NYS Interagency CWD Risk Minimization Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Montana Fish, Wildlife & Parks' 2020 Chronic Wasting Disease
Montana Fish, Wildlife & Parks’ 2020 Chronic Wasting Disease Surveillance and Monitoring Report Federal Aid in Wildlife Restoration Grant W-171-M Annual report, May 14, 2021 Dr. Emily Almberg Matthew Becker Disease Ecologist, MTFWP Wildlife Veterinary Technician, MTFWP 1400 S. 19th Avenue, Bozeman, MT 59718 1400 S. 19th Avenue, Bozeman, MT 59718 406-577-7881, [email protected] 406-577-7882, [email protected] Justin Gude John Thornburg Wildlife Research & Technical Services CWD Program Lead Technician, MTFWP Bureau Chief, MTFWP 1400 S. 19th Avenue, Bozeman, MT 59718 1420 E. 6th Avenue, Helena, MT 59620 406-577-7883, [email protected] 406-444-3767, [email protected] Dr. Jennifer Ramsey Wildlife Veterinarian, MTFWP 1400 S. 19th Avenue, Bozeman, MT 59718 406-577-7880, [email protected] STATE: Montana AGENCY: Fish, Wildlife & Parks GRANT: Montana Wildlife Disease Surveillance & Response Program MT TRACKING: W-171-M Executive Summary Montana Fish, Wildlife, and Parks (FWP) has been conducting surveillance for chronic wasting disease (CWD) since 1998, and first detected CWD in wild deer in 2017. In 2020, FWP prioritized sampling in northwestern, southwestern, and eastern/southeastern Montana. In addition, FWP continued to target sampling in the Libby CWD Management Zone and organized a special CWD hunt known as the Southwestern Montana CWD Management Hunt. FWP offered free state-wide testing available via mail-in, CWD-check stations, and all regional FWP headquarter offices in 2020. During the 2020 season, FWP tested 7974 samples from mule deer (n=3108), white-tailed deer (n=4088), elk (n=729), and moose (n=49). Of these, 271 animals tested positive for CWD, including 38 mule deer and 233 white-tailed deer. -
Chronic Wasting Disease and Atypical Forms of Bovine Spongiform
Journal of General Virology (2012), 93, 1624–1629 DOI 10.1099/vir.0.042507-0 Short Chronic wasting disease and atypical forms of Communication bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein Rona Wilson,1 Chris Plinston,1 Nora Hunter,1 Cristina Casalone,2 Cristiano Corona,2 Fabrizio Tagliavini,3 Silvia Suardi,3 Margherita Ruggerone,3 Fabio Moda,3 Silvia Graziano,4 Marco Sbriccoli,4 Franco Cardone,4 Maurizio Pocchiari,4 Loredana Ingrosso,4 Thierry Baron,5 Juergen Richt,63 Olivier Andreoletti,7 Marion Simmons,8 Richard Lockey,8 Jean C. Manson1 and Rona M. Barron1 Correspondence 1Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Rona M. Barron Midlothian, UK [email protected] 2Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy 3IRCCS Foundation, ‘Carlo Besta’ Neurological Institute, Milan, Italy 4Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita`, Viale Regina Elena 299, 00161 Rome, Italy 5Agence Nationale de Se´curite´ Sanitaire, Lyon, France 6USDA, ARS, National Animal Disease Center, PO Box 70, Ames, IA 50010, USA 7UMR 1225 Interactions Hoˆtes-Agents Pathoge`nes, INRA, Ecole Nationale Ve´te´rinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 3, France 8Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. -
Velvet Antler a Summary of the Literature on Health Benefits
Velvet Antler a summary of the literature on health benefits A report for the Rural Industries Research and Development Corporation By Chris Tuckwell November 2003 RIRDC Publication No RIRDC Project No DIP-10A © 2003 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0642 58651 9 ISSN 1440-6845 Velvet antler – a summary of the literature on health benefits Publication No. 03/084 Project No. DIP-10A The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consultedP. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Chris Tuckwell Rural Industry Developments PO Box 1105 GAWLER SA 5118 Phone: (08) 8523 3500 Fax: (08) 8523 3301 Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form. RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4539 Fax: 02 6272 5877 Email: [email protected] Internet: http://www.rirdc.gov.au Published in November 2003 Printed on environmentally friendly paper by Canprint ii Foreword RIRDC continues to support research and development projects linked to velvet antler production and marketing as well as many other projects that influence the development of the Australian Deer industry. -
Bioactive Components of Velvet Antlers and Their Pharmacological Properties
