Manual Gearbox Design

Total Page:16

File Type:pdf, Size:1020Kb

Manual Gearbox Design Contents Preface vii... Acknowledgements Vlll Introduction ix 1 Crown wheel and pinion 1 Torque at rear axles 4 Vehicle performance torque 5 Axle torque (from maximum engine torque through the lowest gear ratios) Axle torque - from wheel slip Drive pinion torque Stress determination and scoring resistance Bending stress Contact stress 2 Internal running gear 16 Shaft stressing for size 16 Input shaft 19 Intermediate shaft 19 Output shaft 19 Internal gears 20 Lubrication system 22 Gear engagement 22 Interlock system 26 Reverse gear 27 Differential 27 Bearing arrangement and casing 30 3 Lubrication of gears 33 Principles of gear lubrication 36 Group A 36 Spur gears 36 Helical gears 37 vi Contents Bevel gears 38 Crossed helical gears 38 Group B 39 Worm gears 39 Hypoid gears 40 Tests for lubricating oils 46 4 Gear tooth failures 50 Gear tooth failure 52 Tooth fracture 53 Tooth surface failures 54 5 Crowa wheel and pinion designs 61 Klingelnberg palloid spiral bevel gear calculations 66 Basic conception 66 Terminology 67 Bevel gear calculations 67 ‘0’-bevel gears 80 Bevel gear V drives 82 Tooth profiles 83 Gear blank dimensions 84 Formulae for the determination of the external forces 88 Strength of teeth 96 Rules for the examination of the tooth profile by the graphic method 100 Example of spiral bevel gear design 106 6 Oerlikon cycloid spiral bevel gear calculations 113 Design features 113 Production features 113 Gear calculation with standard En cutters 117 Strength calculation 1 30 7 Gearbox design - rear-engined racing cars 134 Basic aims 134 In-line shaft arrangement 135 Internal gear arrangement 137 Face-dog selectors 137 Bearhg arrangement 139 Crown wheel and pinion layout 141 Differential location and type 143 Transverse-shaft arrangement 148 Selector system 150 Selector interlock system 152 Lubrication method 155 Gearbox casing 157 Materials guide 158 Index 161 Preface This book has been written in an effort to put down on paper some of the experience I have gained during my forty-five years in the transmission design field, thirty-one years of which was designing Formula One gearboxes, and the last five years before retirement with Lotus Engineering as Chief Designer - Transmissions. Knowing of no other book that covered this subject made me more determined to proceed with it. I have attempted to work through the design procedure in the same order used on the many gearbox designs I have been involved with. Alternative types of crown wheel and pinion designs to the widely used Gleason system are covered, that is, Klingelnberg and Oerlikon. Various types of differential are described along with interlock systems which prevent the selection of more than one gear at a time. It contains a wide coverage of gear failures, their causes and requirements to prevent further failures, together with an engineering understanding of lubrication and its application. The book also includes a list of materials along with the heat treatment applied and race-proven in the B.R.M. Formula One Racing Transmissions as a guide to the designer. A. Stokes vii Introduction The purpose of this book is to provide both the student and young professional design engineer with an overall guide to the amount of work involved in the design of a manually operated automotive gearbox, and the problems that can be encoun- tered both during the design stages and in operation. I am unaware of any other book which gives such information and at the same time attempts to provide a methodical system of solving what appears to be a fairly straightforward engineering design problem to the majority of people, but often turns into one requiring great care and dedication. Otherwise the design can develop into a very complex piece of machinery which is both difficult and expensive to produce and proves incapable of achieving the original objectives that were laid down for the transmission. The purpose of any gearbox or transmission is to provide a drive, which often includes a range of selected intermediate gear ratios, between the power unit and the final source of the drive, whether it is to be used in an industrial, marine or automotive application. In the automotive industry this means the provision of a drive between the engine and the road wheels. This drive must be smooth, quiet and efficient and capable of being produced to a strict budget price while proving extremely reliable. With the exception of a transversely mounted engine and gearbox unit, the drive will at some point have to change direction through a 90" angle. Starting with the 90" angle drive, this being one of the following types of gear: (a) a pair of straight bevel gears (b) a pair of spiral bevel gears (c) a pair of hypoid bevel gears and commonly known as the crown wheel and pinion this book will attempt to follow the design sequence used by the author during the design of a manually operated automotive gearbox. Each of the chapters will deal with a-specific problem which is encountered during the design phases and during operation. Chapter 1. This chapter begins with a comparison of the merits of spiral bevel gears and hypoid gears when employed as the final drive in the automotive gearbox, ix x Introduction i.e. the crown wheel and pinion. Then the identification of the hand of spiral of both the spiral and hypoid bevel gears is explained, followed by the recommended hand of spiral. The major portion of the remainder of the chapter gives the details of the ‘Empirical formulae and calculation procedures’ produced by the American Gleason Gear Co. for rear axle