Exchangeable Equilibria of TECHNOLOGY by JUN 17 2011

Total Page:16

File Type:pdf, Size:1020Kb

Exchangeable Equilibria of TECHNOLOGY by JUN 17 2011 MASSACHUSETTS INSTITUTE Exchangeable Equilibria OF TECHNOLOGY by JUN 17 2011 Noah D. Stein LIBRARIES B.S., Electrical & Computer Engineering, Cornell University, 2005 S.M., Electrical Engineering & Computer Science, MIT, 2007 ARCHIVES Submitted to the Department of Electrical Engineering & Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering & Computer Science at the Massachusetts Institute of Technology June 2011 @ 2011 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Electrical Engineering & Computer Science May 20, 2011 Certified by: Asuman Ozdaglar Associate Professor of Electrical Engineering & Computer Science Class of 1943 Career Development Professor Thesis Co-SuDervisor Certified by: Pablo A. Parrilo Professor of Electrical Engineering & Computer Science Fireccanica Career Development Professor Thesis Co-Supervisor Accepted by: 2 - A 'ie A. Kolodziejski Professor of Electrical Engineering Chair, Committee for Graduate Students Exchangeable Equilibria by Noah D. Stein Submitted to the Department of Electrical Engineering and Computer Science on May 20, 2011 in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The main contribution of this thesis is a new solution concept for symmetric games (of complete information in strategic form), the exchangeable equilibrium. This is an intermediate notion between symmetric Nash and symmetric correlated equi- librium. While a variety of weaker solution concepts than correlated equilibrium and a variety of refinements of Nash equilibrium are known, there is little previous work on "interpolating" between Nash and correlated equilibrium. Several game-theoretic interpretations suggest that exchangeable equilibria are natural objects to study. Moreover, these show that the notion of symmetric correlated equilibrium is too weak and exchangeable equilibrium is a more natural analog of correlated equilibrium for symmetric games. The geometric properties of exchangeable equilibria are a mix of those of Nash and correlated equilibria. The set of exchangeable equilibria is convex, compact, and semi-algebraic, but not necessarily a polytope. A variety of examples illustrate how it relates to the Nash and correlated equilibria. The same ideas which lead to the notion of exchangeable equilibria can be used to construct tighter convex relaxations of the symmetric Nash equilibria as well as convex relaxations of the set of all Nash equilibria in asymmetric games. These have similar mathematical properties to the exchangeable equilibria. An example game reveals an algebraic obstruction to computing exact ex- changeable equilibria, but these can be approximated to any degree of accuracy in polynomial time. On the other hand, optimizing a linear function over the exchangeable equilibria is NP-hard. There are practical linear and semidefinite programming heuristics for both problems. A secondary contribution of this thesis is the computation of extreme points of the set of correlated equilibria in a simple family of games. These examples illus- trate that in finite games there can be factorially many more extreme correlated equilibria than extreme Nash equilibria, so enumerating extreme correlated equi- libria is not an effective method for enumerating extreme Nash equilibria. In the case of games with a continuum of strategies and polynomial utilities, the exam- ples illustrate that while the set of Nash equilibria has a known finite-dimensional description in terms of moments, the set of correlated equilibria admits no such finite-dimensional characterization. Thesis Co-Supervisor: Asuman Ozdaglar Title: Associate Professor of Electrical Engineering & Computer Science Class of 1943 Career Development Professor Thesis Co-Supervisor: Pablo A. Parrilo Title: Professor of Electrical Engineering & Computer Science Finmeccanica Career Development Professor Dedicated to Marianne Cavanaugh, who once said she would be slightly disappointed if I never wrote this. Thank you for everything. Contents Acknowledgments 11 1 Introduction 15 1.1 Overview. ........................... 18 1.2 Previous work ................ .. .. .. 21 1.2.1 Leading towards exchangeable equilibria ..... 21 1.2.2 Literature related to extreme correlated equilibria 23 2 Background 27 2.1 Game theory ....... ............................. 27 2.1.1 Games and equilibria . ....... ........ ..... 28 2.1.2 The Hart-Schmeidler argument ..... ...... .... 35 2.1.3 Groups acting on games .... ..... ...... .... 37 2.2 Exchangeability . ............ ............ ... 42 2.3 Tensors ....................... ......... 47 2.4 Complete positivity ................. ......... 49 2.5 Semidefinite relaxations ....................... 52 2.5.1 Conic programming .... ........... ....... 52 2.5.2 Linear, semidefinite, and completely positive programming 2.5.3 Polynomial nonnegativity and sums of squares ..... .. 2.5.4 Double nonnegativity ........ ............. 3 Symmetric Exchangeable Equilibria 63 3.1 Generalized exchangeable distributions .......... 63 3.2 Definition and properties .................. 65 3.3 Exam ples .......................... 71 3.4 Convex relaxations of Nash equilibria ........... 85 4 Interpretations of Symmetric Exchangeable Equilibria 91 8 CONTENTS 4.1 Hidden variable interpretation .. .. .. .. .. 91 4.2 Unknown opponent interpretation .. .. .. .. 94 4.3 Many player interpretation . .. .. .. .. .. 96 4.4 Sealed envelope implementation . .. .. .. .. 100 5 Higher Order Exchangeable Equilibria 101 5.1 Refinement of the sealed envelope implementation .... 101 5.2 Powers of games . .. .. .. .. .. .. .. .. .. 106 5.3 Order k exchangeable equilibria .. .. .. .. .. .. 111 5.4 Order oo exchangeable equilibria .. .. .. .. .. .. 113 5.5 Nash equilibria from higher order exchangeable equilibria 114 5.5.1 The player-transitive case .. .. .. .. .. .. 114 5.5.2 Arbitrary symmetry groups . .. .. .. .. .. 116 6 Asymmetric Exchangeable Equilibria 119 6.1 Partial exchangeability .. .. .. .. .. .. .. .. 119 6.2 Defining asymmetric exchangeable equilibria .. .. .. 123 6.3 Convex relaxations of Nash equilibria . .. .. .. .. 132 7 Computation of Symmetric Exchangeable Equilibria 137 7.1 Computational complexity .. .. .. .. .. .. .. .. .. .. 137 7.1.1 Background .. .. .. .. .. ... .. .. .. ...... 138 7.1.2 The Ellipsoid Against Hope algorithm .. .. .. .. .. 140 7.1.3 Paradox . .. ... .. .. .. .. .. ... .. .... .. 142 7.1.4 Resolution .. ... .. .. .. .. .. ... .. .. .. .. 142 7.1.5 Approximate Ellipsoid Against Hope . .. .. ...... 146 7.1.6 Run time .. ... .. .. .. .. .. ... .. .. .... 150 7.1.7 Hardness of optimizing over exchangeable equilibria 150 7.2 Linear and semidefinite relaxations . .. .. .. .. ... 151 8 Structure of Extreme Correlated Equilibria 155 8.1 Background . .. .. .. .. .. .. .. .. .... .... .... 156 8.1.1 Extreme equilibria in finite games . .... .... .... 156 8.1.2 Ergodic theory . .. .. .. .. .. .. ... ... .. .. 159 8.2 Description of the examples . .. .. .. .. ... .. ... .. 160 8.3 Extreme Nash equilibria . .. .. .. ... ... .. ... 161 8.4 Extreme correlated equilibria . .. .. .. ... ... .... .. 163 9 Future Directions 173 9.1 Open questions .. .. .. .. .. .. .. .. .. .. .. 174 CONTENTS 9 9.1.1 Higher order exchangeable equilibria . ....... .... 174 9.1.2 Finitely-supported correlated equilibria in polynomial games 174 9.1.3 The correlated equilibrium conundrum ....... .... 175 9.1.4 Rational exchangeable equilibria .... ....... .... 176 9.1.5 Symmetric identical interest games ... ........ .. 177 9.1.6 Further computational questions ....... ....... 177 9.1.7 Applications of exchangeable equilibria .. .... .... 178 9.1.8 Structuralist game theory ... ..... ...... .... 178 References 183 Notation 189 Acknowledgements My deepest thanks go to my thesis advisors, Asuman Ozdaglar and Pablo Parrilo. Each has provided a constant source of ideas and research directions to pursue. Through some sort of resonance, constructive interference, or positive feedback, the rate at which these suggestions come at least quadruples whenever they are in the same room. At first I found this daunting, but they taught me a great deal quickly and I became comfortable with this process faster than I expected. Knowing how stubborn I can be, they have managed to maintain this endless enthusiasm while almost never pushing me, except on a few occasions when they