Microsoft Word

Total Page:16

File Type:pdf, Size:1020Kb

Microsoft Word Genetic and Immunological Dissection of Host Susceptibility to Cryptococcus neoformans Infection Mitra Shourian Department of Experimental Medicine McGill University Montreal, QC, Canada June 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Mitra Shourian, 2017 1 To my beloved parents, Parviz and Tahereh To Mojtaba, Shaghaiegh and Mahla I am blessed and grateful beyond words to have you in my life… 2 Acknowledgment First, I would like to thank my supervisor Dr. Salman Qureshi. Thank you for giving me the opportunity to do research in your lab. Thank you for your support, knowledge and scientific guidance over the past years. Thank you for the peaceful workplace, independence and trust you offered which allowed me to think, plan, study, fail and accomplish. I also highly appreciate your understanding and support while I was writing my thesis. Thank you to Isabelle Angers for scientific advice, assistance in performing experiments and lab management. A special thank you to Annie Beauchamp for breeding mice and helping me with long animal experiments. In addition, I would like to thank past lab members, Scott Carroll, Erin Lafferty and Adam Flaczyk for training me during my early years in the lab. I thank my supervisory committee members, Dr. Silvia Vidal, Dr. Danielle Malo, Dr. Maziar Divangahi and Dr. Jacques Lapointe, for taking the time to attend yearly committee meetings and their scientific suggestions. I also thank the RI-MUHC and the Division of Experimental Medicine for their financial support. Finally, I would like to thank all my friends and family members, who are essential parts of my happiness. I would like to express my gratitude and love to Damien, for invaluable support, love and encouragement especially while I was writing my thesis. A special thank you to Sedighe and Soroor my lovely friends for daily talks, support and friendship. 3 Table of Contents Acknowledgment .................................................................................................................................. 3 Abstract ................................................................................................................................................. 9 Résumé................................................................................................................................................ 10 Contribution of Authors and Statement of Originality ....................................................................... 13 Chapter 1. Introduction .................................................................................................................. 15 1.1. Cryptococcosis as a global health threat ..................................................................................... 16 1.1.1. Importance of invasive fungal diseases .................................................................................... 16 1.1.2. Epidemiology of Cryptococcus sp. ............................................................................................. 16 1.2. The pathogen Cryptococcus ......................................................................................................... 18 1.2.1. Taxonomy .................................................................................................................................. 18 1.2.2. Environmental niches and host ................................................................................................ 19 1.2.3. Life cycle .................................................................................................................................... 20 1.2.4. Virulence factors ....................................................................................................................... 22 1.3. Human Cryptococcosis ................................................................................................................. 24 1.3.1. Pulmonary infection .................................................................................................................. 24 1.3.2. Cryptococcal meningitis (CM) ................................................................................................... 24 1.3.3. Diagnosis and treatment ........................................................................................................... 25 1.4. Immune response to cryptococcal infection ............................................................................... 26 1.4.1. Innate immune response .......................................................................................................... 26 1.4.2. Adaptive immune response ...................................................................................................... 29 1.4.3. Immune Reconstitution Inflammatory Syndrome (IRIS) ........................................................... 30 1.5. Genetic Susceptibility to Cryptococcal Infection ......................................................................... 33 1.6. Mouse Models of Infection .......................................................................................................... 33 1.6.1. Forward genetic analysis ........................................................................................................... 34 Interval Specific Congenic Strains ....................................................................................................... 35 Forward genetic approaches to cryptococcal infection ...................................................................... 36 1.6.2. Reverse genetic analysis ........................................................................................................... 