Journal of Pharmaceutical and Biomedical Analysis 87 (2014) 229–240 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis jou rnal homepage: www.elsevier.com/locate/jpba Review Bioactive components of velvet antlers and their pharmacological properties Zhigang Sui, Lihua Zhang ∗, Yushu Huo, Yukui Zhang National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China a r t i c l e i n f o a b s t r a c t Article history: Velvet antler is one of the most important animal medicines, and has been used with a variety of func- Received 30 April 2013 tions, such as anti-fatigue, tissue repair and health promotion. In the past few years, the investigation on Received in revised form 29 July 2013 chemical compositions, bioactive components, and pharmacological effects has been performed, which Accepted 31 July 2013 demonstrates that velvet antlers could be used as an important health-promoting tonic with great Available online 27 August 2013 nutritional and medicinal values. This review focuses on the recent advance in studying the bioactive components of velvet antlers. Keywords: © 2013 Elsevier B.V. All rights reserved. Velvet antlers Extraction and isolation Analytical techniques Bioactive components Pharmacological effects Contents 1. Introduction . 230 2. Bioactive components. 230 2.1. Amino acids, polypeptides and proteins . 230 2.2. Saccharides . 231 2.3. Lipids and polyamines. 231 3. Preparation of bioactive components. 232 3.1. Extraction and isolation of amino acids, polypeptides and proteins . 232 3.2. -
Chronic Wasting Disease
COLORADO PARKS & WILDLIFE Chronic Wasting Disease RECENT TRENDS & IMPLICATIONS IN COLORADO Maintaining wildlife health is a fundamental component of sound wildlife management and is regarded as a high priority in Colorado. Colorado Parks and Wildlife is dedicated to delivering a coordinated and systematic approach for monitoring, investigating, reporting, and – where feasible – controlling health problems in free- ranging wildlife. hronic wasting disease (CWD) is well- established in deer, elk, and moose herds throughout Cmuch of Colorado. As of January 2018, 31 of 55 deer data analysis units (DAUs), 14 of 43 elk DAUs, and 2 of 9 moose DAUs have become infected. This prion disease also has been reported in deer, elk, moose, and reindeer (caribou) in 27 other states and provinces, in South Korea, and most recently in Norway. The rate of CWD infection (or “prevalence”) appears to be rising in many affected Colorado herds. However, trends have become difficult to track in the last 10 years because too few hunters voluntarily submit samples for testing. As a result, our current prevalence estimates for many herds are imprecise and perhaps somewhat biased. In 2017, CPW resumed mandatory harvest submissions in select DAUs. Sample sizes in the targeted DAUs increased 10-fold, yielding better data to inform herd management planning. Reliable CWD prevalence estimates and trend assessments are needed to inform deer and elk conservation in Colorado. Figure. Chronic wasting disease harvest and prevalence A growing body of data suggests that unchecked CWD trends in three Colorado mule deer DAUs illustrate patterns epidemics impair the long-term performance of affected and potential relationships between harvest and disease populations. -
Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion
Article DOI: https://doi.org/10.3201/eid2309.161474 Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion Technical Appendix Additional Data Brain homogenates from all mice (experimentally infected animals and uninfected controls) were analyzed for the presence of PrP-res. Proteinase K-resistant PrP was detected in all mice infected with H95+ prions (Figure 1) demonstrating that H95+ is 100% penetrant. PrP- res was not, however, detected in mice infected with the Wisc-1 strain from wt/wt or S96/wt deer or CWD2 from elk. A similar analysis of brain homogenates from hamsters was also performed. Wisc-1 CWD was preferentially transmitted to hamsters upon primary passage (Figure 2). Wt/wt CWD caused clinical disease or subclinical accumulation of PrP-res in exposed hamsters. Transmission of S96/wt and H95/wt CWD prions resulted, primarily, in subclinical disease. Inoculation of elk CWD prions resulted in clinical disease in two out of five hamsters and subclinical disease in one animal. The H95/S96 isolate transmitted inefficiently with only one of eight hamsters having subclinical disease. This subclinical infection may be due to Wisc-1 in the H95/S96 deer isolate. Hamsters inoculated with uninfected deer brain homogenate did not show signs of prion disease nor accumulate PrP-res. Secondary structure of host PrP influences the ability of a strain to propagate in a new host. Based on NMR studies, it has been hypothesized that amino acid variation at residues 170- 175 (Figure 3) in PrPC results in a loop structure between beta-sheet 2 and alpha-helix 2 (β2-α2) whose flexibility influences the outcome of interspecies transmissions (1–7). -