could sense I really needed it. While Asu and Pablo were always interested in whatever I was working on, one of these occasions came when they were worried that I was not interested enough in my own work. At this point the push came in the form of a no-strings-attached assignment to explore and find a project which I thought was "great," not merely "good enough." In the end this gamble paid off and I am much prouder of the final product than I would have been. This principle of never trying to pigeonhole me into a particular area extended to the other aspects of my graduate studies as well. Though Asu and Pablo suggested enough research-relevant coursework to fill many more Ph.D.'s (to match their endless stream of project ideas), they did not complain when I instead chose to study less-obviously relevant subjects such as algebraic topology. It made my life as a student much simpler and less stressful that this steadfast intellectual support was always backed up financially 100%. I did not once have to worry whether my funding would come through. Their
Recommended publications
  • Game Theory Lecture Notes
    Game Theory: Penn State Math 486 Lecture Notes Version 2.1.1 Christopher Griffin « 2010-2021 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fan George Kesidis and Other Contributions By: Arlan Stutler Sarthak Shah Contents List of Figuresv Preface xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 1. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability8 4. The Monty Hall Problem 11 Chapter 2. Game Trees and Extensive Form 15 1. Graphs and Trees 15 2. Game Trees with Complete Information and No Chance 18 3. Game Trees with Incomplete Information 22 4. Games of Chance 24 5. Pay-off Functions and Equilibria 26 Chapter 3. Normal and Strategic Form Games and Matrices 37 1. Normal and Strategic Form 37 2. Strategic Form Games 38 3. Review of Basic Matrix Properties 40 4. Special Matrices and Vectors 42 5. Strategy Vectors and Matrix Games 43 Chapter 4. Saddle Points, Mixed Strategies and the Minimax Theorem 45 1. Saddle Points 45 2. Zero-Sum Games without Saddle Points 48 3. Mixed Strategies 50 4. Mixed Strategies in Matrix Games 53 5. Dominated Strategies and Nash Equilibria 54 6. The Minimax Theorem 59 7. Finding Nash Equilibria in Simple Games 64 8. A Note on Nash Equilibria in General 66 Chapter 5. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 69 1. A General Maximization Formulation 70 2. Some Geometry for Optimization 72 3.
    [Show full text]
  • Minimax TD-Learning with Neural Nets in a Markov Game
    Minimax TD-Learning with Neural Nets in a Markov Game Fredrik A. Dahl and Ole Martin Halck Norwegian Defence Research Establishment (FFI) P.O. Box 25, NO-2027 Kjeller, Norway {Fredrik-A.Dahl, Ole-Martin.Halck}@ffi.no Abstract. A minimax version of temporal difference learning (minimax TD- learning) is given, similar to minimax Q-learning. The algorithm is used to train a neural net to play Campaign, a two-player zero-sum game with imperfect information of the Markov game class. Two different evaluation criteria for evaluating game-playing agents are used, and their relation to game theory is shown. Also practical aspects of linear programming and fictitious play used for solving matrix games are discussed. 1 Introduction An important challenge to artificial intelligence (AI) in general, and machine learning in particular, is the development of agents that handle uncertainty in a rational way. This is particularly true when the uncertainty is connected with the behavior of other agents. Game theory is the branch of mathematics that deals with these problems, and indeed games have always been an important arena for testing and developing AI. However, almost all of this effort has gone into deterministic games like chess, go, othello and checkers. Although these are complex problem domains, uncertainty is not their major challenge. With the successful application of temporal difference learning, as defined by Sutton [1], to the dice game of backgammon by Tesauro [2], random games were included as a standard testing ground. But even backgammon features perfect information, which implies that both players always have the same information about the state of the game.
