Proposal, Analysis and Experimental Verification of Nonisolated Dc-Dc Converters Conceived from an Active Switched-Capacitor Commutation Cell

Total Page:16

File Type:pdf, Size:1020Kb

Proposal, Analysis and Experimental Verification of Nonisolated Dc-Dc Converters Conceived from an Active Switched-Capacitor Commutation Cell PROPOSAL, ANALYSIS AND EXPERIMENTAL VERIFICATION OF NONISOLATED DC-DC CONVERTERS CONCEIVED FROM AN ACTIVE SWITCHED-CAPACITOR COMMUTATION CELL Mauricio Dalla Vecchia1, Jéssika Melo de Andrade2, Neilor Colombo Dal Pont2, André Luís Kirsten2 Proposal, Analysis and Experimental Verifi cation of Nonisolated 2DC-DC Converters Telles Brunelli Lazzarin Conceived from an Active1 EnergyVille, Switched-Capacitor KU Leuven, Commutation Kasteelpark Arenberg Cell 10, Heverlee, Belgium Mauricio Dalla2 Department Vecchia, of Jéssika Electrical Melo Engineering, de Andrade, Federal Neilor University Colombo of Santa Dal Catarina, Pont, Florianopolis André - SC, Brazil Luís Kirsten,e-mail: m.dallavecchia90@ Telles Brunelli Lazzaringmail.com; [email protected]; [email protected]; [email protected] [email protected] Abstract – This paper introduces a new family of impedance source circuit [3], [17], [18], series and parallel nonisolated dc-dc converters that are generated by the connections [19], [20], ladder [12], [14] and stacked integration of the active switched-capacitor (ASCC) and connection [21]–[23] have provided alternative ways to the conventional commutation cell (CCC). Based on the obtain high gain, but all of them use a higher number of commutation cell concept, the new conceived hybrid components. active commutation cell (HACC) provides three different The switched capacitor (SC) principle is one way to types of hybrid converters: buck, boost and buck-boost. multiply or divide dc voltage. The SC converters are applied All three converters are investigated in this study in boost topologies [10], [24], [25] as well as in buck through the following approaches: topological stages, topologies [26]. They are capable of supplying a high static gain analysis considering the switched - capacitor conversion ratio and they are magneticless topologies. features, generalization of the HACC and gain for M cells Almost all the structures have good voltage stress sharing and steady-state analysis. The buck version presents a across components and, when they are properly designed, high conversion rate, which demonstrates that it has they can provide high efficiency, high power density and low potential for step-down applications. To verify the weight [27]. However, the output voltage regulation is not as proposed topologies, a prototype was built with the easy as in a conventional converter and this represents a following specifications: 600 V input voltage, 150 V challenge in the design of SC converters. Many authors have output voltage, 70 kHz switching frequency and 1 kW addressed this issue in the literature [10], [26]. rated power. Efficiency close to 95% was obtained at On the other hand, the conventional converters present 1 kW for the buck topology, which demonstrates that the good output voltage regulation, but are not capable of proposed HACC can provide gain and high efficiency at providing a high conversion ratio. Hence, the integration the same time. between SC and conventional circuits could allow the combination of the advantages of the two groups of Keywords – Active Switched-Capacitor Cell, converters while overcoming the drawbacks [7], [11], [26]. Commutation Cell Concept, Experimental Results. This new family of converters is referred to in the literature as hybrid converters. I. INTRODUCTION In general, SC cells are integrated with conventional converters to generate new topologies [7], [11], [28]-[30]. The recent growth in the development and use of HVDC However, this concept was approached in relation to transmission systems, DC distributed systems, DC smart commutation cell, and a passive ladder SC cell was grids, electrical vehicles, energy storage systems, renewable integrated with conventional commutation cell [11]. The new sources, and telecommunication systems has enhanced the converters are analyzed through the commutation cell. need for new solutions for dc-dc conversion. This scenario In this context, this paper proposes a hybrid active brings new applications for dc-dc converters and challenges commutation cell (HACC) generated through the integration associated with managing the energy flow in these systems. of the active switched-capacitor cell (ASCC) and the More specifically, the current challenge in relation to dc- conventional commutation cell (CCC). The proposed cell dc conversion is to offer a high conversion ratio without generate three hybrid converters of different types: hybrid isolation, for step-up or step-down applications. The isolated buck, hybrid boost and hybrid buck-boost. These structures converters use the transformer turns ratio value to provide present modified static gain in relation to [11] and the gain. However, the transformer is a bulky component