Reflexive Spaces of Smooth Functions: a Logical Account of Linear Partial

Total Page:16

File Type:pdf, Size:1020Kb

Reflexive Spaces of Smooth Functions: a Logical Account of Linear Partial Reflexive spaces of smooth functions : a logical account of linear partial differential equations Marie Kerjean To cite this version: Marie Kerjean. Reflexive spaces of smooth functions : a logical account of linear partial differential equations. Logic in Computer Science [cs.LO]. Université Sorbonne Paris Cité, 2018. English. NNT : 2018USPCC144. tel-02386294 HAL Id: tel-02386294 https://tel.archives-ouvertes.fr/tel-02386294 Submitted on 29 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I Titre: Espaces réflexifs de fonctions lisses: un compte rendu logique des équations aux dérivées partielles linéaires. Résumé La théorie de la preuve se développe depuis la correspondance de Curry-Howard suivant deux sources d’inspirations: les langages de programmation, pour lesquels elle agit comme une théorie des types de données, et l’étude séman- tique des preuves. Cette dernière consiste à donner des modèles mathématiques pour les comportements des preuves/programmes. En particulier, la sémantique dénotationnelle s’attache à interpréter ceux-ci comme des fonctions entre les types, et permet en retour d’affiner notre compréhension des preuves/programmes. La logique linéaire (LL) donne une interprétation logique des notions d’algèbre linéaire, quand la logique linéaire différentielle (DiLL) permet une compréhension logique de la notion de différentielle. Cette thèse s’attache à renforcer la correspondance sémantique entre théorie de la preuve et analyse fonction- nelle, en insistant sur le caractère involutif de la négation dans DiLL. La première partie consiste en un rappel des notions de linéarité, polarisation et différentiation en théorie de la preuve, ainsi qu’un exposé rapide de théorie des espaces vectoriels topologiques. La deuxième partie donne deux modèles duaux de la logique linéaire dif- férentielle, interprétant la négation d’une formule respectivement par le dual faible et le dual de Mackey. Quand la topologie faible ne permet qu’une interprétation discrète des preuves sous forme de série formelle, la topologie de Mackey nous permet de donner un modèle polarisé et lisse de DiLL. Enfin, la troisième partie de cette thèse s’attache à interpréter les preuves de DiLL par des distribuitons à support compact. Nous donnons un modèle polarisé de DiLL où les types négatifs sont interprétés par des espaces Fréchet Nucléaires. Nous montrons que enfin la résolution des équations aux dérivées partielles linéaires à coefficients constants obéit à une syntaxe qui généralise celle de DiLL, que nous détaillons. Mots-clefs : théorie de la preuve, logique linéaire, sémantique dénotationnelle, espaces vectoriels topologies, théorie des distributions. Title: Reflexive spaces of smooth functions: a logical account of linear partial differential equations. Abstract Around the Curry-Howard correspondence, proof-theory has grown along two distinct fields: the theory of programming languages, for which formulas acts as data types, and the semantic study of proofs. The latter consists in giving mathematical models of proofs and programs. In particular, denotational semantics distinguishes data types which serves as input or output of programs, and allows in return for a finer understanding of proofs and programs. Linear Logic (LL) gives a logical interpretation of the basic notions of linear algebra, while Differential Linear Logic allows for a logical understanding of differentiation. This manuscript strengthens the link between proof-theory and functional analysis, and highlights the role of linear involutive negation in DiLL. The first part of this thesis consists in a quick overview of prerequisites on the notions of linearity, polarisation and differentiation in proof-theory, and gives the necessary background in the theory of locally convex topological vector spaces. The second part uses two classic topologies on the dual of a topological vector space and gives two models of DiLL: the weak topology allows only for a discrete interpretation of proofs through formal power series, while the Mackey topology on the dual allows for a smooth and polarised model of DiLL. Finally, the third part interprets proofs of DiLL by distributions. We detail a polarized model of DiLL in which negatives are Fréchet Nuclear spaces, and proofs are distributions with compact support. We also show that solving linear partial differential equations with constant coefficients can be typed by a syntax similar to the one of DiLL, which we detail. key-words : proof-theory, linear logic, denotational semantics, locally convex topological vector spaces, distribu- tion theory. II III Contents 1 Introduction 2 I Preliminaries 9 2 Linear Logic, Differential Linear Logic and their models 10 2.1 The Curry-Howard correspondence .................................. 12 2.1.1 Minimal logic and the lambda-calculus ........................... 12 2.1.2 LK and classical Logic .................................... 14 2.2 Linear Logic .............................................. 16 2.2.1 Syntax and cut -elimination ................................. 16 2.2.2 Categorical semantics .................................... 16 2.2.3 An example: Köthe spaces .................................. 22 2.3 Polarized Linear Logic ........................................ 23 2.3.1 LLpol and LLP. ....................................... 24 2.3.2 Categorical semantics .................................... 26 2.3.2.1 Mixed chiralities .................................. 