescens Kunth and barley straw/Tagetes lucid Cav) to be used as a substrate of cultivation of mushroom. -
The Case of Artemisia Crithmifolia L. (Asteraceae, Anthemideae)
CARYOLOGIA Vol. 62, no. 2: 152-160, 2009 Changes in genome size in a fragmented distribution area: the case of Artemisia crithmifolia L. (Asteraceae, Anthemideae). Pellicer Jaume1, Sònia Garcia2, Teresa Garnatje2 and Joan Vallès1* 1 Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s.n., 08028 Barcelona, Catalonia, Spain. 2 Institut Botànic de Barcelona (CSIC-ICUB), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Cata- lonia, Spain. Abstract — Artemisia crithmifolia is a hexaploid shrub which inhabits the coastal Atlantic sand dunes of Western Europe, from the Southern Iberian Peninsula to the Netherlands, reaching the British Isles. Genome size data of 45 populations of A. crithmifolia, covering its entire distribution area, were obtained using the flow cytometry method. The 2C nuclear DNA content in this species ranged from 14.27 to 15.72 pg, the mean value being 14.98 pg. A negative correlation between nuclear DNA amount and latitude has been found, and statistically significant differences between two groups resulting from the fragmentation of the distribution area were evidenced. Key words: 2C value, Compositae, dunes, flow cytometry, nuclear DNA amount. INTRODUCTION species occupies the maritime sands, principally at the back of the dunes in process of stabilization The genus Artemisia L. is one of the largest on the Northern Atlantic beaches, being part of of the Asteraceae, with more than 500 species two associations, Corynephoretum atlanticum and (OBERPRIELER et al. 2007). Different taxonomic Roseto-Ephedretum (KUHNZH O LTZ -LO RDAT 1927), rearrangements, based on morphological traits, which are closely related (VANDEN 1958). have been carried out, and five large subgenera Artemisia crithmifolia, a species from subgenus are considered at present (Absinthium DC., Ar- Dracunculus, presents capitula with glabrous re- temisia, Dracunculus Besser, Seriphidium Besser ceptacles, the outer florets female and the remain- and Tridentatae (Rydb.) McArthur). -
On Coccidiosis in Chickens
2 Egypt. J. Vet. Sci. Vol. 45-46, pp. 11- 24 (2014 - 2015) Clinicopathological Studies on the Effect of Artemisia cina (Sheih Baladi) on Coccidiosis in Chickens Fatma M.A. Youssef *, Hala A. Abd El-Hamid* and Effat A. El Sheshtawy** *Department of Clinical Pathology, Animal Health Research Institute and **Department of Poultry, Animal Health Research Institute, Ministry of Agriculture, Cairo, Egypt. HIS EXPERIMENT was conducted to determine the effect of …….T Artemisia cina on coccidiosis in poultry. A total of one hundred and fifty broiler chicks were divided to five equal groups, first group kept as control, second group was orally infected with 1X104of Eimeria tenella oocysts. Third group was infected with the same dose of Eimeria tenella and treated with Artemisia water extract. Fourth group was infected with the same dose of Eimeria tenella and treated by Toltrazuril and fifth group treated by Artemisia and non- infected. The birds of all groups were kept under observation for 3 weeks post infection. Group II showed increased mortality rate (16.7%), with very high oocyste shedding 12 X 104 at the 6thday post infection, increased total leucocytic count mainly heterophil, monocyte & eosinophil, and reduction of body weight as well as anemia. Liver function test showed increased in the activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) accompanied with hypoproteinemia and hypoalbuminemia. While, kidney function test showed increase in the level of uric acid and creatinine. Artemisia water extract treatment relatively minimize the infection, lowered mortality rate and oocyste shedding after and returned the liver and kidney function activities to normal level gradually as nearly as Toltrazuril. -
The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils
medicines Review The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils Abhay K. Pandey ID and Pooja Singh * Bacteriology & Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University Gorakhpur, Uttar Pradesh 273009, India; [email protected] * Correspondence: [email protected]; Tel.: +91-941-508-3883 Academic Editors: Gerhard Litscher and Eleni Skaltsa Received: 8 August 2017; Accepted: 5 September 2017; Published: 12 September 2017 Abstract: Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. Keywords: Artemisia; essential oil; chemical composition; antimicrobial; insecticidal; antioxidant 1. -
Original Article in VITRO CYTOTOXIC PROPERTIES of SIX ARTEMISIA L
Turk J. Pharm. Sci. 8 (3), 247-252, 2011 Original article IN VITRO CYTOTOXIC PROPERTIES OF SIX ARTEMISIA L. SPECIES Şüra BAYKAN EREL1*, Serdar GÖKHAN ŞENOL2, Fadime AYDIN KÖSE3, Petek BALLAR 3 1Ege University, Faculty of Pharmacy, Department of Biochemistry, 35100 Bornova, İzmir, TURKEY 2Ege University, Faculty of Science, Department of Botany, 35100 Bornova, İzmir, TURKEY 3Ege University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 35100 Bornova, İzmir, TURKEY Abstract Methanolic extracts of Artemisia L. taxons (Artemisia absinthium L., Artemisia arborescens L., Artemisia campestris L., Artemisia scoparia Waldst&Kit, Artemisia santonicum L., Artemisia vulgaris L. and Artemisia arborescens L.) were investigated for their cytotoxic activities against three human cancer cell lines, MCF7, A549, HeLa, and two human normal cell lines, A7R5 and 293T. The cytotoxic activities were analyzed by real-time cell analysis system measuring electrical impedance. Artemisia scoparia Waldst&Kit. showed significant effect on MCF7 (IC50: 34 jug/mL) and HeLa (LC50: 90 jug/mL). A. absinthium exhibited selective cytotoxic activity on MCF7 (IC50: 270 fig/mL). Key words: Artemisia, Cytotoxic, MCF7, A549, HeLa, A7R5, 293T. Altı Artemisia L. Türünün in vitro Sitotoksik Özellikleri Bu gahsmada Artemisia L. (Artemisia absinthium L., Artemisia arborescens L., Artemisia campestris L., Artemisia scoparia Waldst&Kit, Artemisia santonicum L., Artemisia vulgaris L. ve Artemisia arborescens L) Mrlerine ait metanollü ekstrelerin üg insan kanserli Mere hattında (MCF7, A549, HeLa) ve iki normal insan Mere hattında (A7R5 and 293T ) sitotoksik aktiviteleri araştinldı. Sitotoksik aktiviteler elektriksel empedans ölgen gergek zamanh Mere analiz sistemi He ölguldü. Sonugta Artemisia scoparia Waldst&Kit ekstresinin MCF7(LC50: 34 jug/mL) ve HeLa (LC50: 90 jug/mL) üzerinde oldukga yüksek aktivite gösterdiği saptandı. -
Effect of Essential Oils of Artemisia Arborescens on Escherichia Coli, Staphylococcus Aureus and Pseudomonas Aeruginosa
Journal of Plant Sciences 2014; 2(6-1): 1-4 Published online March 13, 2015 (http://www.sciencepublishinggroup.com/j/jps) doi: 10.11648/j.jps.s.2014020601.11 ISSN: 2331-0723 (Print); ISSN: 2331-0731 (Online) Effect of essential oils of Artemisia arborescens on Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa Bachir Raho Ghalem Department of Biology, University of Mascara, Mascara, Algeria Email address: [email protected] To cite this article: Bachir Raho Ghalem. Effect of Essential Oils of Artemisia arborescens on Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa . Journal of Plant Sciences. Special Issue: Pharmacological and Biological Investigation of Medicinal Plants. Vol. 2, No. 6-1, 2014, pp. 1-4. doi: 10.11648/j.jps.s.2014020601.11 Abstract: This study was carried out to investigate the potential use of Artemisia arborescens as a source of antimicrobial agents against pathogens. Essential oils of A. arborescens were collected by hydrodistillation. The antibacterial properties of A. arborescens essential oil was studied on the standard gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa ), and Staphylococcus aureus (gram-positive bacteria), then agar disk diffusion, minimal inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were detected. The results of agar disk diffusion tests showed the inhibition zones as follow: S. aureus 00-18 mm, E. coli 00-16 mm and 08-14 mm for P. aeruginosa . However, their antibacterial activities were lower than those of Gentamicin. The MIC for S. aureus and P. aeruginosa was between 33 and 66 mg/ml, and for Gram-negative bacteria of E. coli was between 66 and 132 mg/ml, while the MBC values of this oil against the tested bacterial strains were between 132 and 264 mg/ml. -
Artemisia Annua L.)