and conventional converters. Hence, they have advantages that when a high gain is required the intrinsic parameters become can be used in certain applications and thus, they can expand significant and this offsets its benefits [1], [2]. Recently, the range of applications of hybrid converters. A preliminary topologies based on switched-inductor [3]–[8], switched- study just about buck topology was presented in [31], in capacitor [3], [6]–[14], coupled inductor [3], [15], [16], which the topology was approached without considering the commutation cell principle. Manuscript received 24/04/2019; first revision 29/06/2019; accepted for The paper is divided as follows: firstly, the way in which publication 05/09/2019, by recommendation of Editor Marcello Mezaroba. the ASCC was integrated with the CCC is described and the http://dx.doi.org/10.18618/REP.2019.4.0031 Eletrôn. Potên., Joinville, v. 24, n. 4, p. 403-412, out./dez. 2019 403 new converters generated by this combination are presented. Subsequently, a theoretical analysis of the hybrid buck A similar approach was proposed in [11], where a hybrid topology is shown, addressing the main characteristics of the commutation cell was derived from a passive switched- topology. Finally, experimental results are presented to capacitor cell (implemented only with diodes). The two validate the proposed topologies. commutation cells are similar, with the ladder configuration and the same number of semiconductors, however, the II. INTEGRATION OF AN ACTIVE SWITCH proposed HACC uses three active and one passive switch CAPACITOR CELL WITH THE CONVENTIONAL while the commutation cell in [11] employs one active and DC-DC CELL three passive switches. Additionally, the converters generated by the integration of an active and a passive cells The conventional dc-dc cell (see Figure 1.a) is employed present different static gains, different topological stages and to generate the buck, boost and buck-boost classical are suitable for different applications, as will be presented converters. The ladder SC cell is used to provide step-up or and discussed in greater detail in Section III and IV. step-down circuits, where the gain can be increased by One of the advantages of SC circuits is that more SC cells adding more cells in a ladder connection [32]. This („M‟ cells) can be used to increase the conversion rate, as implementation can use passive (diodes) or active shown in Figure 3. This figure present the generalized hybrid (MOSFET, IGBT, SIC, GAN) switches. The cell proposed dc-dc buck converter, which can provide a high step-down herein is generated connecting the CCC (Figure 1.a) and the gain. The generalized boost and buck-boost topologies can ASCC (Figure 1.b) in a ladder configuration. To generate the be also obtained, following the input and output connections shown in Table I. The ladder configuration has the advantage proposed HACC (Figure 1.c), the terminals n1 and c1 of the that the voltage stress on the power components are equally CCC are connected, respectively, with the terminals b2 and a2 of the ASCC, as shown in Figures 1.a, 1.b and 1.c. The divided and clamped by the switched capacitors, thus when more SC cells are added the gain will increase but the HACC employs three switches (S1, S2 and S3), one diode voltage stress will remain constant. (D1), three capacitors (C1, C2 and C3) and one inductor (L). The resultant cell has three terminals, labelled „a‟, „b‟ and „c‟, in which the input dc-dc source and the output load are TABLE I connected. Connections Used to Generate the Three Proposed Conventional Active Switched dc-dc Converters Hybrid DC-DC Cell DC-DC Cell Capacitor Cell Terminals connected c Converter c1 Input Output c2 S 1 H-buck ca ba S S C 1 1 H-boost bc ac L n2 S n1 b1 2 C C1 C3 H-buck-boost cb ba S2 S3 L C3 D1 C2 b a2 D1 c a1 b2 a (a) (b) (c) S1 VIN Fig. 1. (a) Conventional dc-dc cell (CCC); (b) active switched- C M+1 1 capacitor cell (ASCC), and; (c) hybrid dc-dc cell (HACC). S2 C3 The topologies derived from the HACC have the input and cell 1 output connections described in Table I. With these connections, a family of three new nonisolated dc-dc Sy-2 converters is generated, as is shown in Figures 2.a, 2.b and VIN VIN Cx-2 M+1 2.c. The topologies are named as follows: hybrid dc-dc buck Sy-1 converter (Figure 2.a), hybrid dc-dc boost converter Cx cell „M‟ (Figure 2.b) and hybrid dc-dc buck-boost converter Sy L b VIN Cx-1 (Figure 2.c). It should be highlighted that the names buck, M+1 boost and buck-boost are used in relation to the connections D1 Co Ro Vo between input and output stages and do not necessarily a reflect the gain characteristics of the structures. Fig. 3. Generalization of the switched-capacitor cell for the c c c proposed hybrid dc-dc buck converter. S1 S1 S1 C1 C1 C1 VIN VIN S2 S2 S2 C Vo C III. THEORETICAL ANALYSIS OF THE BUCK VIN 3 3 C3 S3 L S L S3 L TOPOLOGY b 3 b b C2 C2 C2 D D D 1 Vo 1 1 Vo This section presents the theoretical analysis for the buck a a a converter (Figure 2.a), which is then extended to the boost (a) (b) (c) Fig.