37 Reverse genetic approaches to cryptococcal infection ...................................................................... 37 1.7. Thesis rationale and specific aims ................................................................................................ 40 Figure 1.1. A: global burden of HIV-related cryptococcal meningitis. …………………………………………….18 Figure 1.2. Evolution of the C. neoformans species complex. ............................................................ 19 4 Figure 1.3. Model of C. neoformans life cycle. .................................................................................... 21 Figure 1.4. The immune response to C. neoformans. ......................................................................... 32 Table 1.1. C. neoformans Virulence Factors. ...................................................................................... 23 Table1.2. Reverse genetic studies in Cryptococcus infection using knockout mice. .......................... 38 Chapter 2. The Cnes2 locus on mouse chromosome 17 regulates host defense against cryptococcal infection through pleiotropic effects on host immunity ................................... 41 Preface to Chapter 2 ........................................................................................................................... 42 2.1. Abstract ....................................................................................................................................... 43 2.2. Introduction ................................................................................................................................. 44 2.3. Materials and Methods ............................................................................................................... 47 2.4. Results ......................................................................................................................................... 52 2.5. Discussion .................................................................................................................................... 58 Figures ................................................................................................................................................. 64 Figure 2.1: The Cnes2 chromosomal interval restricts C. neoformans pulmonary infection and dissemination to the brain and spleen. .............................................................................................. 64 Figure 2.2: B6.CBA-Cnes2 mice develop an altered pattern of pulmonary inflammation following C. neoformans infection. ..................................................................................................................... 65 Figure 2.3: Increased airway neutrophilia, decreased eosinophilia, and enhanced macrophage accumulation in C57BL/6.CBA-Cnes2 airways following C. neoformans infection ............................. 66 Figure 2.4: B6.CBA-Cnes2 lungs have a heightened inflammatory response to C. neoformans infection characterized by increased expression of Th1 cytokines and chemokines ......................... 67 Figure 2.5: B6.CBA-Cnes2 mice display greater accumulation of neutrophils, exudate macrophages, and CD11b+ dendritic cells in the lungs following C. neoformans infection. ...................................... 68 Figure 2.6: Pulmonary macrophages and dendritic cells of B6.CBA-Cnes2 mice develop a stronger classical activation phenotype in response to C. neoformans infection ............................................. 70 Figure 2.7: The lungs of B6.CBA-Cnes2 mice contain a greater number of T lymphocytes during the adaptive immune response against C. neoformans. ........................................................................... 71 Figure 2.8: Decreased Th2 type cytokine expression by CD4+ T cells from B6.CBA-Cnes2
Recommended publications
  • Role of Epoxide Hydrolases in Lipid Metabolism
    Biochimie 95 (2013) 91e95 Contents lists available at SciVerse ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Mini-review Role of epoxide hydrolases in lipid metabolism Christophe Morisseau* Department of Entomology and U.C.D. Comprehensive Cancer Center, One Shields Avenue, University of California, Davis, CA 95616, USA article info abstract Article history: Epoxide hydrolases (EH), enzymes present in all living organisms, transform epoxide-containing lipids to Received 29 March 2012 1,2-diols by the addition of a molecule of water. Many of these oxygenated lipid substrates have potent Accepted 8 June 2012 biological activities: host defense, control of development, regulation of blood pressure, inflammation, Available online 18 June 2012 and pain. In general, the bioactivity of these natural epoxides is significantly reduced upon metabolism to diols. Thus, through the regulation of the titer of lipid epoxides, EHs have important and diverse bio- Keywords: logical roles with profound effects on the physiological state of the host organism. This review will Epoxide hydrolase discuss the biological activity of key lipid epoxides in mammals. In addition, the use of EH specific Epoxy-fatty acids Cholesterol epoxide inhibitors will be highlighted as possible therapeutic disease interventions. Ó Juvenile hormone 2012 Elsevier Masson SAS. All rights reserved. 1. Introduction hydrolyzed by a water molecule [8]. Based on this mechanism, transition-state inhibitors of EHs have been designed (Fig. 1B). Epoxides are three atom cyclic ethers formed by the oxidation of These ureas and amides are tight-binding competitive inhibitors olefins. Because of their highly polarized oxygen-carbon bonds and with low nanomolar dissociation constants (KI) [9] [10].
