Galois Theory Spring 2008/09 Problem Set 1 Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Galois Theory Spring 2008/09 Problem Set 1 Solutions MATH 114: GALOIS THEORY SPRING 2008/09 PROBLEM SET 1 SOLUTIONS Throughout the problem set, unless stated otherwise, a ring will mean a commutative ring with unity 1 and will be denoted by R. We will assume that 0 6= 1 in R and will write R∗ for the set of units. Zn will denote the ring of integers modulo n. The ideal generated by a set S ⊆ R will be denoted by hSi. 1. Show that the following statements are equivalent: i. R is a field; ii. the only ideals in R are h0i and h1i; iii. for any ring R0, a homomorphism ' : R ! R0 is injective. Solution. (i) ) (ii): Let h0i= 6 I E R. Then I contains a nonzero element x; x is a unit since R is a field, hence I ⊇ hxi = R = h1i, hence I = h1i. (ii) ) (iii): Let ' : R ! R0 be a ring homomorphism. Then by our results in the lectures, ker ' is an ideal of R. Since '(1) = 1 6= 0, 1 2= ker ' and ker ' 6= h1i, hence ker ' = h0i and so ' is injective. (iii) ) (i): Let x 2 R and x2 = R∗. Then hxi 6= h1i. Let R0 := R=hxi and ' : R ! R0 be the map '(a) = a + R. It is easy to check that ' is a homomorphism, im ' = R0, and ker ' = hxi. By assumption, ' is injective, hence hxi = h0i, hence x = 0. n 2. We say that a 2 R is nilpotent if a = 0 for some n 2 N. (a) Show that the set of all nilpotent elements in R is an ideal. We will write N(R) for this set. It is called the nilradical of R. Solution. If a 2 N(R) and r 2 R, then since (ra)n = rnan, it is clear that ra 2 N(R). Let a; b 2 N(R); suppose am = 0, bn = 0. By the binomial expansion (which is valid in any commutative ring), m+n−1 X m + n − 1 (a + b)m+n−1 = akbm+n−k−1 k k=0 m−1 X m + n − 1 = bn akbm−1+k k k=0 m+n−1 X m + n − 1 + am ak−mbm+n−k−1 k k=m = 0 and so a + b 2 N(R). Hence N(R) is an ideal of R. (b) Find N(Z), N(Z12), and N(Z32). Solution. N(Z) = f0g, N(Z12) = f0; 6g, and N(Z32) = f0; 2; 4; 6; 8;:::; 30g. (c) Show that N(R=N(R)) = f0 + N(R)g (note that this set has only one element, namely, the coset 0 + N(R)). In other words, R=N(R) has no nilpotent elements other than its zero element. Date: February 17, 2009 (Version 1.0). 1 n Solution. Let a + N(R) 2 N(R=N(R)). So there exists n 2 N such that (a + N(R)) = n n n m 0 + N(R), so a + N(R) = 0 + N(R), so a 2 N(R), so (a ) = 0 for some m 2 N, so amn = 0, and so a 2 N(R). Hence a + N(R) = 0 + N(R). 3. Suppose R satisfies the following properties i. R has only one maximal ideal M; ii. R∗ = f1g. ∼ Show that R = Z2. Solution. Note that 1 2= M since M 6= R. Let a 2 1 + M. Then a2 = M (otherwise 1 = a − m 2 M) and so the ideal hai is not contained in M. Since every proper ideal must be contained in a maximal ideal, hai is not proper and so hai = R. Hence a is a unit. So we have shown that every element in 1 + M is a unit. Since f1g ⊆ 1 + M ⊆ R∗ = f1g, we conclude that 1 + M = f1g and so M = f0g. So R is a field. Since every nonzero element in a field is a unit, ∗ ∼ R = R [ f0g = f0; 1g = Z2. 