Recommended publications
  • Flying-Capacitor-Based Chopper Circuit for DC Capacitor Voltage Balancing in Diode-Clamped Multilevel Inverter
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland University of Technology ePrints Archive IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 7, JULY 2010 2249 Flying-Capacitor-Based Chopper Circuit for DC Capacitor Voltage Balancing in Diode-Clamped Multilevel Inverter Anshuman Shukla, Member, IEEE, Arindam Ghosh, Fellow, IEEE, and Avinash Joshi Abstract—This paper proposes a flying-capacitor-based chop- causing a violation in the safe operating limits leading to in- per circuit for dc capacitor voltage equalization in diode-clamped verter malfunctioning. Therefore, balancing of the dc capacitor multilevel inverters. Its important features are reduced voltage voltages is required under all conditions, which determines both stress across the chopper switches, possible reduction in the chop- per switching frequency, improved reliability, and ride-through the safety and efficiency of DCMLIs [1]–[3]. capability enhancement. This topology is analyzed using three- Two possible solutions of the voltage imbalance problem and four-level flying-capacitor-based chopper circuit configu- exist: 1) installing of voltage-balancing circuits on the dc side rations. These configurations are different in capacitor and of the inverter [8]–[16], [23]–[25] and 2) modifying the con- semiconductor device count and correspondingly reduce the de- verter switching pattern according to a control strategy [17], vice voltage stresses by half and one-third, respectively. The de- [18], [26]–[38]. The latter is definitely preferable in terms of tailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the cost, as the former requires additional circuits and power hard- available chopper switch states, the dc-link capacitor voltages can ware, which add to the system cost and complexity.
    [Show full text]
  • A New Family of Soft-Switching DC-DC PWM Converters Using a True ZCZVT Commutation Cell
    A New Family of Soft-Switching DC-DC PWM Converters Using a True ZCZVT Commutation Cell Hélio L. Hey and Carlos M. de O. Stein Federal University of Santa Maria UFSM - CT - DELC 97105-900 - Santa Maria - RS - BRAZIL [email protected] Abstract – In this paper is introduced a new family of DC-DC II. A FAMILY OF DC-DC ZCZVT PWM CONVERTERS PWM converters using a true Zero Current and Zero Voltage Transition (ZCZVT) commutation cell. The soft-switching A. Common Equivalent Circuit of DC-DC PWM Converters technique utilized provides Zero Current Switching (ZCS) and An common equivalent circuit of DC-DC converters was Zero Voltage Switching (ZVS) simultaneously, at both turn-on proposed in [9] and it is shown in Fig. 1.a. It represents all and turn-off of the main switch and ZVS for the main diode. The types of non isolated DC-DC converters, which are obtained family of ZCZVT PWM converters is obtained from an common by connection of the input (Vi) and output (Vo) voltage equivalent circuit of ZCZVT PWM converters and the ZCZVT sources and the smoothing capacitor C, when it exists. The PWM boost converter is analyzed, simulated and implemented. connection scheme of these elements is shown in Fig. 1.b. In It is demonstrated the construction of state-plane diagram, which is obtained by using a proper state variable the case of buck, boost and buck-boost converters, where the transformation. Based on the commutation analysis and the c terminal is not connected, the L1 inductor can be suppress.