27 2.3.2.2 Negative chiralities. ................................ 28 2.3.2.3 Interpreting MALLpol ............................... 29 2.3.2.4 Interpreting LLpol ................................. 31 2.4 Differential Linear Logic ....................................... 34 2.4.1 Syntax and cut-elimination .................................. 34 2.4.1.1 The syntax ..................................... 34 2.4.1.2 Typing: intuitions behind the exponential rules. 36 2.4.1.3 Cut-elimination and sums ............................. 37 2.4.2 Categorical semantics .................................... 40 2.4.2.1 ˚-autonomous Seely categories with biproduct and co-dereliction . 40 2.4.2.2 Invariance of the semantics over cut-elimination . 43 2.4.2.3 Exponential structures ............................... 45 2.4.3 A Smooth intuitionistic model: Convenient spaces ..................... 45 2.5 Polarized Differential Linear Logic .................................. 49 2.5.1 A sequent calculus ...................................... 49 2.5.2 Categorical semantics .................................... 50 2.5.2.1 Dereliction and co-dereliction as functors ..................... 50 2.5.2.2 A polarized biproduct ............................... 51 2.5.2.3 Categorical models of DiLLpol .......................... 52 3 Topological vector spaces 53 Closure and orthogonalities ...................................... 55 Filters and topologies ......................................... 55 3.1 First definitions ............................................ 56 3.1.1 Topologies on vector spaces ................................. 56 3.1.2 Metrics and semi-norms ................................... 57 3.1.3 Compact and precompact sets ................................ 58 IV 3.1.4 Projective and inductive topolgies .............................. 58 3.1.5 Completeness ......................................... 59 3.2 Examples: sequences and measures ................................. 60 3.2.1 Spaces of continuous functions ................................ 60 3.2.2 Spaces of smooth functions ................................. 60 3.2.3 Sequence spaces ....................................... 61 3.3 Linear functions and their topologies ................................. 62 3.3.1 Linear continuous maps ................................... 62 3.3.2 Weak properties and dual pairs ................................ 63 3.3.3 Dual pairs ........................................... 65 3.4 Bornologies and uniform convergence ................................ 66 3.4.1 Polars and equicontinuous sets ................................ 66 3.4.2 Boundedness for sets and functions ............................. 67 3.4.3 Topologies on spaces of linear functions ........................... 68 3.4.4 Barrels ............................................ 70 3.5 Reflexivity ............................................... 70 3.5.1 Weak, Mackey and Arens reflexivities ............................ 71 3.5.2 Strong reflexivity ....................................... 72 3.5.3 The duality of linear continuous functions .......................... 73 3.6 Topological tensor products and bilinear maps ............................ 74 3.6.1 The projective, inductive and B tensor products ....................... 74 3.6.2 The injective tensor product ................................. 76 3.6.3 The ε tensor product ..................................... 78 II Classical models of DiLL 79 4 Mackey and Weak topologies as left and right adjoint to pairing 80 Quantitative semantics ........................................ 80 CHU and its adjunctions to TOPVEC ................................
Recommended publications
  • On Quasi Norm Attaining Operators Between Banach Spaces
    ON QUASI NORM ATTAINING OPERATORS BETWEEN BANACH SPACES GEUNSU CHOI, YUN SUNG CHOI, MINGU JUNG, AND MIGUEL MART´IN Abstract. We provide a characterization of the Radon-Nikod´ymproperty in terms of the denseness of bounded linear operators which attain their norm in a weak sense, which complement the one given by Bourgain and Huff in the 1970's. To this end, we introduce the following notion: an operator T : X ÝÑ Y between the Banach spaces X and Y is quasi norm attaining if there is a sequence pxnq of norm one elements in X such that pT xnq converges to some u P Y with }u}“}T }. Norm attaining operators in the usual (or strong) sense (i.e. operators for which there is a point in the unit ball where the norm of its image equals the norm of the operator) and also compact operators satisfy this definition. We prove that strong Radon-Nikod´ymoperators can be approximated by quasi norm attaining operators, a result which does not hold for norm attaining operators in the strong sense. This shows that this new notion of quasi norm attainment allows to characterize the Radon-Nikod´ymproperty in terms of denseness of quasi norm attaining operators for both domain and range spaces, completing thus a characterization by Bourgain and Huff in terms of norm attaining operators which is only valid for domain spaces and it is actually false for range spaces (due to a celebrated example by Gowers of 1990). A number of other related results are also included in the paper: we give some positive results on the denseness of norm attaining Lipschitz maps, norm attaining multilinear maps and norm attaining polynomials, characterize both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss conditions to obtain that quasi norm attaining operators are actually norm attaining, study the relationship with the norm attainment of the adjoint operator and, finally, present some stability results.