or final drive units. These formulae give the following details: (a) torque at rear axles, and vehicle performance torque (b) axle torque, and axle torque from wheel slip (c) drive pinion torque (d) stress determination and scoring resistance The final pages cover the calculation of the crown wheel and pinion ratio and the layout of the initial lines for the gearbox design. These foregoing calculations provide a means of ensuring that the crown wheel and pinion operates satisfactorilyrelative to its specific environment and is designed with adequate strength to cope with the range of torques involved. Chapter 2. This chapter attempts to describe the process of designing the internal running gear, starting with the range of internal ratios, the input shaft, the intermediate shaft and the output shaft. The formulae for stressing these shafts are given, to enable the size of the shafts to be finalized. This is followed by the calculation of the road speed in the various internal ratios, and the selection of the ratios most suited for the particular application. The next pages describe various types of gear engagement systems and the need for an interlock system which prevents more than one internal gear being selected at any given time. The final pages cover the various types of differential that can be used, the choice of bearings and oil seals and finally the type of lubrication system required to suit the application. The closing pages also describe the layout of the gearbox internal running gear and the gearbox casing; the situations that the casing must be able to cope with are also described in some detail. Chapter 3. This chapter is totally dedicated to a complete description of the lubrication of gears. Starting with a brief history of the many dramatic changes that have been made in the lubrication of gears and lubrication in general engineering in the past few years, the various methods used to apply lubricant to gears are listed and explained. The problems of applying lubricant to the various types of gear, with the varying characteristics in the way in which the teeth of the mating gears move relative to each other, are also covered in some detail. This is followed by some advice on the type of lubrication to be chosen from the varying applications relative to the type of gear form and the pitch line speed. Then the loss in efficiency due to excess or inadequate lubrication is analysed. The final pages look at different types of lubricant used in gear drives. Chapter 4.This chapter is dedicated to all the various forms of gear failure that can be encountered by the engineer where gear trains are concerned. In the examination of the failures, the varying reasons or causes of failure, along with suggested remedies, are listed. The failures in any gear train fall into one of two forms, as follows: (a) complete fracture of the gear tooth, usually occurring at the root of the tooth which breaks away in one whole section Introduction xi (b) damage or destruction of the working or mating faces of the gear teeth The factors which either individually or as a combination result in the above failures are listed, before the identification of the failures and their respective remedies. Chapter 5.The different forms of crown wheel and pinion that are available to the designer are discussed in this chapter. The three forms are: (a) the Gleason system, produced by the Gleason Gear Co. of America (b) the Oerlikon system, from the Oerlikon Co. of Switzerland (c) the Klingelnberg system, introduced by the German company, Klingelnberg The differences between the three methods are discussed, together with a general description of the forces created when a pair of spiral bevel gears run together. The movement of the tooth contact pattern as the load applied to the gear increases is also discussed. The final pages of the chapter give a brief description of, and the calculations for, the manufacturing and inspection dimensions for a pair of Klingelnberg palloid spiral bevel gears.
Recommended publications
  • Playing with Gears
    174_LEGO_02 10/25/01 3:11 PM Page 17 Chapter 2 Playing with Gears Solutions in this chapter: I Counting Teeth I Gearing Up and Down I Riding That Train: The Geartrain I Worming Your Way: The Worm Gear I Limiting Strength with the Clutch Gear I Placing and Fitting Gears I Using Pulleys, Belts, and Chains I Making a Difference: The Differential 17 174_LEGO_02 10/25/01 3:11 PM Page 18 18 Chapter 2 • Playing with Gears Introduction You might find yourself asking: Do I really need gears? Well, the answer is yes, you do. Gears are so important for machines that they are almost their symbol: Just the sight of a gear makes you think machinery. In this chapter, you will enter the amazing world of gears and discover the powerful qualities they offer, trans- forming one force into another almost magically.We’ll guide you through some new concepts—velocity, force, torque, friction—as well as some simple math to lay the foundations that will give you the most from the machinery.The concepts are not as complex as you might think. For instance, the chapter will help you see the parallels between gears and simple levers. We invite you once again to experiment with the real things. Prepare some gears, beams, and axles to replicate the simple setups of this chapter. No descrip- tion or explanation can replace what you learn through hands-on experience. Counting Teeth A single gear wheel alone is not very useful—in fact, it is not useful at all, unless you have in mind a different usage from what it was conceived for! So, for a mean- ingful discussion, we need at least two gears.