New Crop FactSHEET www.hort.purdue.edu/newcrop/cropfactsheets/artemisia.pdf Annual Wormwood (Artemisia annua L.) Contributors: Jorge Ferreira & Jules Janick Copyright © 2009. All Rights Reserved. Quotation from this document should cite and acknowledge the contributors. 1. Common Names 2. Scientific Names 3. Uses 4. Origin 5. Crop Status 1. Toxicities 2. Traditional Medicinal Uses 6. Botany 1. Taxonomy 2. Morphology and Floral Biology 3. Ecology 4. Secondary Metabolites 7. Crop Culture (Horticulture) 8. Horticulture 1. In vitro Production 2. Field Production 9. Germplasm 10. Key References 11. Selected Experts Common Names English: annual wormwood, sweet annie, sweet wormwood Chinese: qinghao, huag hua hao Scientific Names Species: Artemisia annua L. Family: Asteraceae (Compositae) Uses Traditional and Artisanal Used traditionally in China to treat fevers and hemorrhoids. Used in the crafting of aromatic wreaths, as a flavoring for spirits such as vermouth, and as a source of essential oils for the perfume industry. Human (pharmacological and antioxidant activities) Mainly as the source of artemisinin (qinghaosu), an important natural sesquiterpene lactone with antimalarial effect against susceptible and multi-drug resistant Plasmodium spp. Current research also shows that artemisinin drugs are effective against cancer, Leishmania (Yang and Liew, 1993; Sen et al., 2007), Trypanosoma (Mishina et al., 2007), and some viruses (Khan et al., 1991; Li et al., 2005). In addition, A. annua has a high content of flavonoid compounds which are responsible for its high antioxidant activity. There are potential uses of the Artemisia annua plant extracts for humans and livestock based on the synergistic effects of flavonoids, artemisinin precursors, etc., including antimalarial effects reported for the A. -
Artemisia Annua L
WHO Position Statement (June 2012) Effectiveness of Non-Pharmaceutical Forms of Artemisia annua L. against malaria ___________________________________________________________________________ The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) for the treatment of uncomplicated malaria due to Plasmodium falciparum (P. falciparum). ACTs recommended by WHO combine an artemisinin derivative such as artemether, artesunate or dihydroartemisinin with an effective antimalarial medicine. The five currently recommended ACTs are listed in the WHO guidelines for the treatment of malaria, 2010 (1). A number of herbal remedies made of Artemisia annua L. (A. annua) dry leaves are suggested for the treatment and prevention of malaria. However, WHO does not recommend the use A. annua plant material ,in any form, including tea, for the treatment or the prevention of malaria. The WHO recommendation is based on the review of scientific findings. Firstly, the content of artemisinin in the leaves is influenced by many genetic, agricultural and environmental factors (2-4). Total recovery of artemisinin can vary from 0.01 to 1.4% weight% of dry leaf mass (4-5). Harvesting season, drying procedures and storage conditions also influence the content in artemisinin (6-8). A. annua leaves stored at temperatures above 20°C with high relative humidity cause a substantial loss of artemisinin content (6), which makes it imperative to store the leaves in cool and dry conditions. Crushing the leaves before storage can also affect the artemisinin content (6). People living in rural areas may not have adequate storage facilities in their homes to ensure that the content of artemisinin is fully maintained over long periods of time. -
Artemisa Bigelovii Gray Bigelow Sagebrush ASTERACEAE
Artemisa bigelovii Gray Bigelow sagebrush ASTERACEAE Synonyms: Artemisia petrophila Wooton & Standley narrow panicles with short, recurved branches. Flower heads normally bear one ray flower and two disc flowers. Occasionally, however, heads may include zero or two ray flowers and one or three disc flowers. The turbinate involucre consists of eight to 12 short, densely tomentose bracts 2 to 4 mm long and 1.5 to 2.4 mm wide. Taxonomy.—This taxon is undivided, and ecotype variation has not been documented. Chromosome races from 2x to 8x, however, have been documented (McArthur and others 1981; McArthur and Sanderson 1999). Bigelow sagebrush occupies a taxonomic position between the true sagebrushes (subgenus Tridentatae) and other Artemisia species (subgenus Artemisia). We have chosen to treat Bigelow sagebrush as a member of subgenus Tridentatae because of its growth habit, wood anatomy, leaf form, chromosomal karyotype, RAPD molecular genetic markers, and ITS sequences in nuclear ribosomal DNA (Kornkven and others 1998, McArthur and others 1981, McArthur and others 1998). The confusion exists because flower heads may include one or two ray flowers in addition to the characteristic disc flowers of the Tridentatae. Range.—The distribution of Bigelow sagebrush is more southern than other sagebrushes. It covers approximately 88,000 km2 through western Texas, southern Colorado, New Mexico, Arizona, Utah, Nevada, and California between 900 and 2,400 m elevation (Beetle 1960, Kearney and Peebles 1960, Ward 1953). General Description.—Bigelow sagebrush, also Ecology.—Bigelow sagebrush is one of the most known as flat sagebrush (Hall and Clements 1923), drought-tolerant sagebrushes. It typically grows in is a low shrub 20 to 40 cm high with numerous canyons, gravelly draws, and dry flats.