4. If R has only one maximal ideal, then R is called a local ring. (a) Show that every field is a local ring. Solution. By our discussion in the lectures, every field has exacly one maximal ideal, namely, h0i. ∗ (b) Suppose M E R, M 6= R has the property that a2 = M implies a 2 R . Show that M is a maximal ideal and R is a local ring. Solution. Observe that every ideal I 6= R must contain only non-units (if it contains any units, it will be equal to R). Observe also that the given condition may be rephrased as a2 = R∗ implies a 2 M. Hence M contains every proper ideal of R. Hence M is the only maximal ideal of R. (c) Suppose M is a maximal ideal of R and has the property that a 2 1 + M implies a 2 R∗. Show that R is a local ring. Solution. Let a 2 R and a2 = M. Since M is maximal and the ideal ha; Mi ⊇ M, so ha; Mi = R. Hence there exist r 2 R and m 2 M such that ra + m = 1; hence ra = 1 − m: But 1 − m 2 1 + M and so 1 − m 2 R∗. Hence we may write [(1 − m)−1r]a = 1 which implies that a 2 R∗. So we have shown that any maximal ideal M of R has the property in (b). Thus R is a local ring. 5. (a) Find all the ideals of Q. Solution. By our result in the lectures or Problem 1. Q is a field and so its only ideals are f0g and Q. (b) Find all the subrings of Q (we require that a subring contains the unity). Solution. Let R be a subring of Q. Then necessarily Z ⊆ R since 1 2 R. Define n 1 o S := p 2 nf0g 2 R : Z p Note that S is a multiplicatively closed subset of Z that contains 1, i.e. s1; s2 2 S implies s1s2 2 S. Define na o := 2 a 2 ; p 2 S . ZS p Q Z For any a=p 2 ZS, since a 2 R and 1=p 2 R, a=p 2 R. Hence ZS ⊆ R: 2 On the other hand, for any a=p 2 R, we may assume that gcd(a; p) = 1 and ma + np = 1 for some m; n 2 Z. Then 1 ma + np a = = n + m · 2 R: p p p So p 2 S and a=p 2 ZS. Hence R ⊆ ZS: It follows that all subrings of Q are of the form R = ZS where S is a multiplicatively closed subset. If we really want to describe S explicitly, we may do so as follows. Let P ⊆ N denote the set of prime numbers. For any Σ ⊆ P, define a ZΣ := 2 Q a 2 Z; p1; : : : ; pk 2 Σ : d1 dk p1 ··· pk It is clear that ZΣ contains 0 and 1, and is closed under addition, multiplication, and additive inverses. For any Σ; Υ ⊆ P where Σ 6= Υ, there exists either p 2 ΣnΥ or p 2 ΥnΣ and so either 1=p 2 ZΣ and 1=p2 = ZΥ or vice versa. In other words Σ 6= Υ implies ZΣ 6= ZΥ. (c) Can Q=Z, regarded as an additive quotient group, be a commutative ring with unity? Solution. No. If this were true, then there exists a unity e + Z 2 Q=Z. But e + Z = 1 · e + Z = (1 + Z)(e + Z) = (0 + Z)(e + Z) = 0 + Z and so the unity (multiplicative identity) of Q=Z is the same as the zero (additive identity) of Q=Z. So for any a + Z 2 Q=Z, a + Z = (a + Z)(e + Z) = (a + Z)(0 + Z) = 0 + Z and we are led to the conclusion that Q=Z has only one element, namely, 0 + Z. This is a contradiction. 3.