    [Show full text]
  • Supplemental Figures Tables Importance of the MHC (SLA) in Swine Health and Biomedical Research
    Supplemental Material: Annu. Rev. Anim. Biosci. 2020. 8:171-198 https://doi.org/10.1146/annurev-animal-020518-115014 Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research Hammer, Ho, Ando, Rogel-Gaillard, Charles, Tector, Tector, and Lunney Supplemental Figures Tables Importance of the MHC (SLA) in swine health and biomedical research Annual Review Animal Biosciences AV08 Lunney Supplemental Figure 1. Chromosomal mapping of the human (HLA complex) and swine MHC (SLA complex) a b HSA 6p21 SSC 7p11-7q11 MOG MOG Class I Class III Class I Class II Class III RING1 Centromere Class II RING1 HLA complex SLA complex Human Leucocyte Antigen Swine Leucocyte Antigen Supplemental Figure 1. Chromosomal mapping of the human (HLA complex) and swine MHC (SLA complex). A. Schematic representation of the chromosome mapping and orientation of the HLA complex on HSA 6p21 and of the pig SLA complex on both sides of the centromere on swine chromosome 7 (SSC7). B. Fluorescent in situ hybridization (FISH) map demonstrating SLA location on SSC7 p11 using a YAC clone containing SLA class Ia genes (adapted from Velten F, Rogel-Gaillard C, Renard C, Pontarotti P, Tazi-Ahnini R, et al. 1998. A first map of the porcine major histocompatibility complex class I region. Tissue Antigens 51:183–94). Supplemental Figure 2. Detailed Physical Map of SLA genes Position Name Position Name Position Name Position Name Position Name 7 22 595 564 22 606 449+ MOG 23 190 757 23 207 872- DHX16 23 705 030 23 706 737- LTB
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Sequences, Annotation and Single Nucleotide Polymorphism of The
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 6-2008 Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki National Cancer Institute at Frederick James C. Mullikin National Human Genome Research Institute Thomas W. Beck National Cancer Institute at Frederick Robert M. Stephens National Cancer Institute at Frederick Stephen J. O'Brien National Cancer Institute at Frederick, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons, and the Zoology Commons NSUWorks Citation Yuhki, Naoya; James C. Mullikin; Thomas W. Beck; Robert M. Stephens; and Stephen J. O'Brien. 2008. "Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat." PLoS ONE 7, (3 e2674): 1-17. https://nsuworks.nova.edu/cnso_bio_facarticles/773 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki1*, James C. Mullikin2, Thomas Beck3, Robert Stephens4, Stephen J. O’Brien1 1 Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland,
    [Show full text]
  • Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer
    Research Article Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer Rajasree Menon,1 Qing Zhang,3 Yan Zhang,1 Damian Fermin,1 Nabeel Bardeesy,4 Ronald A. DePinho,5 Chunxia Lu,2 Samir M. Hanash,3 Gilbert S. Omenn,1 and David J. States1 1Center for Computational Medicine and Biology and 2Pediatric Endocrinology, University of Michigan, Ann Arbor, Michigan; 3Fred Hutchinson Cancer Research Center, Seattle, Washington; and 4Center for Cancer Research, Massachusetts General Hospital; 5Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts Abstract database are scored as high, medium, or low confidence, reflecting the amount of cumulative evidence in support of the existence of a To assess the potential of tumor-associated, alternatively particular alternatively spliced sequence. Evidence is collected from spliced gene products as a source of biomarkers in biological clustering of ESTs, mRNA sequences, and gene model predictions. fluids, we have analyzed a large data set of mass spectra We modified the ECgene database to include three-frame trans- derived from the plasma proteome of a mouse model of lations of the cDNA sequences (5) to determine the occurrence of human pancreatic ductal adenocarcinoma. MS/MS spectra novel splice variant proteins. An important development in recent were interrogated for novel splice isoforms using a non- years is the substantial improvement in tandem mass spectrometry redundant database containing an exhaustive three-frame instrumentation for proteomics, allowing in-depth analysis and translation of Ensembl transcripts and gene models from confident identifications even for proteins coded by mRNA ECgene.