    [Show full text]
  • Power and Industrial Electronics – Vol
    CIRCUITS AND SYSTEMS - Power and Industrial Electronics – Vol. II - Jean-Christophe Crébier and Nicolas Rouger POWER AND INDUSTRIAL ELECTRONICS Jean-Christophe Crébier and Nicolas Rouger, CNRS, Grenoble Electrical Engineering Lab, Grenoble, France Keywords : Power electronics, switch mode power supplies, power converter control, power conditioning, electromagnetic interferences, electromagnetic compatibility, active and passive devices, pulse width modulation, modeling and analysis, electrical transportation, topologies, integration, technologies. Contents 1. Power electronics principles and specificities. 1.1. Introduction (Electrical Energy Conditioning at Highest Efficiency Levels) 1.2. Operating Principles (Switching and Filtering) 1.3. Main Conversion Techniques and Topologies (DC/DC, AC/DC…) 1.4. Power Converter Environment (Electrical and Physical) 2. Power transfer control techniques 2.1. Introduction to Power Transfer Control Techniques 2.2. Control Methods and Dynamic Modeling of Power Converters 2.3. Application of Different Regulation Techniques 2.4. Discussion 3. Trends in power electronics 3.1. Materials and devices (active and passive) 3.2. Integration, Packaging and Technologies 3.3. Dedicated Tools, and Designs Methodologies 4. Conclusion Glossary Bibliography Biographical Sketches Summary Power electronics is intended as a solution for a better use of electrical energy, acting as an optimal "adaptor" between the various electrical production sources and the numerous electrical loads. Power electronics aim is to regulate and conditioning power flow under high efficiency levels, trying to minimize power consumption and trying to maximize power production. This chapter is intended to introduce what is power electronics, its operating principle, its construction and evolution, how it is implemented and where and when it is used. It gives a basic overview of related main topics, trying to give an overview of its wide and pluridisciplinary fields of interests.
    [Show full text]
  • High Voltage Choppers and Voltage-Source Inverters
    MULTI-LEVEL CONVERSION: HIGH VOLTAGE CHOPPERS AND VOLTAGE-SOURCE INVERTERS T.A. MEYNARD, H. FOCH LABORATOIRE DELECIROTECHNIQUE ET DELECTRONIQUE INDUSTRIELLE Unit6 Assmi& au C.N.R.S NO847 2 ruc Camiche.1 3 107 1 TOULOUSE Cedex FRANCE Voltage sharing KEY-WORDS Static and dynamic sharing of the voltage across the switches Static converters, high voltage, high frequency, series is quite difficult to obtain and requires specific techniques: connection of semiconductors, multilevel converters. - static balancing can be simply achieved by connecting large resistors in parallel with each switch, - dynamic balancing is a more serious problem. The designer ABSTRACT must make sure that all the switches commutate at the very same This paper is focused on high voltage power conversion. instant: otherwise the switch that turns off first (or that turns on Conventional series connection and three-level voltage source last) would have to sustain all of the voltage. inverter techniques are reviewed and compared. A new versatile multilevel commutation cell is introduced; it is shown that this Control new topology is safer, more simple to control, and delivers In most cases, synchronizing the switchings, cannot be purer output waveforms. The authors show how this technique obtained by simply synchronizing the control signals; selecting can be applied to either choppers or voltage-source inverters and semiconductors with paired turn-on and turn-off delays or using generalized to any number of switches. control circuits capable of compensating for the turn-on and turn-off delays is generally required. INTRODUCTION dV/dt In the field of High Voltage Power Conversion, the circuit With this technique, everything is done to contrive all the designer is often confronted to a serious problem: there are no switches to commutate at the same time.
    [Show full text]
  • Power Converters: Definitions, Classification and Converter Topologies
    Power converters: definitions, classification and converter topologies F. Bordry CERN, Geneva, Switzerland Abstract This paper introduces power conversion principles and defines the terminology. The concepts of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the notions of commutation cell and soft commutation are introduced and discussed. 1 Introduction The task of a power converter is to process and control the flow of electric energy by supplying voltages and currents in a form that is optimally suited for the user loads. Energy was initially converted in electromechanical converters (mostly rotating machines). Today, with the development and the mass production of power semiconductors, static power converters find applications in numerous domains and especially in particle accelerators. They are smaller and lighter and their static and dynamic performances are better. A static converter is a meshed network of electrical components that acts as a linking, adapting or transforming stage between two sources, generally between a generator and a load (Fig. 1). Fig. 1: Power converter definition An ideal static converter controls the flow of power between the two sources with 100% efficiency. Power converter design aims at improving the efficiency. But in a first approach and to define basic topologies, it is interesting to assume that no loss occurs in the converter process of a power converter. With this hypothesis, the basic elements are of two types: – non-linear elements, mainly electronic switches: semiconductors used in commutation mode [1]; – linear reactive elements: capacitors, inductances and mutual inductances or transformers.
