Reproductive System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reference Sheet 1
MALE SEXUAL SYSTEM 8 7 8 OJ 7 .£l"00\.....• ;:; ::>0\~ <Il '"~IQ)I"->. ~cru::>s ~ 6 5 bladder penis prostate gland 4 scrotum seminal vesicle testicle urethra vas deferens FEMALE SEXUAL SYSTEM 2 1 8 " \ 5 ... - ... j 4 labia \ ""\ bladderFallopian"k. "'"f"";".'''¥'&.tube\'WIT / I cervixt r r' \ \ clitorisurethrauterus 7 \ ~~ ;~f4f~ ~:iJ 3 ovaryvagina / ~ 2 / \ \\"- 9 6 adapted from F.L.A.S.H. Reproductive System Reference Sheet 3: GLOSSARY Anus – The opening in the buttocks from which bowel movements come when a person goes to the bathroom. It is part of the digestive system; it gets rid of body wastes. Buttocks – The medical word for a person’s “bottom” or “rear end.” Cervix – The opening of the uterus into the vagina. Circumcision – An operation to remove the foreskin from the penis. Cowper’s Glands – Glands on either side of the urethra that make a discharge which lines the urethra when a man gets an erection, making it less acid-like to protect the sperm. Clitoris – The part of the female genitals that’s full of nerves and becomes erect. It has a glans and a shaft like the penis, but only its glans is on the out side of the body, and it’s much smaller. Discharge – Liquid. Urine and semen are kinds of discharge, but the word is usually used to describe either the normal wetness of the vagina or the abnormal wetness that may come from an infection in the penis or vagina. Duct – Tube, the fallopian tubes may be called oviducts, because they are the path for an ovum. -
THE PHYSIOLOGY and ECOPHYSIOLOGY of EJACULATION Tropical and Subtropical Agroecosystems, Vol
Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Lucio, R. A.; Cruz, Y.; Pichardo, A. I.; Fuentes-Morales, M. R.; Fuentes-Farias, A.L.; Molina-Cerón, M. L.; Gutiérrez-Ospina, G. THE PHYSIOLOGY AND ECOPHYSIOLOGY OF EJACULATION Tropical and Subtropical Agroecosystems, vol. 15, núm. 1, 2012, pp. S113-S127 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93924484010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 15 (2012) SUP 1: S113 – S127 REVIEW [REVISIÓN] THE PHYSIOLOGY AND ECOPHYSIOLOGY OF EJACULATION [FISIOLOGÍA Y ECOFISIOLOGÍA DE LA EYACULACIÓN] R. A. Lucio1*, Y. Cruz1, A. I. Pichardo2, M. R. Fuentes-Morales1, A.L. Fuentes-Farias3, M. L. Molina-Cerón2 and G. Gutiérrez-Ospina2 1Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala-Puebla km 1.5 s/n, Loma Xicotencatl, 90062, Tlaxcala, Tlax., México. 2Depto. Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., México. 3Laboratorio de Ecofisiologia Animal, Departamento de Fisiologia, Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzicuaro s/n, Colonia Nueva Esperanza 58337, Morelia, Mich., México * Corresponding author ABSTRACT RESUMEN Different studies dealing with ejaculation view this Diferentes estudios enfocados en la eyaculación, process as a part of the male copulatory behavior. -
Fertilisation and Moral Status: a Scientific Perspective
Journal ofmedical ethics, 1987, 13, 173-178 J Med Ethics: first published as 10.1136/jme.13.4.173 on 1 December 1987. Downloaded from Fertilisation and moral status: a scientific perspective Karen Dawson Monash University, Australia Author's abstract begins with a spermatozoon, the male gamete, The debate about the moral status ofthe embryo hasgained penetrating the ovum or female gamete and culminates new impetus because of the advances in reproductive in the mingling of the genetic material from each to technology that have made early human embryo form a single-celled zygote. experimentation a possibility, and because of the public Historically, fertilisation was believed to be possible concern that this arouses. Severalphilosophical arguments only in the uterine or fallopian tubes of the female, claiming that fertilisation is the event that accords moral but recent medical advances resulting in many births status to the embryo were initiallyformulated in the context world-wide, have demonstrated that in vitro of the abortion debate. Were they formulated with fertilisation is also possible (3). Regardless of the sufficientprecision to accountforthe scientificfacts as we location of the process, its biological consequences are now understand them? Or do these arguments need the same: fertilisation restores the diploid chromosome three moralstatus number, enhances genetic variation, results in sex modification?Aspects of argumentsfor copyright. beingacquired atfertilisation are examined in relation to determination and is a necessary prerequisite for current scientific knowledge, highlighting the reasons why embryogenesis to proceed (4). such arguments, atpresent, seem toprovide an inadequate basis for the determination of moral status. Fertilisation and moral status: the arguments examined Advances in reproductive technology have made it technically possible for the early human embryo to be Arguments in support of fertilisation as the time at an experimental subject. -