    [Show full text]
  • Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces
    Axioms 2013, 2, 224-270; doi:10.3390/axioms2020224 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Article Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces Sergey Ajiev School of Mathematical Sciences, Faculty of Science, University of Technology-Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; E-Mail: [email protected] Received: 4 March 2013; in revised form: 12 May 2013 / Accepted: 14 May 2013 / Published: 23 May 2013 Abstract: We introduce and study Clarkson, Dol’nikov-Pichugov, Jacobi and mutual diameter constants reflecting the geometry of a Banach space and Clarkson, Jacobi and Pichugov classes of Banach spaces and their relations with James, self-Jung, Kottman and Schaffer¨ constants in order to establish quantitative versions of Hahn-Banach separability theorem and to characterise the isometric extendability of Holder-Lipschitz¨ mappings. Abstract results are further applied to the spaces and pairs from the wide classes IG and IG+ and non-commutative Lp-spaces. The intimate relation between the subspaces and quotients of the IG-spaces on one side and various types of anisotropic Besov, Lizorkin-Triebel and Sobolev spaces of functions on open subsets of an Euclidean space defined in terms of differences, local polynomial approximations, wavelet decompositions and other means (as well as the duals and the lp-sums of all these spaces) on the other side, allows us to present the algorithm of extending the main results of the article to the latter spaces and pairs. Special attention is paid to the matter of sharpness. Our approach is quasi-Euclidean in its nature because it relies on the extrapolation of properties of Hilbert spaces and the study of 1-complemented subspaces of the spaces under consideration.
    [Show full text]
  • Proximal Analysis and Boundaries of Closed Sets in Banach Space, Part I: Theory
    Can. J. Math., Vol. XXXVIII, No. 2, 1986, pp. 431-452 PROXIMAL ANALYSIS AND BOUNDARIES OF CLOSED SETS IN BANACH SPACE, PART I: THEORY J. M. BORWEIN AND H. M. STROJWAS 0. Introduction. As various types of tangent cones, generalized deriva­ tives and subgradients prove to be a useful tool in nonsmooth optimization and nonsmooth analysis, we witness a considerable interest in analysis of their properties, relations and applications. Recently, Treiman [18] proved that the Clarke tangent cone at a point to a closed subset of a Banach space contains the limit inferior of the contingent cones to the set at neighbouring points. We provide a considerable strengthening of this result for reflexive spaces. Exploring the analogous inclusion in which the contingent cones are replaced by pseudocontingent cones we have observed that it does not hold any longer in a general Banach space, however it does in reflexive spaces. Among the several basic relations we have discovered is the following one: the Clarke tangent cone at a point to a closed subset of a reflexive Banach space is equal to the limit inferior of the weak (pseudo) contingent cones to the set at neighbouring points. This generalizes the results of Penot [14] and Cornet [7] for finite dimensional spaces and of Penot [14] for reflexive spaces. What is more we show that this equality characterizes reflex­ ive spaces among Banach spaces, similarly as the analogous equality with the contingent cones instead of the weak contingent cones, characterizes finite dimensional spaces among Banach spaces. We also present several other related characterizations of reflexive spaces and variants of the considered inclusions for boundedly relatively weakly compact sets.
    [Show full text]
  • Almost Transitive and Maximal Norms in Banach Spaces
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0894-0347(XX)0000-0 ALMOST TRANSITIVE AND MAXIMAL NORMS IN BANACH SPACES S. J. DILWORTH AND B. RANDRIANANTOANINA Dedicated to the memory of Ted Odell 1. Introduction The long-standing Banach-Mazur rotation problem [2] asks whether every sepa- rable Banach space with a transitive group of isometries is isometrically isomorphic to a Hilbert space. This problem has attracted a lot of attention in the literature (see a survey [3]) and there are several related open problems. In particular it is not known whether a separable Banach space with a transitive group of isometries is isomorphic to a Hilbert space, and, until now, it was unknown if such a space could be isomorphic to `p for some p 6= 2. We show in this paper that this is impossible and we provide further restrictions on classes of spaces that admit transitive or almost transitive equivalent norms (a norm on X is called almost transitive if the orbit under the group of isometries of any element x in the unit sphere of X is norm dense in the unit sphere of X). It has been known for a long time [28] that every separable Banach space (X; k·k) is complemented in a separable almost transitive space (Y; k · k), its norm being an extension of the norm on X. In 1993 Deville, Godefroy and Zizler [9, p. 176] (cf. [12, Problem 8.12]) asked whether every super-reflexive space admits an equiva- lent almost transitive norm.