    [Show full text]
  • A True ZCZVT Commutation Cell for PWM Converters Carlos Marcelo De Oliveira Stein, Student Member, IEEE, and Hélio Leaes Hey, Member, IEEE
    IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 15, NO. 1, JANUARY 2000 185 A True ZCZVT Commutation Cell for PWM Converters Carlos Marcelo de Oliveira Stein, Student Member, IEEE, and Hélio Leaes Hey, Member, IEEE Abstract—This paper introduces a true zero-current and disadvantages as mentioned in [7] and [22]. Recently, an zero-voltage transition (ZCZVT) commutation cell for dc–dc improved ZCT technique was presented in [22]. In this pro- pulsewidth modulation (PWM) converters operating with an posal, all switches commutates under soft switching. How- input voltage less than half the output voltage. It provides zero-current switching (ZCS) and zero-voltage switching (ZVS) ever, the main switch and the main diode have a high peak simultaneously, at both turn on and turn off of the main switch current stresses. and ZVS for the main diode. The proposed soft-switching The aim of this paper is to introduce a true zero-current and technique is suitable for both minority and majority carrier zero-voltage transition (ZCZVT) commutation cell for dc–dc semiconductor devices and can be implemented in several dc–dc PWM converters. The commutation cell provides ZCS and ZVS PWM converters. The ZCZVT commutation cell is placed out of the power path, and, therefore, there are no voltage stresses on simultaneously, at both turn on and turn off of the main switches power semiconductor devices. The commutation cell consists of a and ZVS for the main diodes. few auxiliary devices, rated at low power, and it is only activated The proposed soft-switching technique is suitable for both during the main switch commutations.
    [Show full text]
  • A Mixed Modeling Approach for Efficient Simulation of PWM
    This article Downloadedhas been accepted from for publicationhttp://iranpaper.ir in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2019.2891174, IEEE http://www.itrans24.com/landing1.html Transactions on Power Electronics IEEE TRANSACTIONS ON POWER ELECTRONICS A Mixed Modeling Approach for Efficient Simulation of PWM Switching Mode Power Supplies. Gustavo Migoni, CIFASIS-UNR, Monica Romero, CIFASIS-UNR, Federico Bergero, CIFASIS-UNR, and Ernesto Kofman, CIFASIS-UNR Abstract—This work introduces a novel modeling approach Although the mentioned approaches can help to reduce that allows to obtain fast simulations of PWM DC–DC Switched computational costs, there are several situations that require Mode Power Supplies (SMPS). The proposed methodology com- the simulation of several hours or days of evolution what bines the use of precise switched models during transient evolu- tions and averaged models during steady state or slowly varying would lead to unacceptable simulation times. To avoid these conditions. In that way, the resulting mixed modeling approach problems, the precise switched models are usually replaced enables to obtain the detailed switching behavior of SMPS in by averaged models that do not contain discontinuities [9], the context of long term simulations. The commutation between [10], [11]. These models can be simulated very fast, but at models is automatically performed in runtime by an algorithm the expense of sacrificing detail (like voltage and current that detects the transient or slowly varying condition according to the evolution of some model variables. When the precise switched ripple).
    [Show full text]
  • Switched-Mode Converters (One Quadrant)
    Switched-mode converters (one quadrant) P. Barrade EPFL, Lausanne, Switzerland Abstract Switched-mode converters are DC/DC converters that supply DC loads with a regulated output voltage, and protection against overcurrents and short circuits. These converters are generally fed from an AC network via a transformer and a conventional diode rectifier. Switched-mode converters (one quadrant) are non-reversible converters that allow the feeding of a DC load with unipolar voltage and current. The switched-mode converters presented in this contribu- tion are classified into two families. The first is dedicated to the basic topolo- gies of DC/DC converters, generally used for low- to mid-power applications. As such structures enable only hard commutation processes, the main draw- back of such topologies is high commutation losses. A typical multichannel evolution is presented that allows an interesting decrease in these losses. De- duced from this direct DC/DC converter, an evolution is also presented that allows the integration of a transformer into the buck and the buck–boost struc- ture. This enables an interesting voltage adaptation, together with a galvanic isolation directly integrated into the converter. The second family is related to DC/DC converters with an intermediary AC stage. Such structures include middle-frequency transformers as described above, and offer reduced commu- tation losses thanks to natural soft commutation conditions, sometimes rein- forced by the insertion of LC components or active devices. This allows high switching frequencies, and then a reduction of the size and weight of such applications. 1 Introduction Switched-mode converters are DC/DC converters, dedicated to the supply of DC loads with a regulated output voltage and protections against overcurrents and short circuits.