Recommended publications
  • The Structure Theory of Complete Local Rings
    The structure theory of complete local rings Introduction In the study of commutative Noetherian rings, localization at a prime followed by com- pletion at the resulting maximal ideal is a way of life. Many problems, even some that seem \global," can be attacked by first reducing to the local case and then to the complete case. Complete local rings turn out to have extremely good behavior in many respects. A key ingredient in this type of reduction is that when R is local, Rb is local and faithfully flat over R. We shall study the structure of complete local rings. A complete local ring that contains a field always contains a field that maps onto its residue class field: thus, if (R; m; K) contains a field, it contains a field K0 such that the composite map K0 ⊆ R R=m = K is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field K0 is called a coefficient field for R. The choice of a coefficient field K0 is not unique in general, although in positive prime characteristic p it is unique if K is perfect, which is a bit surprising. The existence of a coefficient field is a rather hard theorem. Once it is known, one can show that every complete local ring that contains a field is a homomorphic image of a formal power series ring over a field. It is also a module-finite extension of a formal power series ring over a field. This situation is analogous to what is true for finitely generated algebras over a field, where one can make the same statements using polynomial rings instead of formal power series rings.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Classifying the Representation Type of Infinitesimal Blocks of Category
    Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt (Under the Direction of Brian D. Boe) Abstract Let g be a simple Lie algebra over the field C of complex numbers, with root system Φ relative to a fixed maximal toral subalgebra h. Let S be a subset of the simple roots ∆ of Φ, which determines a standard parabolic subalgebra of g. Fix an integral weight ∗ µ µ ∈ h , with singular set J ⊆ ∆. We determine when an infinitesimal block O(g,S,J) := OS of parabolic category OS is nonzero using the theory of nilpotent orbits. We extend work of Futorny-Nakano-Pollack, Br¨ustle-K¨onig-Mazorchuk, and Boe-Nakano toward classifying the representation type of the nonzero infinitesimal blocks of category OS by considering arbitrary sets S and J, and observe a strong connection between the theory of nilpotent orbits and the representation type of the infinitesimal blocks. We classify certain infinitesimal blocks of category OS including all the semisimple infinitesimal blocks in type An, and all of the infinitesimal blocks for F4 and G2. Index words: Category O; Representation type; Verma modules Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt B.A., Utah State University, 1999 M.S., Utah State University, 2001 M.A, The University of Georgia, 2006 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Athens, Georgia 2008 c 2008 Kenyon J. Platt All Rights Reserved Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J.
    [Show full text]
  • 6. Localization
    52 Andreas Gathmann 6. Localization Localization is a very powerful technique in commutative algebra that often allows to reduce ques- tions on rings and modules to a union of smaller “local” problems. It can easily be motivated both from an algebraic and a geometric point of view, so let us start by explaining the idea behind it in these two settings. Remark 6.1 (Motivation for localization). (a) Algebraic motivation: Let R be a ring which is not a field, i. e. in which not all non-zero elements are units. The algebraic idea of localization is then to make more (or even all) non-zero elements invertible by introducing fractions, in the same way as one passes from the integers Z to the rational numbers Q. Let us have a more precise look at this particular example: in order to construct the rational numbers from the integers we start with R = Z, and let S = Znf0g be the subset of the elements of R that we would like to become invertible. On the set R×S we then consider the equivalence relation (a;s) ∼ (a0;s0) , as0 − a0s = 0 a and denote the equivalence class of a pair (a;s) by s . The set of these “fractions” is then obviously Q, and we can define addition and multiplication on it in the expected way by a a0 as0+a0s a a0 aa0 s + s0 := ss0 and s · s0 := ss0 . (b) Geometric motivation: Now let R = A(X) be the ring of polynomial functions on a variety X. In the same way as in (a) we can ask if it makes sense to consider fractions of such polynomials, i.
    [Show full text]
  • Hyperbolicity of Hermitian Forms Over Biquaternion Algebras
    HYPERBOLICITY OF HERMITIAN FORMS OVER BIQUATERNION ALGEBRAS NIKITA A. KARPENKO Abstract. We show that a non-hyperbolic hermitian form over a biquaternion algebra over a field of characteristic 6= 2 remains non-hyperbolic over a generic splitting field of the algebra. Contents 1. Introduction 1 2. Notation 2 3. Krull-Schmidt principle 3 4. Splitting off a motivic summand 5 5. Rost correspondences 7 6. Motivic decompositions of some isotropic varieties 12 7. Proof of Main Theorem 14 References 16 1. Introduction Throughout this note (besides of x3 and x4) F is a field of characteristic 6= 2. The basic reference for the staff related to involutions on central simple algebras is [12].p The degree deg A of a (finite dimensional) central simple F -algebra A is the integer dimF A; the index ind A of A is the degree of a central division algebra Brauer-equivalent to A. Conjecture 1.1. Let A be a central simple F -algebra endowed with an orthogonal invo- lution σ. If σ becomes hyperbolic over the function field of the Severi-Brauer variety of A, then σ is hyperbolic (over F ). In a stronger version of Conjecture 1.1, each of two words \hyperbolic" is replaced by \isotropic", cf. [10, Conjecture 5.2]. Here is the complete list of indices ind A and coindices coind A = deg A= ind A of A for which Conjecture 1.1 is known (over an arbitrary field of characteristic 6= 2), given in the chronological order: • ind A = 1 | trivial; Date: January 2008. Key words and phrases.