Megaloceros Giganteus) from the Pleistocene in Poland
Palaeontologia Electronica palaeo-electronica.org Healed antler fracture from a giant deer (Megaloceros giganteus) from the Pleistocene in Poland Kamilla Pawłowska, Krzysztof Stefaniak, and Dariusz Nowakowski ABSTRACT We evaluated the skull of an ancient giant deer with a deformity of one antler. The skull was found in the 1930s in the San River near Barycz, in southeastern Poland. Its dating (39,800±1000 yr BP) corresponds to MIS-3, when the giant deer was wide- spread in Europe. Our diagnostics for the antler included gross morphology, radiogra- phy, computed tomography, and histopathology. We noted signs of fracture healing of the affected antler, including disordered arrangement of lamellae, absence of osteons, and numerous Volkmann’s canals remaining after blood vessel loss. The antler defor- mity appears to be of traumatic origin, with a healing component. No similar evaluation process has been described previously for this species. Kamilla Pawłowska. corresponding author, Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Poznań 61-606, Poland, [email protected] Krzysztof Stefaniak. Division of Palaeozoology, Department of Evolutionary Biology and Ecology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland, [email protected] Dariusz Nowakowski. Department of Anthropology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 6/7, Wrocław 51-631, Poland, [email protected] Keywords: giant deer; Megaloceros giganteus; paleopathology; Pleistocene; Poland INTRODUCTION -
Effects of Velvet Antler with Blood on Bone in Ovariectomized Rats
Molecules 2012, 17, 10574-10585; doi:10.3390/molecules170910574 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Effects of Velvet Antler with Blood on Bone in Ovariectomized Rats Sung-Hui Tseng 1,2, Hsin-Ching Sung 3, Lih-Geeng Chen 4, Ying-Jang Lai 5, Kun-Teng Wang 6, Chun-Hsien Sung 7 and Ching-Chiung Wang 2,6,7,* 1 School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 11031, Taiwan; E-Mail: [email protected] 2 Orthopedics Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei City 11031, Taiwan 3 Department of Anatomy, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Township, Taoyuan County 33302, Taiwan; E-Mail: [email protected] 4 Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, No. 300 Syuefu Rd., Chiayi City 60004, Taiwan; E-Mail: [email protected] 5 Department of Food Science, National Quemoy University, No.1, Daxue Rd., Jinning Township, Kinmen County 89250, Taiwan; E-Mail: [email protected] 6 School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 11031, Taiwan; E-Mail: [email protected] 7 Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei City 11031, Taiwan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-2-2736-1661 (ext. 6161); Fax: +886-2-2732-9368. Received: 18 June 2012; in revised form: 28 August 2012 / Accepted: 3 September 2012 / Published: 5 September 2012 Abstract: In traditional Chinese medicine (TCM), both velvet antlers (VA) and VA blood can tonify qi, essence, and marrow, nourish the blood, and invigorate bones and tendons. -
Info on Chronic Wasting Disease
W 832 Chronic Wasting Disease Daniel Grove, Assistant Professor and Extension Wildlife Health Specialist Department of Forestry, Wildlife and Fisheries Background Transmission In the late 1960s, mule deer in a Colorado research The most likely route of infection is via ingestion facility, and later elk and mule deer in Wyoming, were of prions. Exposure may be from prions that have the frst to be identifed exhibiting signs of what been deposited in the environment. Other behaviors is now called chronic wasting disease (CWD). The such as mutual grooming amongst social groups or animals progressively lost weight, stopped eating, interactions during rutting behavior may facilitate had variable neurological defciencies and eventually transmission. In utero transmission (mother to wasted away over a prolonged period. Ultimately, the ofspring during gestation) has been experimentally disease was recognized in wild animals in Northern documented in muntjac deer, mule deer and elk. Colorado and Southern Wyoming. In the 1980s the Transmission also may occur during parturition (at disease agent was identifed as a prion. Since that birth) or shortly thereafter during the initial maternal time, the disease has slowly progressed across interactions with the fawn. western states and now has been detected in 26 states, three Canadian provinces, Norway, Finland, Clinical Signs Sweden and South Korea. Most of the clinical signs seen with CWD are Defnition the result of damage to the neurologic system (brain, spinal cord). Often animals will frst appear CWD is the transmissible spongiform as thin with poor hair coats. As the disease encephalopathy (TSE) of cervids. progresses ataxia (stumbling), incoordination and hypersalivation (drooling) can be seen. -