    [Show full text]
  • A Mixed Modeling Approach for Efficient Simulation of PWM
    IEEE TRANSACTIONS ON POWER ELECTRONICS A Mixed Modeling Approach for Efficient Simulation of PWM Switching Mode Power Supplies. Gustavo Migoni, CIFASIS-UNR, Monica Romero, CIFASIS-UNR, Federico Bergero, CIFASIS-UNR, and Ernesto Kofman, CIFASIS-UNR Abstract—This work introduces a novel modeling approach Although the mentioned approaches can help to reduce that allows to obtain fast simulations of PWM DC–DC Switched computational costs, there are several situations that require Mode Power Supplies (SMPS). The proposed methodology com- the simulation of several hours or days of evolution what bines the use of precise switched models during transient evolu- tions and averaged models during steady state or slowly varying would lead to unacceptable simulation times. To avoid these conditions. In that way, the resulting mixed modeling approach problems, the precise switched models are usually replaced enables to obtain the detailed switching behavior of SMPS in by averaged models that do not contain discontinuities [9], the context of long term simulations. The commutation between [10], [11]. These models can be simulated very fast, but at models is automatically performed in runtime by an algorithm the expense of sacrificing detail (like voltage and current that detects the transient or slowly varying condition according to the evolution of some model variables. When the precise switched ripple). In addition, most simple averaged models may result model is used, the mentioned algorithm also adjusts the averaged inaccurate in some transient situations or during discontinuous model parameters so that it results accurate irrespective of the conduction mode (anyway, there are large signal averaged operating point. The article also describes the implementation of models that work fine in most situations [12]).
    [Show full text]
  • A New Soft-Switching Technique for Buck, Boost, and Buck~Boost Converters
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 6, NOVEMBER/DECEMBER 2003 1775 A New Soft-Switching Technique for Buck, Boost, and Buck–Boost Converters Yingqi Zhang, Student Member, IEEE, and Paresh C. Sen, Fellow, IEEE Abstract—A new soft-switching technique for buck, boost, and buck–boost converters using coupled inductors is proposed in this paper. The principles of operation of these converters are analyzed in detail. An additional winding is added on the same core of the main inductor for the purpose of commutation. By using hysteresis current control, zero-voltage switching conditions are ensured over a wide load range. The main inductor current is kept in contin- uous conduction mode with small ripple, which allows high output power and small filter parameters. Also, the switching frequency can be kept constant when the load changes. Prototypes of buck, boost, and buck–boost converters have been built to verify the pro- posed concept. The experimental results are presented and they verify the analysis. Fig. 1. ZVRT buck converter. Index Terms—Coupled inductor, hysteresis current control, zero-voltage switched pulsewidth-modulation (ZVS PWM) con- verters. I. INTRODUCTION WITCHING-MODE power supplies are widely used Fig. 2. Bidirectional inductor current. S in industrial, residential, and aerospace environments. The basic requirements are small size and high efficiency. voltage across the main switch reduces to zero so that the body High-switching-frequency operation is necessary to achieve diode conducts before the main switch is applied a gate signal. small size. However, the switching loss will increase as the The main switch achieves ZVS conditions and there is no switching frequency is increased.
    [Show full text]
  • Definition of Power Converters
    Published by CERN in the Proceedings of the CAS-CERN Accelerator School: Power Converters, Baden, Switzerland, 7–14 May 2014, edited by R. Bailey, CERN-2015-003 (CERN, Geneva, 2015) Definition of Power Converters F. Bordry and D. Aguglia CERN, Geneva, Switzerland Abstract The paper is intended to introduce power conversion principles and to define common terms in the domain. The concepts of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the commutation cell and soft commutation are introduced and discussed. Keywords Power converter; power electronics; semiconductor switches; electrical sources; design rules; topologies. 1 Introduction The task of a power converter is to process and control the flow of electrical energy by supplying voltages and currents in a form that is optimally suited for user loads. Energy conversions were initially achieved using electromechanical converters (which were mainly rotating machines). Today, with the development and the massive production of power semiconductors, static power converters are used in numerous application domains and especially in particle accelerators. Their weight and volume are smaller and their static and dynamic performance are better. A static converter is composed of a set of electrical components building a meshed network that acts as a linking, adapting, or transforming stage between two sources, generally between a generator and a load (Fig. 1). Fig. 1: Definition of a power converter An ideal static converter allows control of the power flow between the two sources with 100% efficiency.
    [Show full text]