    [Show full text]
  • Identification and Proposed Control of Helicopter Transmission Noise at the Source
    ~ I \. USAAVSCOM-TR-87-C-2 Identification and Proposed Control of Helicopter Transmission Noise at the Source John J. Coy, Robert F. Handschuh, and David G. Lewicki Propulsion Directorate U.S. Army Research and Technology Activity-AVSCOM Lewis Research Center Cleveland, Ohio Ronald G. Huff, Eugene A. Krejsa, and Allan M. Karchmer Lewis Research Center Cleveland, Ohio (NASA-TH-89312) IDENTIEICA?ICh AND PROPOSED 1487- 168 16 CCNTRCL CF HELICCE'ILR TEANSMISSlCN dOISE AT TEE SCUBCE (NASA) 23 i; csci 01c Unclas 63/05 43744 Preprint for the NASA/Army Rotorcraft Technology Conference held at NASA Ames Research Center Moffett Field, California, March 17-19, 1987 IDENTIFICATION AND PROPOSED CONTROL OF HELICOPTER TRANSMISSION NOISE AT THE SOURCE John J. Coy, Robert F. Handschuh, and David G. Lewicki Propulsion Directorate U.S. Army Research and Technology Activity - AVSCOM Lewis Research Center Cleveland, Ohio 44135 Ronald 6. Huff, Eugene A. Krejsa, and Allan M. Karchmer National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. This paper describes gork conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army's OH-58 helicopter. Flight test data indicate that the planetary gear traln Is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Compan- ion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh.
    [Show full text]
  • Design and Development of Open Differential for Transmission System of Quad Bike
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072 Design and Development of Open Differential for Transmission System of Quad Bike Utkarsha Chaudhari1, Prathamesh Sangelkar2, Prajval Vaskar3 1,2,3Department of Mechanical Engineering, Sinhgad Academy of Engineering, Kondhwa ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract – A differential is an important torque 2. ANALYTICAL CALCULATIONS transmitting device in most of the rear wheel drive vehicles. An ATV is a vehicle which is used to ride in off-road terrains; 2.1 Primary Calculations for Gear Reduction hence continuous application of traction is a vital factor which showcases its performative aspect. The paper describes Input Data: designing and manufacturing an open differential for an off road ATV (Quad Bike) so that the vehicle maneuvers sharp Turning radius of vehicle: - 3m corners without losing traction to the driving wheels. Rear Track width: - 40” Rear tire diameter: - 23” Key Words: Open differential, traction difference, ANSYS, CREO, gear, pinion, centre pin. 1. INTRODUCTION A differential is a gear train with three shafts that has the property that the rotational speed of one shaft is the average of the speeds of the others, or a fixed multiple of that average. In automobiles, the differential allows the outer drive wheel to rotate faster than the inner drive wheel during a turn. This is necessary when the vehicle turns, making the wheel that is travelling around the outside of the turning curve roll farther and faster than the other. The average of the rotational speed of the two driving wheels equals the input rotational speed of the drive shaft.
    [Show full text]
  • Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-Gear Drives
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives Meng Peng [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Acoustics, Dynamics, and Controls Commons, and the Propulsion and Power Commons Recommended Citation Peng, Meng, "Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1434 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Meng Peng entitled "Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mechanical Engineering. Hans A. DeSmidt, Major Professor We have read this dissertation and recommend its acceptance: J. A. M. Boulet, Seddik M. Djouadi, Xiaopeng Zhao Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Parametric Instability Investigation and Stability Based Design for Transmission Systems Containing Face-gear Drives A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Meng Peng August 2012 ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my primary advisor, Dr.