    [Show full text]
  • On the Topology of Compactoid Convergence in Non-Archimedean Spaces Annales Mathématiques Blaise Pascal, Tome 3, No 2 (1996), P
    ANNALES MATHÉMATIQUES BLAISE PASCAL A.K. KATSARAS A. BELOYIANNIS On the topology of compactoid convergence in non-archimedean spaces Annales mathématiques Blaise Pascal, tome 3, no 2 (1996), p. 135-153 <http://www.numdam.org/item?id=AMBP_1996__3_2_135_0> © Annales mathématiques Blaise Pascal, 1996, tous droits réservés. L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commer- ciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 3, N° 2, 1996, pp.135-153 ON THE TOPOLOGY OF COMPACTOID CONVERGENCE IN NON-ARCHIMEDEAN SPACES A. K. KATSARAS and A. BELOYIANNIS Department of Mathematics, University of Ioannina P.O. Box 1186, 451 10 loannina, Greece email: [email protected] Abstract Some of the properties, of the topology of uniform convergence on the compactoid subsets of a non-Archimedean locally convex space E, are studied. In case E is metrizable, the compactoid convergence topology coincides with the finest locally convex topology which agrees with a~E’, E) on equicontinuous sets. 1 1 Introduction In [7J some of the properties of the topology of uniform convergence on the compactoid subsets, of a non-Archimedean locally convex space, are inves- tigated. In the same paper, the authors defined the ~-product E~F of two non-Archimedean locally convex spaces E and F.
    [Show full text]
  • Bornologically Isomorphic Representations of Tensor Distributions
    Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products.
    [Show full text]
  • Sisältö Part I: Topological Vector Spaces 4 1. General Topological
    Sisalt¨ o¨ Part I: Topological vector spaces 4 1. General topological vector spaces 4 1.1. Vector space topologies 4 1.2. Neighbourhoods and filters 4 1.3. Finite dimensional topological vector spaces 9 2. Locally convex spaces 10 2.1. Seminorms and semiballs 10 2.2. Continuous linear mappings in locally convex spaces 13 3. Generalizations of theorems known from normed spaces 15 3.1. Separation theorems 15 Hahn and Banach theorem 17 Important consequences 18 Hahn-Banach separation theorem 19 4. Metrizability and completeness (Fr`echet spaces) 19 4.1. Baire's category theorem 19 4.2. Complete topological vector spaces 21 4.3. Metrizable locally convex spaces 22 4.4. Fr´echet spaces 23 4.5. Corollaries of Baire 24 5. Constructions of spaces from each other 25 5.1. Introduction 25 5.2. Subspaces 25 5.3. Factor spaces 26 5.4. Product spaces 27 5.5. Direct sums 27 5.6. The completion 27 5.7. Projektive limits 28 5.8. Inductive locally convex limits 28 5.9. Direct inductive limits 29 6. Bounded sets 29 6.1. Bounded sets 29 6.2. Bounded linear mappings 31 7. Duals, dual pairs and dual topologies 31 7.1. Duals 31 7.2. Dual pairs 32 7.3. Weak topologies in dualities 33 7.4. Polars 36 7.5. Compatible topologies 39 7.6. Polar topologies 40 PART II Distributions 42 1. The idea of distributions 42 1.1. Schwartz test functions and distributions 42 2. Schwartz's test function space 43 1 2.1. The spaces C (Ω) and DK 44 1 2 2.2.
