CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high grade serous carcinoma Josephine Walton1, 2, Julianna Blagih3, Darren Ennis1, Elaine Leung1, Suzanne Dowson1, Malcolm Farquharson1, Laura A. Tookman4, Clare Orange5, Dimitris Athineos3, Susan Mason3, David Stevenson3, Karen Blyth3, Douglas Strathdee3, Frances R. Balkwill2, Karen Vousden3, Michelle Lockley4, Iain A. McNeish1, 4 * 1. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK 2. Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, UK 3. Cancer Research UK Beatson Institute, Glasgow, UK 4. Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK 5. Department of Pathology, Institute of Cancer Sciences, University of Glasgow, UK *: Address for correspondence: Professor Iain McNeish Institute of Cancer Sciences, University of Glasgow Wolfson Wohl Cancer Research Centre Garscube Estate Glasgow G61 1QH UK Tel: +44-141-330-3968 Email:
[email protected] Running title: Novel murine models of ovarian high grade serous carcinoma Keywords: ovarian high grade serous carcinoma; mouse model; ID8; CRISPR/Cas9 gene editing Conflict of interest: The authors have no conflicts of interest to declare Financial support: This work was funded by the University of Glasgow and Cancer Research UK (grants C16420/A12995 [I.A. McNeish], C596/A18076 [K. Vousden], C608/A15973 [I.A. McNeish], C596/A20921 [K. Vousden] and C16420/A16354 [F.R. Balkwill]). Word Count (Introduction, methods, results and discussion): 3852 Total number of figures and tables: 6 Total number of supplementary files: 6 1 Abstract There is a need for transplantable murine models of ovarian high grade serous carcinoma (HGSC) with regard to mutations in the human disease, to assist investigations of the relationships between tumor genotype, chemotherapy response and immune microenvironment.