    [Show full text]
  • Computer Numerical Control Grinding of Spiral Bevel Gears
    AUG 31 '95 09:03 FR NASA LERC 216 433 5783 TO 913816218134 P.83 NASA AVSCOM Contractor Report 187175 Technical Report 90- F- 6 Computer Numerical Control Grinding of Spiral Bevel Gears H. Wayne Scott Bell Helicopter Textron, Inc. Fort Worth, Texas August 1991 •.& PUBLICLY AVAII_. BLE . .... .. luly 1995 Prepared for Lewis Research Center Under Contract NAS3 - 25030 and Propulsion Directorate U.S. Army Aviation Research and Technology--AVSCOM AI/ A NatJot_ Aeronauticsand Spaoe Administration - - • ' " (NASA-CR-187175) COMPUTER N96-10758 NUMERICAL CONTROL GRINDING OF SPIRAL BEVEL GEARS (Textron Bell Helicopter) 89 p Unclas J J G3/37 0064089 IF TABLE OF CONTENTS SECTION TITLE PAGE I. Introduction ............................................................... 1 II. Background ............................................................... 2 III. Program Plan .............................................................. 4 IV. Technical Approach ........................................................ 6 4.1 Phase I - Definition of the Prototype CNC Grinder ......................... 6 4.1.1 Task 1- Baseline Grinder 4.1.2 Task 2 - Definition of Prototype 4.1.3 Task 3- Economic Analysis 4.1.4 Task 4- Drawings and Oral Briefings 4.2 Phase II - Integration of Hardware and Software into Prototype CNC Grinder for Spiral Bevel Gears ............................................... 12 4.2.1 Task 5 - Implementation of Conversion Hardware to Baseline Grinder 4.2.2 Task 6 - Add CNC to the Converted Grinder 4.2.3 Task 7 - Demonstrate CNC - Controlled Grinder 4.2.4 Task 8 - Update Economic Analysis 4.2.5 Task 9 - Drawings and Oral Briefing 4.3 Phase III- Pilot Production ............................................. 44 4.3.1 Task 10 - Production Runs Using the Proof of Concept Grinder 4.3.1.1 Development Activities 4.3.2 Task 11 - Update Conversion to CNC Cost and Estimated Savings on Finish Grinding 4.3.3 Task 12- Government/Industries Briefing 4.3.4 Task 13 - Documentation V.
    [Show full text]
  • Evaluation on Failure Analysis of an Automobile Differential Pinion Assembly (IJIRST/ Volume 1 / Issue 12 / 054)
    IJIRST –International Journal for Innovative Research in Science & Technology| Volume 1 | Issue 12 | May 2015 ISSN (online): 2349-6010 Evaluation on Failure Analysis of an Automobile Differential Pinion Assembly Ronak P Panchal Pratik B. Umrigar M.E. Student Department of Automobile Engineering Department of I.C. Engine & Automobile GTU, Mahesana, India GTU, Mahesana, India Abstract Bevel gears have become a subject to research interest because the dynamicload, attention of the noise level during operation and demand for lighter and smaller. In such type of gears there is a problems of failures contact at meshing the teeths. This can be avoided or minimized by proper method analysis and modification of the different gear parameters. This thesis presents characteristics of a bevel gear in dynamic condition involving meshing stiffness and other stresses produce. The purpose of this thesis is by using numerical approach to develop theoretical model of bevel gear and to determine the effect of meshing gear tooth stresses by taking material case hardened alloy steel (15Ni4Cr1) . To estimate the meshing stiffness, three-dimensional solid models for different number of teeth are generated by Solid works and the numerical solution is done in Ansys which is a finite element analysis. Keywords: Design of Spiral Bevel Gear, Analysis of Spiral Bevel Gear _______________________________________________________________________________________________________ I. INTRODUCTION Gear is a mechanical device used in transmission systems that allows rotational force to be transferred to another gears . The gear teeth allow force to be fully transmitted without slip and depending on the configuration can transmit forces at different speeds, torques, and even in a different directions.
    [Show full text]
  • Steering System
    1 Steering System STEERING SYSTEM The function of steering is to steer the front wheel in response to driver command inputs in order to provide overall directional control of the vehicle. The factors kept in mind while designing the steering system were Simplicity Safety Requiring minimum steer effort Economical Steering geometry Ackerman The Ackerman Steering Principle defines the geometry that is applied to all vehicles (two or four wheel drive) to enable the correct turning angle of the steering wheels to be generated when negotiating a corner or a curve. When a car is travelling around a corner (the red lines represent the path that the wheels follow) the inside wheels of the car follow a smaller diameter circle than the outside wheels. If both the wheels were turned by the same amount, the inside wheel would scrub (effectively sliding sideways) and lessen the effectiveness of the steering. This tire scrubbing, which also creates unwanted heat and wear in the tire, can be eliminated by turning the inside wheel at a greater angle than the outside one. Dept. of Mechanical Engineering 2 Steering System The difference in the angles of the inside and outside wheels may be better understood by studying the diagram, where we have marked the inside and outside radius that each of the tires passes through. The Inside Radius (Ri) and the Outside Radius (Ro) are dependent on a number of factors including the car width and the tightness of the corner the car is intended to pass through. Aligning both wheels in the proper direction of travel creates consistent steering without undue wear and heat being generated in either of the tires.