    [Show full text]
  • Models of Linear Logic Based on the Schwartz $\Varepsilon $-Product
    MODELS OF LINEAR LOGIC BASED ON THE SCHWARTZ ε-PRODUCT. YOANN DABROWSKI AND MARIE KERJEAN Abstract. From the interpretation of Linear Logic multiplicative disjunction as the ε-product de- fined by Laurent Schwartz, we construct several models of Differential Linear Logic based on usual mathematical notions of smooth maps. This improves on previous results in [BET] based on con- venient smoothness where only intuitionist models were built. We isolate a completeness condition, called k-quasi-completeness, and an associated notion stable by duality called k-reflexivity, allow- ing for a ∗-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive version of the ε product. We adapt Meise’s definition of Smooth maps into a first model of Differential Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with conveniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of smoothness, one also recovers models of DiLL on the same ∗-autonomous cat- egories. Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the ε-product (without reflexivization). Contents 1. Introduction 2 1.1. A first look at the interpretation of Linear Logic constructions 6 Part 1. Three Models of MALL 7 2. Preliminaries 7 2.1. Reminder on topological vector spaces 7 2.2. Reminder on tensor products and duals of locally convex spaces. 8 2.3. Dialogue and ∗-autonomous categories 10 2.4.
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]
  • A Short Description on Locally Convex and Polar Topologies
    International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319-6734, ISSN (Print): 2319-6726 www.ijesi.org ||Volume 9 Issue 7 Series II || July 2020 || PP 01-05 A Short Description on Locally Convex and Polar Topologies Dr. Krishnandan Prasad1, Dr. Amar Nath Kumar2 1(Mathematics,T.P.S. College/ Patliputra University,India) 2(Mathematics, Patna Science College/Patna University Name,India) ABSTRACT: In this paper an attempt has been made to make some positive contributions to the study of topological dynamical systems. It is well known that the classical studies of dynamical systems are based on Hamilton’s principle and the principle of least action and techniques employed in them is usually the variational calculus. Some years ago, studies has been made of dynamical systems which carry topologies on them making the dynamical behavior of the system continuous i.e. the so-called topologies campactible with dynamical structure of the system. This relates the study of dynamical systems with the study of continuous semigroup of operators on Banach Algebras, specially C*-Algebra, and W*-Algebras. The most useful topologies for such studies are so-called weak topologies, strong topologies and the corresponding notations of weak continuities and strong continuities. Thus we are lead to the studies of topological dynamical systems in the context of topological vector space, specially locally convex spaces and locally compact groups. KEYWORDS - Absorbent, Absolutely Convex, Balanced, Convex, , Locally Convex Topological Linear
    [Show full text]
  • Marie Kerjean
    Tensor products and *-autonomous categories Marie Kerjean Laboratory PPS, Universit´eParis Diderot [email protected] The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational semantics has sought continuous models of computation through Scott domains [9]. Moreover, the infinite nature of the exponential of Linear Logic calls for infinite dimensional spaces, for which topology becomes necessary. One of the first intuitions that comes to mind when thinking about objects in a ∗-autonomous category is the notion of reflexive vector space, i.e. a a tvs which equals its double dual. When A is a vector space, the transpose dA : A ! (A !?) !? of the evaluation map evA :(A !?) × A !? is exactly the canonical injection of a vector space in its bidual. Then, requiring dA to be an isomorphism amounts to requiring A to be reflexive. However, the category of reflexive topological vector spaces is not ∗-autonomous, as it is not closed. Barr [2] constructs two closed subcategories of the category of tvs by re- stricting to tvs endowed with their weak topology (wtvs) or with their Mackey topology (mtvs), which are both polar topologies. Indeed, if E is a tvs, one can define its dual E0 as the space of all continuous linear form on E.
    [Show full text]
  • Calculus on a Normed Linear Space
    Calculus on a Normed Linear Space James S. Cook Liberty University Department of Mathematics Fall 2017 2 introduction and scope These notes are intended for someone who has completed the introductory calculus sequence and has some experience with matrices or linear algebra. This set of notes covers the first month or so of Math 332 at Liberty University. I intend this to serve as a supplement to our required text: First Steps in Differential Geometry: Riemannian, Contact, Symplectic by Andrew McInerney. Once we've covered these notes then we begin studying Chapter 3 of McInerney's text. This course is primarily concerned with abstractions of calculus and geometry which are accessible to the undergraduate. This is not a course in real analysis and it does not have a prerequisite of real analysis so my typical students are not prepared for topology or measure theory. We defer the topology of manifolds and exposition of abstract integration in the measure theoretic sense to another course. Our focus for course as a whole is on what you might call the linear algebra of abstract calculus. Indeed, McInerney essentially declares the same philosophy so his text is the natural extension of what I share in these notes. So, what do we study here? In these notes: How to generalize calculus to the context of a normed linear space In particular, we study: basic linear algebra, spanning, linear independennce, basis, coordinates, norms, distance functions, inner products, metric topology, limits and their laws in a NLS, conti- nuity of mappings on NLS's,
    [Show full text]