Gametogenesis: Spermatogenesis & Oogenesis -Structure of Sperm and Egg Fertilization
Gametogenesis: Spermatogenesis & Oogenesis ‐Structure of Sperm and Egg Fertilization ‐ Definition, Mechanism Early development in Frog ‐ Cleavage, Blas tu la, GtlGastrula, DitiDerivatives of Germ layers Vikasana - CET 2012 y Human reproduction y Brief Account of Fertilization: Implantation, Placenta, Role of Gonadotropins and sex hormones , Menstrual cycle. y Fertility Control: Family Planning Methods- y Infertility Control: Meaning, Causes,Treatment y STD: AIDS , Syphilis and Gonorrhea Vikasana - CET 2012 1.Primary Oocyte is a) Haploid (n) b) Diploid (2n) c) Polyploid d) None of the above Vikasana - CET 2012 2.Secondary Oocyte is a) Haploid (n) b) Diploid (2n) c) Polyploid d) None of the above Vikasana - CET 2012 3.Centrioles of sperm control a) Movement of tail b) Hap lo id numb er of ch romosomes c) Help in fertilization d) None of the above. Vikasana - CET 2012 4.The Fertilization membrane is secreted because a) It checks the entry of more sperms after fertilization b) it checks the entry of antigens in ovum c))p it represents the left out tail of the sperm d) it represen tVikasanas the p - l CETasma 2012 mem brane of the sperm 5.Meiosis I occurs in a) Primary spermatocytes b) Secondary spermatocytes c) Both a and b d) Spermatogonia Vikasana - CET 2012 6.Meiosis II occurs in a) Secondary oocyte b))y Primary oocyte c) Spermatogonia d) Oogonia Vikasana - CET 2012 7.Axial filament of sperm is formed by a) Distal centriole b) Prox ima l centitrio le c) Mitochondria d) DNA Vikasana - CET 2012 8.Polar bodies are formed during a) oogenesis -
The Role of Jelly Coats in Sperm-Egg Encounters, Fertilization Success, and Selection on Egg Size in Broadcast Spawners
vol. 157, no. 6 the american naturalist june 2001 The Role of Jelly Coats in Sperm-Egg Encounters, Fertilization Success, and Selection on Egg Size in Broadcast Spawners Gregory S. Farley* and Don R. Levitan† Department of Biological Science, Florida State University, 1996a, 1998b; Coma and Lasker 1997). The proposed mech- Tallahassee, Florida 32306-1100 anism generating this result is simply that larger egg targets are more likely to be struck by swimming sperm (Rothschild Submitted February 2, 2000; Accepted January 19, 2001 and Swann 1949, 1951; Vogel et al. 1982). This finding has generated the hypothesis that sperm availability can influ- ence the evolutionary trade-off between egg size and num- ber (Levitan 1993, 1996a, 1996b, 1998a, 1998b). However, abstract: Sperm limitation may be an important selective force the idea that fertilization kinetics might influence this trade- influencing gamete traits such as egg size. The relatively inexpensive off has been challenged because of the notion that extra- extracellular structures surrounding many marine invertebrate eggs might serve to enhance collision rates without the added cost of cellular structures or chemoattractants may increase sperm- increasing the egg cell. However, despite decades of research, the egg collisions yet may not represent as great a cost to effects of extracellular structures on fertilization have not been con- fecundity as the trade-off associated with increased egg size clusively documented. Here, using the sea urchin Lytechinus varie- (Podolsky and Strathmann 1996; Styan 1998). These con- gatus, we remove jelly coats from eggs, and we quantify sperm col- tradictory ideas have not been resolved because data de- lisions to eggs with jelly coats, eggs without jelly coats, and inert tailing the influence of extracellular materials on fertilization plastic beads. -
Section 6: Sex Cells and Fertilisation