    [Show full text]
  • Itraq Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment
    International Journal of Molecular Sciences Article iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment Fátima Milhano Santos 1,2,3 ID , Leonor Mesquita Gaspar 1,2, Sergio Ciordia 4, Ana Sílvia Rocha 1,2, João Paulo Castro e Sousa 1,5, Alberto Paradela 4, Luís António Passarinha 1,3 ID and Cândida Teixeira Tomaz 1,2,* ID 1 CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; [email protected] (F.M.S.); [email protected] (L.M.G.); [email protected] (A.S.R.); [email protected] (J.P.C.e.S.); [email protected] (L.A.P.) 2 Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal 3 Laboratory of Pharmacology and Toxicology—UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal 4 Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain; [email protected] (S.C.); [email protected] (A.P.) 5 Hospital Center Leiria-Pombal, 3100-462 Pombal, Portugal * Correspondence: [email protected]; Tel.: +351-275-242-021 Received: 8 February 2018; Accepted: 8 April 2018; Published: 11 April 2018 Abstract: Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Disruption of Soluble Epoxide Hydrolase Dimerization As a Novel Therapeutic Target for Stroke
    DISRUPTION OF SOLUBLE EPOXIDE HYDROLASE DIMERIZATION AS A NOVEL THERAPEUTIC TARGET FOR STROKE By Jonathan W. Nelson A THESIS/DISSERTATION Presented to the Department of Molecular and Medical Genetics and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 2013 TABLE OF CONTENTS List of Figures ...................................................................................................................... vi List of Tables ...................................................................................................................... vii List of Abbreviations ......................................................................................................... viii Acknowledgements ........................................................................................................... xiii Dissertation Abstract ........................................................................................................ xvi Chapter 1 Targeting Soluble Epoxide Hydrolase Dimerization As a Stroke Therapy ......... 1 Abstract ........................................................................................................................... 1 Stroke and Society ........................................................................................................... 2 Prevention and Treatment of Stroke .............................................................................. 3 Soluble Epoxide Hydrolase and Stroke ..........................................................................
    [Show full text]
  • Journal of Translational Medicine Biomed Central
    Journal of Translational Medicine BioMed Central Review Open Access CD177: A member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera David F Stroncek*, Lorraine Caruccio and Maria Bettinotti Address: From the Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA Email: David F Stroncek* - [email protected]; Lorraine Caruccio - [email protected]; Maria Bettinotti - [email protected] * Corresponding author Published: 29 March 2004 Received: 22 December 2003 Accepted: 29 March 2004 Journal of Translational Medicine 2004, 2:8 This article is available from: http://www.translational-medicine.com/content/2/1/8 © 2004 Stroncek et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. CD177PRV-1NB1neutrophilspolycythemia veramyelopoiesis Abstract Genes in the Leukocyte Antigen 6 (Ly-6) superfamily encode glycosyl-phosphatidylinositol (GPI) anchored glycoproteins (gp) with conserved domains of 70 to 100 amino acids and 8 to 10 cysteine residues. Murine Ly-6 genes encode important lymphocyte and hematopoietic stem cell antigens. Recently, a new member of the human Ly-6 gene superfamily has been described, CD177. CD177 is polymorphic and has at least two alleles, PRV-1 and NB1. CD177 was first described as PRV-1, a gene that is overexpressed in neutrophils from approximately 95% of patients with polycythemia vera and from about half of patients with essential thrombocythemia. CD177 encodes NB1 gp, a 58–64 kD GPI gp that is expressed by neutrophils and neutrophil precursors.
    [Show full text]
  • Analysis of Soybean Embryonic Axis Proteins by Two-Dimensional Gel Electrophoresis and Mass Spectrometry
    Journal of Basic & Applied Sciences, 2013, 9, 309-332 309 Analysis of Soybean Embryonic Axis Proteins by Two-Dimensional Gel Electrophoresis and Mass Spectrometry Savithiry S. Natarajana,*, Hari B. Krishnanb, Farooq Khana, Xi Chena, Wesley M. Garrettc and Dilip Lakshmand aUSDA-ARS, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA bUSDA-ARS, Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211, USA cUSDA-ARS, Animal Science and Biotechnology Laboratory, Beltsville, MD 20705, USA dUSDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA Abstract: A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissected embryonic axes and separated in the first dimension using a pH range from 4-7. A total of 401 protein spots were isolated, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 335 protein spots by searching National Center for Biotechnology Information (NCBI) non redundant databases using the Mascot search engine and found a total of 200 unique proteins. Gene Ontology (GO) analysis was employed to understand the molecular processes in which the identified embryonic axes proteins are involved. The majority of proteins play a functional role in catalytic activity (42.9%) and binding (39.3%), followed by nutrient reservoir activity (5.3%), structural molecular activity (4.0%), antioxidant activity (3.2%), transporter activity (2.4%), enzyme regulator activity (1.2%), molecular transducer activity (0.8%), and transcription regulator activity (0.8%).