    [Show full text]
  • Arxiv:Math/0005288V1 [Math.QA] 31 May 2000 Ilb Setal H Rjciecodnt Igo H Variety
    Mannheimer Manuskripte 254 math/0005288 SINGULAR PROJECTIVE VARIETIES AND QUANTIZATION MARTIN SCHLICHENMAIER Abstract. By the quantization condition compact quantizable K¨ahler mani- folds can be embedded into projective space. In this way they become projec- tive varieties. The quantum Hilbert space of the Berezin-Toeplitz quantization (and of the geometric quantization) is the projective coordinate ring of the embedded manifold. This allows for generalization to the case of singular vari- eties. The set-up is explained in the first part of the contribution. The second part of the contribution is of tutorial nature. Necessary notions, concepts, and results of algebraic geometry appearing in this approach to quantization are explained. In particular, the notions of projective varieties, embeddings, sin- gularities, and quotients appearing in geometric invariant theory are recalled. Contents Introduction 1 1. From quantizable compact K¨ahler manifolds to projective varieties 3 2. Projective varieties 6 2.1. The definition of a projective variety 6 2.2. Embeddings into Projective Space 9 2.3. The projective coordinate ring 12 3. Singularities 14 4. Quotients 17 4.1. Quotients in algebraic geometry 17 4.2. The relation with the symplectic quotient 19 References 20 Introduction arXiv:math/0005288v1 [math.QA] 31 May 2000 Compact K¨ahler manifolds which are quantizable, i.e. which admit a holomor- phic line bundle with curvature form equal to the K¨ahler form (a so called quantum line bundle) are projective algebraic manifolds. This means that with the help of the global holomorphic sections of a suitable tensor power of the quantum line bundle they can be embedded into a projective space of certain dimension.
    [Show full text]
  • Rings of Quotients and Localization a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Ar
    RINGS OF QUOTIENTS AND LOCALIZATION A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREME N TS FOR THE DEGREE OF MASTER OF ARTS IN MATHEMATICS IN THE GRADUATE SCHOOL OF THE TEXAS WOMAN'S UNIVERSITY COLLEGE OF ARTS AND SCIENCE S BY LILLIAN WANDA WRIGHT, B. A. DENTON, TEXAS MAY, l974 TABLE OF CONTENTS INTRODUCTION . J Chapter I. PRIME IDEALS AND MULTIPLICATIVE SETS 4 II. RINGS OF QUOTIENTS . e III. CLASSICAL RINGS OF QUOTIENTS •• 25 IV. PROPERTIES PRESERVED UNDER LOCALIZATION 30 BIBLIOGRAPHY • • • • • • • • • • • • • • • • ••••••• 36 iii INTRODUCTION The concept of a ring of quotients was apparently first introduced in 192 7 by a German m a thematician Heinrich Grell i n his paper "Bezeihungen zwischen !deale verschievener Ringe" [ 7 ] . I n his work Grelt observed that it is possible to associate a ring of quotients with the set S of non -zero divisors in a r ing. The elements of this ring of quotients a r e fractions whose denominators b elong to Sand whose numerators belong to the commutative ring. Grell's ring of quotients is now called the classical ring of quotients. 1 GrelL 1 s concept of a ring of quotients remained virtually unchanged until 1944 when the Frenchman Claude C hevalley presented his paper, "On the notion oi the Ring of Quotients of a Prime Ideal" [ 5 J. C hevalley extended Gre ll's notion to the case wher e Sis the compte- ment of a primt: ideal. (Note that the set of all non - zer o divisors and the set- theoretic c om?lement of a prime ideal are both instances of .multiplicative sets -- sets tha t are closed under multiplicatio n.) 1According to V.
