Decembre 2003
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PLAGUE STUDIES * 6. Hosts of the Infection R
Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume. -
Translocations of European Ground Squirrel (Spermophilus Citellus) Along Altitudinal Gradient in Bulgaria – an Overview
A peer-reviewed open-access journal Nature ConservationTranslocations 35: 63–95 of European (2019) ground squirrel (Spermophilus citellus) along altitudinal... 63 doi: 10.3897/natureconservation.35.30911 REVIEW ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria – an overview Yordan Koshev1, Maria Kachamakova1, Simeon Arangelov2, Dimitar Ragyov1 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences; 1, Tzar Osvoboditel blvd.; 1000 Sofia, Bulgaria 2 Balkani Wildlife Society; 93, Evlogy and Hristo Georgievi blvd.; 1000 Sofia, Bulgaria Corresponding author: Yordan Koshev ([email protected]) Academic editor: Gabriel Ortega | Received 31 October 2018 | Accepted 15 May 2019 | Published 20 June 2019 http://zoobank.org/B16DBBA5-1B2C-491A-839B-A76CA3594DB6 Citation: Koshev Y, Kachamakova M, Arangelov S, Ragyov D (2019) Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria – an overview. Nature Conservation 35: 63–95. https://doi. org/10.3897/natureconservation.35.30911 Abstract The European ground squirrel (Spermophilus citellus) is a vulnerable species (IUCN) living in open habi- tats of Central and South-eastern Europe. Translocations (introductions, reintroductions and reinforce- ments) are commonly used as part of the European ground squirrel (EGS) conservation. There are numer- ous publications for such activities carried out in Central Europe, but data from South-eastern Europe, where translocations have also been implemented, are still scarce. The present study summarises the methodologies used in the translocations in Bulgaria and analyses the factors impacting their success. Eight translocations of more than 1730 individuals were performed in the period 2010 to 2018. -
Distribution, Population Size, and Habitat Characteristics of The
sustainability Article Distribution, Population Size, and Habitat Characteristics of the Endangered European Ground Squirrel (Spermophilus citellus, Rodentia, Mammalia) in Its Southernmost Range Dimitra-Lida Rammou 1 , Dimitris Kavroudakis 2 and Dionisios Youlatos 1,* 1 Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; [email protected] 2 Department of Geography, University of the Aegean, GR-81100 Mytilene, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-2310998734 Abstract: The European ground squirrel (Spermophilus citellus) is an endangered species, endemic to Central and Southeastern Europe, inhabiting burrow colonies in grassland and agricultural ecosystems. In recent years, agricultural land-use changes and increased urbanization have largely contributed to a severe population decline across its range, particularly in its southernmost edge. Assessing the population and habitat status of this species is essential for prioritizing appropriate conservation actions. The present study aims to track population size changes and identify habitat characteristics of the species in Greece via a literature search, questionnaires, and fieldwork for assessing trends in population size as well as spatial K-means analysis for estimating its relation to specific habitat attributes. We found that both distribution size (grid number) and colony numbers of Citation: Rammou, D.-L.; the species decreased in the last decades (by 62.4% and 74.6%, respectively). The remaining colonies Kavroudakis, D.; Youlatos, D. are isolated and characterized by low density (mean = 7.4 ± 8.6 ind/ha) and low number of animals Distribution, Population Size, and (mean = 13 ± 16 individuals). Most of the colonies are situated in lowlands and did not relate to Habitat Characteristics of the specific habitat attributes. -
Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale. -
Anatomical Correlates to Scratch Digging in the Forelimb of European Ground Squirrels (Spermophilus Citellus)