Partnering with Taxidermists for Improved Chronic Wasting Disease Surveillance
animals Article Partnering with Taxidermists for Improved Chronic Wasting Disease Surveillance Ashley Ableman 1,*, Kevin Hynes 1, Krysten Schuler 2 and Angela Martin 3 1 Wildlife Health Unit, Wildlife Resources Center, New York State Department of Environmental Conservation, 108 Game Farm Road, Delmar, NY 12054, USA; [email protected] 2 Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell School of Veterinary Medicine, 240 Farrier Road, Ithaca, NY 14853, USA; [email protected] 3 Bureau of Environmental Exposure Investigation, Center for Environmental Health, New York State Department of Health, ESP Corning Tower, Albany, NY 12237, USA; [email protected] * Correspondence: [email protected] Received: 31 October 2019; Accepted: 6 December 2019; Published: 11 December 2019 Simple Summary: Chronic wasting disease (CWD) is a contagious neurological disease affecting deer, moose, elk, and reindeer. CWD is predominantly found in North America and has a higher prevalence in older male deer. To increase the submission of samples from older male deer, the Taxidermy Partnership Program (TPP) was implemented in New York State (NYS). This program partners with taxidermists to obtain valuable samples that would otherwise be lost and helps raise awareness about CWD. Since its start, the TPP has been successful in increasing the number of older male deer submitted for CWD testing. Abstract: Chronic wasting disease (CWD) is a neurodegenerative disease of cervids caused by a misfolded protein called a prion. This disease affects captive and free-ranging deer, moose, elk, and reindeer, and has been detected in 26 states. Cervids infected with CWD may be asymptomatic for months or years. -
Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis
International Journal of Molecular Sciences Review Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis Maria Immaculata Arifin 1,2,3, Samia Hannaoui 1,2,3, Sheng Chun Chang 1,2,3, Simrika Thapa 1,2,3, Hermann M. Schatzl 1,2,3 and Sabine Gilch 1,2,3,* 1 Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; maria.arifi[email protected] (M.I.A.); [email protected] (S.H.); [email protected] (S.C.C.); [email protected] (S.T.); [email protected] (H.M.S.) 2 Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada 3 Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada * Correspondence: [email protected] Abstract: Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal’s susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymor- phisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. -
Biological and Social Issues Related to Confinement of Wild Ungulates
Biological and Social Issues Related to Confinement of Wild Ungulates THE WILDLIFE SOCIETY Technical Review 02-3 2002 BIOLOGICALANDSOCIALISSUESRELATEDTOCONFINEMENTOFWILDUNGULATES The Wildlife Society Members of The Technical Committee on Wild Ungulate Confinement Stephen Demarais (Chair) Elizabeth S. Williams Department of Wildlife and Fisheries Department of Veterinary Sciences Mississippi State University University of Wyoming Box 9690 1174 Snowy Range Road Mississippi State, MS 39762 Laramie, WY 82070 Randall W. DeYoung Scot J. Williamson Department of Wildlife and Fisheries Wildlife Management Institute Mississippi State University RR 1, Box 587, Spur Road Box 9690 North Stratford, NH 03590 Mississippi State, MS 39762 Gary J. Wolfe L. Jack Lyon Rocky Mountain Elk Foundation Box 9045 4722 Aspen Drive Missoula, MT 59807 Missoula, MT 59802 Edited by Laura Andrews The Wildlife Society Technical Review 02-3 5410 Grosvenor Lane, Suite 200 November 2002 Bethesda, Maryland 20814 Foreword Presidents of The Wildlife Society occasionally appoint ad hoc committees to study and report on selected conservation issues. The reports ordinarily appear in 2 related series called either Technical Review (formerly "White Paper") or Position Statement. Review papers present technical information and the views of the appointed committee members, but not necessarily the views of their employers. Position statements are based on the review papers, and the preliminary versions ordinarily are published in The Wildliferfor comment by Society members. Following the comment period, revision, and Council's approval, the statements are published as official positions of The Wildlife Society. Both types of reports are copyrighted by the Society, but individuals are granted permission to make single copies for noncommercial purposes.