S ection 6: S ex Cells and Fertilisation U se the w ords in the w ord bank below to com plete the sentences below : S maller, vagina, anther, halved, fertilisation, nucleus, male, half, gametes, D N A , stigma, female, ovules, pollen, pollen tube, four, zygote, threadlike, one, identical, genes, amino acids, protein, function, meiosis, sex chromosomes, male S ome plants reproduce sexually. T he sexual parts are inside the flow ers. M ost flow ering plants have flow ers w ith both __ ___ __ and _ ___ __ parts. T hese sexual parts produce special sex cells called _ ____ ___ _. Label the diagram above. T he male part of a flow ering plant is called the ___ ___ ___ _ and produces __ ______. T he female part is called the _ ___ ___ _ and produces ovules. Pollen grains are __ ___ ____ and more numerous than ovules, w hich are larger. Fertilisation in flow ering plants occurs by pollen trains being transferred to the _ ___ ___ _. A _____ ___ __ _____then grow s dow n into the ovary and into an ovule. A male gamete then passes dow n the tube and fuses w ith egg cell. T his process is called 1 __ __________. T he fertilised egg is now called a ___ ___ __. Fertilisation produces variety in the offspring because genetically identical gametes form in different w ays, producing different combinations. S exual Reproduction In H umans Label the follow ing diagrams: 2 In humans, fertilisation takes place in the oviduct. -
Fertilization Selection on Egg and Jelly-Coat Size in the Sand Dollar Dendraster Excentricus
Evolution, 55(12), 2001, pp. 2479±2483 FERTILIZATION SELECTION ON EGG AND JELLY-COAT SIZE IN THE SAND DOLLAR DENDRASTER EXCENTRICUS DON R. LEVITAN1,2 AND STACEY D. IRVINE2 1Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100 2Bam®eld Marine Station, Bam®eld, British Columbia VOR 1B0, Canada Abstract. Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm- egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in ®ve replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly- coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters. -
Module 10: Meiosis and Gametogenesis
PEER-LED TEAM LEARNING INTRODUCTORY BIOLOGY MODULE 10: MEIOSIS AND GAMETOGENESIS JOSEPH G. GRISWOLD, PH.D. City College of New York, CUNY (retired) I. Introduction Most cells in our bodies have nuclei with 46 chromosomes organized in 23 homologous pairs. Because there are two chromosomes of each type, the cells are called diploid and 2N = 46. If mothers and fathers each passed 46 chromosomes to their offspring in reproducing, the children in the new generation would have 92 chromosomes apiece. In the following generation it would be 184. Obviously, the increase does not occur; normal people in each generation have the same 2N = 46. To produce a new individual (a zygote, initially) with 46 chromosomes, an egg and sperm each contribute half the total, or 23, when fertilization occurs. Both sperm and eggs, called gametes, develop from body cells in which the full 46 chromosomes are present. These body cells, located in the testes and ovaries, undergo special cell divisions, which reduce the number of chromosomes in half. The special cell divisions, two for each cell, make up a process called meiosis. Cells that have completed meiosis then differentiate to become gametes. The general objective of this laboratory is to learn how meiosis occurs in forming eggs and sperm to carry genetic information from one generation to the next. B. Benchmarks. 1. Demonstrate an understanding of the terminology of cellular genetic structure using diagrams. 2. Demonstrate the process of meiosis by using models or drawing chromosomes on cell outlines. 3. Compare the processes of mitosis and meiosis by: a. drawing diagrams with explanations of the processes, and b. -
Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer
vol. 165, no. 6 the american naturalist june 2005 Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer Don R. Levitan* Department of Biological Science, Florida State University, a very simple way—the timing of gamete release (Levitan Tallahassee, Florida 32306-1100 1998b). This allows for an investigation of how mating behavior can influence mating success without the com- Submitted October 29, 2004; Accepted February 11, 2005; Electronically published April 4, 2005 plications imposed by variation in adult morphological features, interactions within the female reproductive sys- tem, or post-mating (or pollination) investments that can all influence paternal and maternal success (Arnqvist and Rowe 1995; Havens and Delph 1996; Eberhard 1998). It abstract: Identifying the target of sexual selection in externally also provides an avenue for exploring how the evolution fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex of sexual dimorphism in adult traits may be related to the differences in spawning behavior; males spawn before females. I in- evolutionary transition to internal fertilization. vestigated the consequences of spawning order and time intervals One of the most striking patterns among animals and between male and female spawning in two field experiments. The in particular invertebrate taxa is that, generally, species first involved releasing one female sea urchin’s eggs and one or two that copulate or pseudocopulate exhibit sexual dimor- males’ sperm in discrete puffs from syringes; the second involved phism whereas species that broadcast gametes do not inducing males to spawn at different intervals in situ within a pop- ulation of spawning females. -
Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female. -
Grade 12 Life Science Human Reproduction Notes
KNOWLEDGE AREA: Life Processes in Plants and Animals TOPIC 2.1: Reproduction in Vertebrates Human Reproduction Introduction Structure of Male Reproductive System Structure of Female Reproductive System Main Changes that occur during Puberty Gametogenesis Menstrual Cycle Fertilization and Embryonic Development Implantation and Development Gestation Role of Placenta There are 2 types of reproduction. These are… 1. Sexual and 2. Asexual reproduction We are studying reproduction in humans. Therefore we need to know what is sexual reproduction. Sexual reproduction is reproduction that occurs with the use of gametes. In humans fertilization occurs during sexual reproduction. This means a haploid sperm fuses with a haploid egg to form a diploid zygote. The zygote has 46 chromosomes or 23 pairs of chromosomes therefore it is called diploid. So how many chromosomes does the egg and sperm have? The sperm has 23 chromosomes The egg has 23 chromosomes The zygote then divides by mitosis to produce a large number of identical cells. All the cells have the same number of chromosomes and identical DNA. Some of these cells become differentiated. This means that the cells undergo physical and chemical changes to perform specialized function. Therefore these cells are adapted for their functions. This is how the body parts are formed. Therefore the zygote eventually develops into a fully formed adult. Sexual maturity occur between 11-15. It is known as puberty. During puberty meiosis occurs in the male and female reproductive organs to produce the gametes. Since the gametes are produced by meiosis, each gamete will have a haploid number of chromosomes and each egg or sperm will be genetically different from the other. -
The Protection of the Human Embryo in Vitro
Strasbourg, 19 June 2003 CDBI-CO-GT3 (2003) 13 STEERING COMMITTEE ON BIOETHICS (CDBI) THE PROTECTION OF THE HUMAN EMBRYO IN VITRO Report by the Working Party on the Protection of the Human Embryo and Fetus (CDBI-CO-GT3) Table of contents I. General introduction on the context and objectives of the report ............................................... 3 II. General concepts............................................................................................................................... 4 A. Biology of development ....................................................................................................................... 4 B. Philosophical views on the “nature” and status of the embryo............................................................ 4 C. The protection of the embryo............................................................................................................... 8 D. Commercialisation of the embryo and its parts ................................................................................... 9 E. The destiny of the embryo ................................................................................................................... 9 F. “Freedom of procreation” and instrumentalisation of women............................................................10 III. In vitro fertilisation (IVF).................................................................................................................. 12 A. Presentation of the procedure ...........................................................................................................12