    [Show full text]
  • Design and Fabrication of Shaft Drive for Two Wheelers
    International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Design and Fabrication of Shaft Drive for two Wheelers K.Vinoth Kumar1, Kari Naga Nikhil2, Kakollu Manoj Kumar3, Kaza Sai Sravan4, K.Subha Theja5 1,2,3,4,5Student, Department Of Mechanical Engineering R.M.K College Of Engineering & Technology, Thiruvallur , India 1. Abstract 1.1 Role Of Automobile In Our Day To Day Life In modern world the living status were developed and developing more equipped. The automobile takes a great part in the development, since it plays a major key in daily life while automobile is concern two wheeler i.e.(motor cycles and bike) it plays very important role because it saves the time of traveller by reaching the target place very faster. Although it saves the time, it makes lots of noise by the chain drive and also makes greasy over the parts of the bike by the chain drive lubrication. It leads to lot of maintenance cost. So by keeping maintenance as the main concept in our mind we had planned to do this project. 1.2 Proposed Method A shaft-driven two wheeler is a two wheeler that uses a drive shaft instead of a chain to transmit power from the pedals to the wheel arrangement. Shaft drives were introduced over a century ago, but were mostly supplanted by chain-driven two wheelers due to the gear ranges possible with sprockets and derailleur. Recently, due to advancements in internal gear technology, a small number of modern shaft-driven two wheelers have been introduced. Shaft-driven bikes have a large bevel gear where a conventional bike would have its chain ring.
    [Show full text]
  • Gear Nomenclature
    Nomenclature Gear Gear Nomenclature Racks Bevel Gears Spur Gears B Bevel Gear, Cast Iron S Steel B Pinion, Steel TS Steel, 20° BS Bevel Gear, Steel C Cast Iron BS Pinion, Steel TC Cast Iron, 20° H Hardened Teeth Notes: NM Non-Metallic B steel pinions may run with BS gear of same ratio. R Steel ANY RATIO OTHER THAN 1:1. RA Steel, Heavy Backing Examples: Pinion and driven gear have S620 Steel 6DP 20T 14½°PA TR Steel, 20°, Heavy Backing different number of teeth. R20 Steel, 20°, Wide Face TS620 Steel 6DP 20T 20°PA C660 Cast 6DP 60T 14½°PA Examples: Examples: S620H Steel 6DP 20T Hardened 14½°PA R6X2 14½° STD Backing 6DPX2' Long B1040-2 Cast 10DP 40T 2:1 Ratio NM620 Non-Metallic 6DP 20T 14½°PA RA6X4 14½° Heavy Backing 6DPX4' Long B1020-2 Steel 10DP 20T 2:1 Ratio S612BS1 Steel 6P 12T 1" Bore KW SS TR6X6 20° STD Width 6DPX6' Long BS1040-2 Steel 10DP 40T 2:1 Ratio TS816BS7/8 Steel 8DP 16T 20°PA .875 Bore KW SS R206X6 20° Wide Face 6DPX6' Long BS1020-2 Steel 10DP 20T 2:1 Ratio BS1020-2 Steel 10DP 20T 2:1 Ratio Miter Gears Worm Worm Gear M Miter — Steel Gears W Steel W Worm, Steel A or B Larger Bore (Suffix) WH Steel With Hub WH Worm, Steel w/Hub HM Miter-Hardened Teeth Projection Projection K KW & SS WG Steel Hardened WG Worm, Steel Hardened Ground Threads Ground Threads Notes: WHG Steel Hardened Ground Threads WHG Worm, Steel Hardened ALWAYS 1: 1 RATIO.