    [Show full text]
  • On Dynamic Games with Randomly Arriving Players Pierre Bernhard, Marc Deschamps
    On Dynamic Games with Randomly Arriving Players Pierre Bernhard, Marc Deschamps To cite this version: Pierre Bernhard, Marc Deschamps. On Dynamic Games with Randomly Arriving Players. 2015. hal-01377916 HAL Id: hal-01377916 https://hal.archives-ouvertes.fr/hal-01377916 Preprint submitted on 7 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. O n dynamic games with randomly arriving players Pierre Bernhard et Marc Deschamps September 2015 Working paper No. 2015 – 13 30, avenue de l’Observatoire 25009 Besançon France http://crese.univ-fcomte.fr/ CRESE The views expressed are those of the authors and do not necessarily reflect those of CRESE. On dynamic games with randomly arriving players Pierre Bernhard∗ and Marc Deschamps† September 24, 2015 Abstract We consider a dynamic game where additional players (assumed identi- cal, even if there will be a mild departure from that hypothesis) join the game randomly according to a Bernoulli process. The problem solved here is that of computing their expected payoff as a function of time and the number of players present when they arrive, if the strategies are given. We consider both a finite horizon game and an infinite horizon, discounted game.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • A Game Theory Interpretation for Multiple Access in Cognitive Radio
    1 A Game Theory Interpretation for Multiple Access in Cognitive Radio Networks with Random Number of Secondary Users Oscar Filio Rodriguez, Student Member, IEEE, Serguei Primak, Member, IEEE,Valeri Kontorovich, Fellow, IEEE, Abdallah Shami, Member, IEEE Abstract—In this paper a new multiple access algorithm for (MAC) problem has been analyzed using game theory tools cognitive radio networks based on game theory is presented. in previous literature such as [1] [2] [8] [9]. In [9] a game We address the problem of a multiple access system where the theory model is presented as a starting point for the Distributed number of users and their types are unknown. In order to do this, the framework is modelled as a non-cooperative Poisson game in Coordination Function (DCF) mechanism in IEEE 802.11. In which all the players are unaware of the total number of devices the DCF there are no base stations or access points which participating (population uncertainty). We propose a scheme control the access to the channel, hence all nodes transmit their where failed attempts to transmit (collisions) are penalized. In data frames in a competitive manner. However, as pointed out terms of this, we calculate the optimum penalization in mixed in [9], the proposed DCF game does not consider how the strategies. The proposed scheme conveys to a Nash equilibrium where a maximum in the possible throughput is achieved. different types of traffic can affect the sum throughput of the system. Moreover, in [10] it is assumed that the total number of players is known in order to evaluate the performance I.
    [Show full text]
  • Game-Based Verification and Synthesis
    Downloaded from orbit.dtu.dk on: Sep 30, 2021 Game-based verification and synthesis Vester, Steen Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vester, S. (2016). Game-based verification and synthesis. Technical University of Denmark. DTU Compute PHD-2016 No. 414 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Ph.D. Thesis Doctor of Philosophy Game-based verification and synthesis Steen Vester Kongens Lyngby, Denmark 2016 PHD-2016-414 ISSN: 0909-3192 DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Richard Petersens Plads Building 324 2800 Kongens Lyngby, Denmark Phone +45 4525 3031 [email protected] www.compute.dtu.dk Summary Infinite-duration games provide a convenient way to model distributed, reactive and open systems in which several entities and an uncontrollable environment interact.
    [Show full text]
  • Strong Stackelberg Reasoning in Symmetric Games: an Experimental
    Strong Stackelberg reasoning in symmetric games: An experimental ANGOR UNIVERSITY replication and extension Pulford, B.D.; Colman, A.M.; Lawrence, C.L. PeerJ DOI: 10.7717/peerj.263 PRIFYSGOL BANGOR / B Published: 25/02/2014 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Pulford, B. D., Colman, A. M., & Lawrence, C. L. (2014). Strong Stackelberg reasoning in symmetric games: An experimental replication and extension. PeerJ, 263. https://doi.org/10.7717/peerj.263 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 23. Sep. 2021 Strong Stackelberg reasoning in symmetric games: An experimental replication and extension Briony D. Pulford1, Andrew M. Colman1 and Catherine L. Lawrence2 1 School of Psychology, University of Leicester, Leicester, UK 2 School of Psychology, Bangor University, Bangor, UK ABSTRACT In common interest games in which players are motivated to coordinate their strate- gies to achieve a jointly optimal outcome, orthodox game theory provides no general reason or justification for choosing the required strategies.