Journal of Mammalogy, 87(3):563–570, 2006 ANATOMICAL CORRELATES TO SCRATCH DIGGING IN THE FORELIMB OF EUROPEAN GROUND SQUIRRELS (SPERMOPHILUS CITELLUS) ANNA LAGARIA AND DIONISIOS YOULATOS* Aristotle University of Thessaloniki, School of Biology, Department of Zoology, GR-54124 Thessaloniki, Greece In northern Greece, European ground squirrels or sousliks (Spermophilus citellus) construct complex burrow systems by scratch-digging behavior. The present study investigated the presence of anatomical characters related to digging in the forelimb of S. citellus. The forelimb of 3 preserved specimens was dissected and several qual- itative and quantitative variables on selected muscles were collected. In addition, selected osteological variables and indices were calculated in a sample of 207 sciurid postcrania representing 14 burrowing and nonburrowing genera. Both analyses showed that the forelimb of S. citellus was characterized by enlarged and powerful shoul- der retractors, well-developed arm retractors with distal insertions upon a relatively robust humerus, enlarged elbow extensors associated with a long olecranon, and dominant pronators and carpal and digital flexors. Similar morphology is also encountered in other semifossorial mammals, indicating significant adaptations to scratch- digging behavior. However, the characters examined designate a more compromised morphology, associated with the generalized postcranium of sciurids. On the other hand, S. citellus exhibits a more specialized forelimb morphology, compared to that of other marmotines, for a semifossorial way of life, in association with the sub- generic derived morphology, lack of social interactions, and exploitation of a habitat with harder soils. Key words: forelimb, muscles, osteology, scratch digging, Spermophilus citellus Many mammals are active aboveground and yet are likewise extended forearm at the elbow joint, and a flexed or sta- highly adapted to dig. -
Action Plan for the Conservation of the Danube
Action Plan for the Conservation of the European Ground Squirrel Spermophilus citellus in the European Union EUROPEAN COMMISSION, 2013 1. Compilers: Milan Janák (Daphne/N2K Group, Slovakia), Pavel Marhoul (Daphne/N2K Group, Czech Republic) & Jan Matějů (Czech Republic). 2. List of contributors Michal Adamec, State Nature Conservancy of the Slovak Republic, Slovakia Michal Ambros, State Nature Conservancy of the Slovak Republic, Slovakia Alexandru Iftime, Natural History Museum „Grigore Antipa”, Romania Barbara Herzig, Säugetiersammlung, Naturhistorisches Museum Vienna, Austria Ilse Hoffmann, University of Vienna, Austria Andrzej Kepel, Polish Society for Nature Conservation ”Salamandra”, Poland Yordan Koshev, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Science, Bulgaria Denisa Lőbbová, Poznaj a chráň, Slovakia Mirna Mazija, Oikon d.o.o.Institut za primijenjenu ekologiju, Croatia Olivér Váczi, Ministry of Rural Development, Department of Nature Conservation, Hungary Jitka Větrovcová, Nature Conservation Agency of the Czech Republic, Czech Republic Dionisios Youlatos, Aristotle University of Thessaloniki, Greece 3. Lifespan of plan/Reviews 2013 - 2023 4. Recommended citation including ISBN Janák M., Marhoul P., Matějů J. 2013. Action Plan for the Conservation of the European Ground Squirrel Spermophilus citellus in the European Union. European Commission. ©2013 European Communities Reproduction is authorised provided the source is acknowledged Cover photo: Michal Ambros Acknowledgements for help and support: Ervín -
Familia Sciuridae 1
CATÁLOGO ESPAÑOL DE ESPECIES EXÓTICAS INVASORAS Familia Sciuridae SCI/EEI/MA014 Hemprich, 1820 Castellano: Ardillas, marmotas, perros de las praderas, etc. Nombre vulgar Catalán. --: Euskera: -- Grupo taxonómico: Fauna Phylum: Chordata Clase: Mammalia Orden: Rodentia Familia: Sciuridae Subfamilia Sciurinae Subfamila Pteromynae Según Integrated Taxonomic Information System ITIS http://www.itis.gov/ Subfamilia Sciurinae Ammospermophilus Merriam, 1892 Paraxerus Forsyth Major, 1893 Atlantoxerus Forsyth Major, 1893 Prosciurillus Ellerman, 1947 Callosciurus Gray, 1867 Protoxerus Forsyth Major, 1893 Cynomys Rafinesque, 1817 Ratufa Gray, 1867 Dremomys Heude, 1898 Rheithrosciurus Gray, 1867 Posición taxonómica Epixerus Thomas, 1909 Rhinosciurus Blyth, 1856 Exilisciurus Moore, 1958 Rubrisciurus Ellerman, 1954 Funambulus Lesson, 1835 Sciurillus Thomas, 1914 Funisciurus Trouessart, 1880 Sciurotamias Miller, 1901 Glyphotes Thomas, 1898 Sciurus Linnaeus, 1758 Heliosciurus Trouessart, 1880 Spermophilopsis Blasius, 1884 Hyosciurus Archbold and Tate, 1935 Spermophilus F. Cuvier, 1825 Lariscus Thomas and Wroughton, 1909 Sundasciurus Moore, 1958 Marmota Blumenbach, 1779 Syntheosciurus Bangs, 1902 Menetes Thomas, 1908 Tamias Illiger, 1811 Microsciurus J. A. Allen, 1895 Tamiasciurus Trouessart, 1880 Myosciurus Thomas, 1909 Tamiops J. A. Allen, 1906 Nannosciurus Trouessart, 1880 Xerus Hemprich and Ehrenberg, 1833 Subfamila Pteromynae Aeretes G. M. Allen, 1940 Iomys Thomas, 1908 Aeromys Robinson and Kloss, 1915 Petaurillus Thomas, 1908 Belomys Thomas, 1908 -
Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A. Martin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DENTAL ADAPTATION IN MURINE RODENTS (MURIDAE): ASSESSING MECHANICAL PREDICTIONS By STEPHANIE A. MARTIN A Thesis in press to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2010 Copyright©2010 Stephanie A. Martin All Rights Reserved The members of the committee approve the thesis of Stephanie A. Martin defended on March 22, 2010. ______________________ Scott J. Steppan Professor Directing Thesis _____________________ Gregory Erickson Committee Member _____________________ William Parker Committee Member Approved: __________________________________________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above-named committee members. ii TABLE OF CONTENTS List of Tables......................................................................................................................iv List of Figures......................................................................................................................v Abstract...............................................................................................................................vi -
Sciurid Phylogeny and the Paraphyly of Holarctic Ground Squirrels (Spermophilus)
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 31 (2004) 1015–1030 www.elsevier.com/locate/ympev Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus) Matthew D. Herron, Todd A. Castoe, and Christopher L. Parkinson* Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2368, USA Received 26 May 2003; revised 11 September 2003 Abstract The squirrel family, Sciuridae, is one of the largest and most widely dispersed families of mammals. In spite of the wide dis- tribution and conspicuousness of this group, phylogenetic relationships remain poorly understood. We used DNA sequence data from the mitochondrial cytochrome b gene of 114 species in 21 genera to infer phylogenetic relationships among sciurids based on maximum parsimony and Bayesian phylogenetic methods. Although we evaluated more complex alternative models of nucleotide substitution to reconstruct Bayesian phylogenies, none provided a better fit to the data than the GTR + G + I model. We used the reconstructed phylogenies to evaluate the current taxonomy of the Sciuridae. At essentially all levels of relationships, we found the phylogeny of squirrels to be in substantial conflict with the current taxonomy. At the highest level, the flying squirrels do not represent a basal divergence, and the current division of Sciuridae into two subfamilies is therefore not phylogenetically informative. At the tribal level, the Neotropical pygmy squirrel, Sciurillus, represents a basal divergence and is not closely related to the other members of the tribe Sciurini. At the genus level, the sciurine genus Sciurus is paraphyletic with respect to the dwarf squirrels (Microsciurus), and the Holarctic ground squirrels (Spermophilus) are paraphyletic with respect to antelope squirrels (Ammosper- mophilus), prairie dogs (Cynomys), and marmots (Marmota). -
Thallomys Shortridgei – Shortridge's
Thallomys shortridgei – Shortridge’s Rat Assessment Rationale Thallomys shortridgei is listed as Data Deficient due to the lack of information detailing its taxonomic status, population trends, habitat requirements and current threats. This species may qualify for Vulnerable under the Photograph B criterion as its extent of occurrence is estimated to be < 20,000 km2. Despite recent field surveys, there are no wanted current occurrence data, which may be a cause for concern. It is recommended that further field surveys are conducted to verify the continued existence, geographical extent and validity of the species. Distribution Shortridge’s Rat has only been recorded in South Africa Regional Red List status (2016) Data Deficient (Nel 2013), where it has been collected from the south National Red List status (2004) Not Evaluated bank of the Orange (Gariep) River in the Northern Cape. Its current recognised range extends from Upington Reasons for