    [Show full text]
  • Arxiv:1710.09830V1 [Math.AC] 26 Oct 2017
    COMPUTATIONS OVER LOCAL RINGS IN MACAULAY2 MAHRUD SAYRAFI Thesis Advisor: David Eisenbud Abstract. Local rings are ubiquitous in algebraic geometry. Not only are they naturally meaningful in a geometric sense, but also they are extremely useful as many problems can be attacked by first reducing to the local case and taking advantage of their nice properties. Any localization of a ring R, for instance, is flat over R. Similarly, when studying finitely generated modules over local rings, projectivity, flatness, and freeness are all equivalent. We introduce the packages PruneComplex, Localization and LocalRings for Macaulay2. The first package consists of methods for pruning chain complexes over polynomial rings and their localization at prime ideals. The second package contains the implementation of such local rings. Lastly, the third package implements various computations for local rings, including syzygies, minimal free resolutions, length, minimal generators and presentation, and the Hilbert–Samuel function. The main tools and procedures in this paper involve homological methods. In particular, many results depend on computing the minimal free resolution of modules over local rings. Contents I. Introduction 2 I.1. Definitions 2 I.2. Preliminaries 4 I.3. Artinian Local Rings 6 II. Elementary Computations 7 II.1. Is the Smooth Rational Quartic a Cohen-Macaulay Curve? 12 III. Other Computations 13 III.1. Computing Syzygy Modules 13 arXiv:1710.09830v1 [math.AC] 26 Oct 2017 III.2. Computing Minimal Generators and Minimal Presentation 16 III.3. Computing Length and the Hilbert-Samuel Function 18 IV. Examples and Applications in Intersection Theory 20 V. Other Examples from Literature 22 VI.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • Nilpotent Ideals in Polynomial and Power Series Rings 1609
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 5, May 2010, Pages 1607–1619 S 0002-9939(10)10252-4 Article electronically published on January 13, 2010 NILPOTENT IDEALS IN POLYNOMIAL AND POWER SERIES RINGS VICTOR CAMILLO, CHAN YONG HONG, NAM KYUN KIM, YANG LEE, AND PACE P. NIELSEN (Communicated by Birge Huisgen-Zimmermann) Abstract. Given a ring R and polynomials f(x),g(x) ∈ R[x] satisfying f(x)Rg(x) = 0, we prove that the ideal generated by products of the coef- ficients of f(x)andg(x) is nilpotent. This result is generalized, and many well known facts, along with new ones, concerning nilpotent polynomials and power series are obtained. We also classify which of the standard nilpotence properties on ideals pass to polynomial rings or from ideals in polynomial rings to ideals of coefficients in base rings. In particular, we prove that if I ≤ R[x]is aleftT -nilpotent ideal, then the ideal formed by the coefficients of polynomials in I is also left T -nilpotent. 1. Introduction Throughout this paper, all rings are associative rings with 1. It is well known that a polynomial f(x) over a commutative ring is nilpotent if and only if each coefficient of f(x) is nilpotent. But this result is not true in general for noncommutative rings. For example, let R = Mn(k), the n × n full matrix ring over some ring k =0. 2 Consider the polynomial f(x)=e12 +(e11 − e22)x − e21x ,wheretheeij’s are 2 the matrix units. In this case f(x) = 0, but e11 − e22 is not nilpotent.
    [Show full text]
  • Problem 1. an Element a of a Ring R Is Called Nilpotent If a M = 0 for Some M > 0. A) Prove That in a Commutative Ring R
    Problem 1. An element a of a ring R is called nilpotent if am = 0 for some m> 0. a) Prove that in a commutative ring R the set N of all nilpotent elements of R is an ideal. This ideal is called the nilradical of R. Prove that 0 is the only nilpotent element of R/N. b) Let R be a commutative ring and let a1, ..., an R be nilpotent. Set I for the ∈ ideal < a1, ..., an > generated by a1, ..., an. Prove that there is a positive integer N N such that x1x2...xN = 0 for any x1, ..., xN in I (i.e. that I = 0). c) Prove that the set of all nilpotent elements in the ring M2(R) is not an ideal. d) Prove that if p is a prime and m > 0 then every element of Z/pmZ is either nilpotent or invertible. e) Find the nilradical of Z/36Z (by correspondence theorem, it is equal to nZ/36Z for some n). Solution:a) Suppose that a, b N and r R. Thus an = 0 and bm = 0 for ∈ ∈ some positive integers m, n. By the Newton’s binomial formula we have m+n m + n (a b)m+n = ai( b)m+n−i. (1) − i − i=0 X Note that, for every i 1, 2, ..., m+n , either i n or m+n i m and therefore ∈{ } ≥ − ≥ either ai =0or( b)m+n−i = 0. It follows that every summand in the sum (1) is 0, − so (a b)m+n = 0. Thus a b N.
    [Show full text]