    [Show full text]
  • Oscillatory Motion Leadscrews • for Applications Requiring Linear Oscillatory Motion Over a Fixed Path
    © 1994 by Alexander H. Slocum Precision Machine Design Topic 21 Linear motion actuators Purpose: This lecture provides an introduction to the design issues associated with linear power transmission elements. Major topics: • Error sources • Belt drives • Rack and pinion drives •Friction drives • Leadscrews • Linear electric motors "...screw your courage to the sticking-place, And we'll not fail" Shakespeare 21-1 © 1994 by Alexander H. Slocum Error sources: • There are five principal error sources that affect linear actuator' performance: • Form error in the device components. • Component misalignment. • Backlash. • Friction. • Thermal effects • These systems often have long shafts (e.g., ballscrews). • One must be careful of bending frequencies being excited by rotating motors. 21-2 © 1994 by Alexander H. Slocum Belt drives • Used in printers, semiconductor automated material handling systems, robots, etc. • Timing belts will not slip. • Metal belts have greater stiffness, but stress limits life: σ = Et 2ρ • Timing belts will be the actuator of choice for low cost, low stiffness, low force linear motion until: •Linear electric motor cost comes down. • PC based control boards with self-tuning modular algorithms become more prevalent. • To prevent the belts' edges wearing on pulley flanges: • Use side rollers to guide timing belt to prevent wear caused by flanged sheaves: load Guide roller Belt 21-3 © 1994 by Alexander H. Slocum Rack and pinion drives Motor Pinion Rack • One of the least expensive methods of generating linear motion from rotary motion. • Racks can be placed end to end for as great a distance as one can provide a secure base on which to bolt them.
    [Show full text]
  • Slew Driveproduct Catalog Strong Partnershipstrong Partnership IMO Tobeafast, Flexibleandreliable Slewing Equity
    ST 205 US www.goimo.com Slew DriveProduct Catalog Strong Partnership Strong The strong partnership IMO has with Brück GmbH in Saarbrücken for seamless rolled rings and Brück AM in Zamrsk, Czech Rep., for CNC pre-machining, enables IMO to present a line of high performance, high quality Slewing Rings and Slew Drives. Strong Partnership Strong Brück is running five rolling mills with a monthly capacity up to 3,500 tons (7,700,000 lbs)! A strong partnership is created by Brück owners holding a 50 percent stake in IMO’s equity. For you as our customer, this enables IMO to be a fast, flexible and reliable Slewing Ring and Slew Drive manufacturer. Preface & Imprint The innovative business group IMO, with headquarters in Gremsdorf, Germany, has been designing, manufacturing and supplying IMO has developed, manufactured and sold All the information in this catalog has been carefully Slewing Rings and self-contained Slew Drives innovative Slew Drives to global customers for many evaluated and checked. We cannot accept for more than 16 years. IMO currently holds years. responsibility for omissions and errors in this EN ISO 9001:2000 approval and has been publication. certified since 1995. Our range of products is presented in this catalog. IMO, with its modern manufacturing facilities, Our wide range of standard size Slew Drives is manufactures and delivers over 10,000 Ball unique on the market. Published by and Roller Slewing Rings and Slew Drives each IMO Antriebseinheit GmbH year, in diameters up to 204 in. IMO is a globally Special designs are also available, please contact Gewerbepark 16 our Engineering Department for assistance (the 91350 Gremsdorf recognized supplier of Slewing Rings and contact details are on the back of the catalog).
    [Show full text]
  • Analysis of Differential Crown Gear and Pinion for Axle with Different Materials
    ISSN: 2455-2631 © April 2019 IJSDR | Volume 4, Issue 4 Analysis of differential crown gear and pinion for axle with different materials 1Dr. Satypal T. Warghat, 2Dhiraj V. Astonkar, 3Manish P. Bijwe 1Head of Department, 2,3Assistant Professor Department of Mechanical Engineering, Dr. Sau. KamaltaiGawai Institute of Engineering and Technology, Darapur, Tq. Daryapur, Dist. Amravati, Maharashtra 444814 Abstract: The differential can be stated as a gear train used to control the speed and torque to the rear wheels. While taking a turn, the basic requirement of the vehicle is to control the speed of rear wheels so that the vehicle turns smoothly on road surface. The differential mainly consists of three shafts and gear train arrangement. The first shaft is propeller shaft which provides the necessity torque and speed to differential for turn. The other two shafts are axle shafts mounted for each rear wheels. These shafts are attached to propeller shaft by crown gear and pinion arrangement thus making a bevel pair of gears. The two main parts of differential transmission system, one is crown gear which gives allowable speed to turn the vehicle and another is pinion which provides allowable speed and torque for turning the vehicle. Thus, the analysis of such crown gear and pinion makes necessity for strength. The analysis is conducted to verify the best material for the gears in the gear box at high speeds by analyzing von miss stress, deformation and also by considering safety of transmission. The various materials selected for analysis are Grey Cast Iron, Structural Steel, Titanium Alloy and Polyethylene.
    [Show full text]