change Non-genuine change: westwards to Goodhouse (Skinner & Chimimba 2005; Nel Taxonomic revision 2013), but it has only been identified from a few dispersed Global Red List status (2008) Data Deficient localities (Monadjem et al. 2015). Although a degree of uncertainty remains, T. shortridgei and T. nigricauda are TOPS listing (NEMBA) (2007) None considered by some to be allopatric, with distributions CITES listing None divided by the Orange River (Monadjem et al. 2015). The estimated extent of occurrence using a minimum convex Endemic Yes polygon based on existing records is 2,872 km2. Despite intensive trapping effort in and around its identified localities, this Population taxonomically-unresolved species remains The population abundance of this species is unknown elusive and has not been recently trapped (N. -
A Molecular Phylogenetic Analysis
Mesoamerican tree squirrels evolution (Rodentia: Sciuridae): a molecular phylogenetic analysis Federico Villalobos1,2* & Gustavo Gutierrez-Espeleta3 1. Laboratorio de Genética Evolutiva, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica. 2. Programa de Doctorado en Ciencias, Facultad de Ciencias, Universidad de Costa Rica, San José, Costa Rica; [email protected] 3. Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica; [email protected] * Correspondence Received 22-VII-2013. Corrected 13-I-2014. Accepted 23-I-2014. Abstract: The tribe Sciurini comprehends the genera Sciurus, Syntheosiurus, Microsciurus, Tamiasciurus and Rheinthrosciurus. The phylogenetic relationships within Sciurus have been only partially done, and the relation- ship between Mesoamerican species remains unsolved. The phylogenetic relationships of the Mesoamerican tree squirrels were examined using molecular data. Sequence data publicly available (12S, 16S, CYTB mitochondrial genes and IRBP nuclear gene) and cytochrome B gene sequences of four previously not sampled Mesoamerican Sciurus species were analyzed under a Bayesian multispecies coalescence model. Phylogenetic analysis of the multilocus data set showed the neotropical tree squirrels as a monophyletic clade. The genus Sciurus was para- phyletic due to the inclusion of Microsciurus species (M. alfari and M. flaviventer). The South American species S. aestuans and S. stramineus showed a sister taxa relationship. Single locus analysis based on the most compact and complete data set (i.e. CYTB gene sequences), supported the monophyly of the South American species and recovered a Mesoamerican clade including S. aureogaster, S. granatensis and S. variegatoides. These results corroborated previous findings based on cladistic analysis of cranial and post-cranial characters. -
Catherine Ovens B.Sc
KINSHIP AND USE OF UNDERGROUND SPACE BY ADULT FEMALE RICHARDSON’S GROUND SQUIRRELS (UROCITELLUS RICHARDSONII) Catherine Ovens B.Sc. Zoology, University of Guelph, 2006 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Biological Sciences University of Lethbridge Lethbridge, Alberta, Canada March 3, 2011 © Catherine Ovens, 2011 Dedication To all the strong, independent, and amazing women in my life who have influenced me in every way possible. Thank you. iii Abstract Although female Richardson’s ground squirrels (Urocitellus richardsonii) spend 80% of their lives sleeping and hibernating underground, studies on interactions and space-use have historically focused on the 20% of the time they spend aboveground. The type and frequency of aboveground interactions and degree of home-range overlap among female Richardson’s ground squirrels depend on their reproductive status and degree of kinship. The purpose of my study was to determine whether reproductive status and kinship influence underground sharing of space as well. I radio-collared 54 adult female Richardson’s ground squirrels (18 in 2008, 30 in 2009, and 6 in both years) of known maternal kinship in 5 spatially adjacent matrilines at a field site near Picture Butte, Alberta, Canada. Radio-collared females were located underground every evening after they retired and every morning before they emerged during both the 2008 and 2009 active seasons to determine sleep-site use and sleep-site sharing. The locations at which females were observed to retire in the evening (170 evenings) and emerge in the morning (141 mornings) in 2008 and 2009 were used to determine underground connections between surface entrances and underground sleep sites.