    [Show full text]
  • Strategic Approval Voting in a Large Electorate
    Strategic approval voting in a large electorate Jean-François Laslier∗ Laboratoire d’Économétrie, École Polytechnique 1 rue Descartes, 75005 Paris [email protected] June 16, 2006 Abstract The paper considers approval voting for a large population of vot- ers. It is proven that, based on statistical information about candidate scores, rational voters vote sincerly and according to a simple behav- ioral rule. It is also proven that if a Condorcet-winner exists, this can- didate is elected. ∗Thanks to Steve Brams, Nicolas Gravel, François Maniquet, Remzi Sanver and Karine Van der Straeten for their remarks. Errors are mine. 1 1Introduction Approval Voting (AV) is the method of election according to which a voter can vote for as many candidates as she wishes, the elected candidate being the one who receives the most votes. In this paper two results are established about AV in the case of a large electorate when voters behave strategically: the sincerity of individual behavior (rational voters choose sincere ballots) and the Condorcet-consistency of the choice function defined by approval voting (whenever a Condorcet winner exists, it is the outcome of the vote). Under AV, a ballot is a subset of the set candidates. A ballot is said to be sincere, for a voter, if it shows no “hole” with respect to the voter’s preference ranking; if the voter sincerely approves of a candidate x she also approves of any candidate she prefers to x. Therefore, under AV, a voter has several sincere ballots at her disposal: she can vote for her most preferred candidate, or for her two, or three, or more most preferred candidates.1 It has been found by Brams and Fishburn (1983) that a voter should always vote for her most-preferred candidate and never vote for her least- preferred one.
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • Correlated Equilibria and Communication in Games Françoise Forges
    Correlated equilibria and communication in games Françoise Forges To cite this version: Françoise Forges. Correlated equilibria and communication in games. Computational Complex- ity. Theory, Techniques, and Applications, pp.295-704, 2012, 10.1007/978-1-4614-1800-9_45. hal- 01519895 HAL Id: hal-01519895 https://hal.archives-ouvertes.fr/hal-01519895 Submitted on 9 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Correlated Equilibrium and Communication in Games Françoise Forges, CEREMADE, Université Paris-Dauphine Article Outline Glossary I. De…nition of the Subject and its Importance II. Introduction III. Correlated Equilibrium: De…nition and Basic Properties IV. Correlated Equilibrium and Communication V. Correlated Equilibrium in Bayesian Games VI. Related Topics and Future Directions VII. Bibliography Acknowledgements The author wishes to thank Elchanan Ben-Porath, Frédéric Koessler, R. Vijay Krishna, Ehud Lehrer, Bob Nau, Indra Ray, Jérôme Renault, Eilon Solan, Sylvain Sorin, Bernhard von Stengel, Tristan Tomala, Amparo Ur- bano, Yannick Viossat and, especially, Olivier Gossner and Péter Vida, for useful comments and suggestions. Glossary Bayesian game: an interactive decision problem consisting of a set of n players, a set of types for every player, a probability distribution which ac- counts for the players’ beliefs over each others’ types, a set of actions for every player and a von Neumann-Morgenstern utility function de…ned over n-tuples of types and actions for every player.
    [Show full text]
  • Characterizing Solution Concepts in Terms of Common Knowledge Of
    Characterizing Solution Concepts in Terms of Common Knowledge of Rationality Joseph Y. Halpern∗ Computer Science Department Cornell University, U.S.A. e-mail: [email protected] Yoram Moses† Department of Electrical Engineering Technion—Israel Institute of Technology 32000 Haifa, Israel email: [email protected] March 15, 2018 Abstract Characterizations of Nash equilibrium, correlated equilibrium, and rationaliz- ability in terms of common knowledge of rationality are well known (Aumann 1987; arXiv:1605.01236v1 [cs.GT] 4 May 2016 Brandenburger and Dekel 1987). Analogous characterizations of sequential equi- librium, (trembling hand) perfect equilibrium, and quasi-perfect equilibrium in n-player games are obtained here, using results of Halpern (2009, 2013). ∗Supported in part by NSF under grants CTC-0208535, ITR-0325453, and IIS-0534064, by ONR un- der grant N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative (MURI) pro- gram administered by the ONR under grants N00014-01-1-0795 and N00014-04-1-0725, and by AFOSR under grants F49620-02-1-0101 and FA9550-05-1-0055. †The Israel Pollak academic chair at the Technion; work supported in part by Israel Science Foun- dation under grant 1520/11. 1 Introduction Arguably, the major goal of epistemic game theory is to characterize solution concepts epistemically. Characterizations of the solution concepts that are most commonly used in strategic-form games, namely, Nash equilibrium, correlated equilibrium, and rational- izability, in terms of common knowledge of rationality are well known (Aumann 1987; Brandenburger and Dekel 1987). We show how to get analogous characterizations of sequential equilibrium (Kreps and Wilson 1982), (trembling hand) perfect equilibrium (Selten 1975), and quasi-perfect equilibrium (van Damme 1984) for arbitrary n-player games, using results of Halpern (2009, 2013).
    [Show full text]