    [Show full text]
  • Immunoproteomic Analysis of the Excretory-Secretory Products Of
    Wang et al. Parasites & Vectors (2017) 10:579 DOI 10.1186/s13071-017-2522-9 RESEARCH Open Access Immunoproteomic analysis of the excretory-secretory products of Trichinella pseudospiralis adult worms and newborn larvae Yang Wang1†, Xue Bai1†, Haichao Zhu1†, Xuelin Wang1, Haining Shi2, Bin Tang1, Pascal Boireau1,3, Xuepeng Cai4,5, Xuenong Luo5, Mingyuan Liu1,6* and Xiaolei Liu1* Abstract Background: The nematode Trichinella pseudospiralis is an intracellular parasite of mammalian skeletal muscle cells and exists in a non-encapsulated form. Previous studies demonstrated that T. pseudospiralis could induce a lower host inflammatory response. Excretory-secretory (ES) proteins as the most important products of host-parasite interaction may play the main functional role in alleviating host inflammation. However, the ES products of T. pseudospiralis early stage are still unknown. The identification of the ES products of the early stage facilitates the understanding of the molecular mechanisms of the immunomodulation and may help finding early diagnostic markers. Results: In this study, we used two-dimensional gel electrophoresis (2-DE)-based western blotting coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS/MS) to separate and identify the T. pseudospiralis adult worms ES products immunoreaction-positive proteins. In total, 400 protein spots were separated by 2-DE. Twenty-eight protein spots were successfully identified using the sera from infected pigs and were characterized to correlate with 12 different proteins of T. pseudospiralis, including adult-specific DNase II-10, poly-cysteine and histidine-tailed protein isoform 2, serine protease, serine/threonine-protein kinase ULK3, enolase, putative venom allergen 5, chymotrypsin-like elastase family member 1, uncharacterized protein, peptidase inhibitor 16, death-associated protein 1, deoxyribonuclease II superfamily and golgin-45.
    [Show full text]
  • Peptidase Inhibitor 16 (Pi16) As a Biomarker For
    (19) TZZ Z¥_T (11) EP 2 408 934 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) A61K 39/00 (2006.01) 12.11.2014 Bulletin 2014/46 C07K 16/18 (2006.01) A61K 31/14 (2006.01) A61P 37/00 (2006.01) C12N 5/078 (2010.01) (21) Application number: 10752999.2 (86) International application number: (22) Date of filing: 18.03.2010 PCT/AU2010/000311 (87) International publication number: WO 2010/105298 (23.09.2010 Gazette 2010/38) (54) PEPTIDASE INHIBITOR 16 (PI16) AS A BIOMARKER FOR REGULATORY T (TREG) CELLS AND USES THEREOF PEPTIDASE-HEMMER 16 (PI16) ALS BIOMARKER FÜR T- REGULATORZELLEN (TREG-ZELLEN) UND VERWENDUNG INHIBITEUR DE PEPTIDASE 16 (PI16) COMME BIOMARQUEUR DES CELLULES T RÉGULATRICES (TREG) ET SES UTILISATIONS (84) Designated Contracting States: • NICHOLSON, Ian Cameron AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Highbury, S.A. 5089 (AU) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • ZOLA, Heddy PT RO SE SI SK SM TR Evandale, S.A. 5069 (AU) (30) Priority: 18.03.2009 US 161255 P (74) Representative: Brasnett, Adrian Hugh et al Mewburn Ellis LLP (43) Date of publication of application: 33 Gutter Lane 25.01.2012 Bulletin 2012/04 London EC2V 8AS (GB) (60) Divisional application: (56) References cited: 14186006.4 WO-A1-03/093474 WO-A2-2007/140472 WO-A2-2007/140472 (73) Proprietors: • Adelaide Research & Innovation Pty Ltd.
    [Show full text]