Ustilaginales) Is Driven by Host Switches Received: 19 September 2016 Ying-Ming Li1,2, Roger G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transferring of the Biological Nitrification Inhibition (BNI) Character from Leymus Racemosus to Wheat
Transferring of the biological nitrification inhibition (BNI) character from Leymus racemosus to wheat Kishii M1, Ban T2, Subbarao GV3, Ortiz-Monasterio I1 1CIMMYT (International Maize and Wheat Improvement Center) Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico, 2Kihara biology Institute Yokohama City University Maiokacho, Totsuka-ku, Yokohama-shi 244- 0813 Japan, 3Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-0035, Japan ABSTRACT MATERIALS AND METHODS Biological nitrification inhibition (BNI) is a character that may result in a reduction of emissions of nitrous Plant materials oxide (N O), a green house gas that has more than 300 2 Two varieties of bread wheat, Chinese Spring (CS) and times the warming power of CO as well as other forms 2, Nobeokabouzu, were used for the study. One accession of N which are lost to the environment. The BNI of Leymus racemosus (Lam.) Tzvelev was collected character has not been found in the three major crops; along the Black Sea coast (accession number HT15405) wheat, rice and maize. However, Leymus racemosus, and has maintained as clones. The L. racemosus alien species of wheat, has shown high BNI capacity. chromosome addition or substitution lines were One of L. racemosus chromosome addition lines of produced in Tottori University, Japan (Kishii et al. 2004) wheat, Lr#n chromosome addition line, expressed about or provided from the Wheat Genetic and Genomic 80% of BNI character of L. racemosus, showing that Resources Center (WGGRC), Kansas State University BNI can be transferred into a wheat background. Two (Qi et al. 1998). Chinese Spring monosomic 3B, 5B, other addition lines showed higher levels of BNI than and 7B lines (2n=41) and ph1b line have been the parental wheat line. -
Genetic Diversity and Phylogeny in Hystrix (Poaceae, Triticeae) and Related Genera Inferred from Giemsa C-Banded Karyotypes
Genetics and Molecular Biology, 32, 3, 521-527 (2009) Copyright © 2009, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Genetic diversity and phylogeny in Hystrix (Poaceae, Triticeae) and related genera inferred from Giemsa C-banded karyotypes Hai-Qin Zhang1,2, Rui-Wu Yang3, Li Zhang3, Chun-Bang Ding3, Jian Zeng1 and Yong-Hong Zhou1,2 1Triticeae Research Institute, Sichuan Agricultural University, Sichuan, China. 2Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, China. 3College of Biology and Science, Sichuan Agricultural University, Sichuan, China. Abstract The phylogenetic relationships of 15 taxa from Hystrix and the related genera Leymus (NsXm), Elymus (StH), Pseudoroegneria (St), Hordeum (H), Psathyrostachys (Ns), and Thinopyrum (E) were examined by using the Giemsa C-banded karyotype. The Hy. patula C-banding pattern was similar to those of Elymus species, whereas C-banding patterns of the other Hystrix species were similar to those of Leymus species. The results suggest high genetic diversity within Hystrix, and support treating Hy. patula as E. hystrix L., and transferring Hy. coreana, Hy. duthiei ssp. duthiei and Hy. duthiei ssp. longearistata to the genus Leymus. On comparing C-banding patterns of Elymus species with their diploid ancestors (Pseudoroegneria and Hordeum), there are indications that certain chro- mosomal re-arrangements had previously occurred in the St and H genomes. Furthermore, a comparison of the C-banding patterns of the Hystrix and Leymus species with the potential diploid progenitors (Psathyrostachys and Thinopyrum) suggests that Hy. coreana and some Leymus species are closely related to the Ns genome of Psathyrostachys, whereas Hy. -
Phylogeny and Morphology of Anthracoidea Pamiroalaica Sp
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/284869485 Phylogeny and morphology of Anthracoidea pamiroalaica sp. nov. infecting the endemic sedge Carex koshewnikowii in the Pamir Alai Mts (Tajikistan) Article in Mycological Progress · November 2015 DOI: 10.1007/s11557-015-1140-1 CITATIONS READS 4 168 4 authors: Marcin Piątek Matthias Lutz W. Szafer Institute of Botany, Polish Academy of Sciences University of Tuebingen 153 PUBLICATIONS 1,470 CITATIONS 218 PUBLICATIONS 1,281 CITATIONS SEE PROFILE SEE PROFILE Marcin Nobis Arkadiusz Nowak Jagiellonian University Opole University 215 PUBLICATIONS 2,373 CITATIONS 235 PUBLICATIONS 1,906 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Vegetation classification of Middle Asia View project Interactions of invasive plants with soil microorganisms View project All content following this page was uploaded by Marcin Piątek on 28 November 2015. The user has requested enhancement of the downloaded file. Mycol Progress (2015) 14:120 DOI 10.1007/s11557-015-1140-1 ORIGINAL ARTICLE Phylogeny and morphology of Anthracoidea pamiroalaica sp. nov. infecting the endemic sedge Carex koshewnikowii in the Pamir Alai Mts (Tajikistan) Marcin Piątek1 & Matthias Lutz2 & Marcin Nobis3 & Arkadiusz Nowak4 Received: 24 July 2015 /Revised: 16 October 2015 /Accepted: 2 November 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract AnovelAnthracoidea species, A. pamiroalaica on Introduction the endemic sedge Carex koshewnikowii, is described and illustrated from the Pamir Alai Mts in Tajikistan (Central The genus Anthracoidea Bref., typified by Anthracoidea Asia). -
Revisiting the Concept of Host Range of Plant Pathogens
PY57CH04_Morris ARjats.cls July 18, 2019 12:43 Annual Review of Phytopathology Revisiting the Concept of Host Range of Plant Pathogens Cindy E. Morris and Benoît Moury Pathologie Végétale, INRA, 84140, Montfavet, France; email: [email protected] Annu. Rev. Phytopathol. 2019. 57:63–90 Keywords First published as a Review in Advance on evolutionary history, network analysis, cophylogeny, host jump, host May 13, 2019 specialization, generalism The Annual Review of Phytopathology is online at phyto.annualreviews.org Abstract https://doi.org/10.1146/annurev-phyto-082718- Strategies to manage plant disease—from use of resistant varieties to crop 100034 rotation, elimination of reservoirs, landscape planning, surveillance, quar- Annu. Rev. Phytopathol. 2019.57:63-90. Downloaded from www.annualreviews.org Copyright © 2019 by Annual Reviews. antine, risk modeling, and anticipation of disease emergences—all rely on All rights reserved knowledge of pathogen host range. However, awareness of the multitude of Access provided by b-on: Universidade de Lisboa (ULisboa) on 09/02/19. For personal use only. factors that influence the outcome of plant–microorganism interactions, the spatial and temporal dynamics of these factors, and the diversity of any given pathogen makes it increasingly challenging to define simple, all-purpose rules to circumscribe the host range of a pathogen. For bacteria, fungi, oomycetes, and viruses, we illustrate that host range is often an overlapping continuum—more so than the separation of discrete pathotypes—and that host jumps are common. By setting the mechanisms of plant–pathogen in- teractions into the scales of contemporary land use and Earth history, we propose a framework to assess the frontiers of host range for practical appli- cations and research on pathogen evolution. -
Biological Control of Serrated Tussock (Nassella Trichotoma): Is It Worth
94 Plant Protection Quarterly Vol.13(2) 1998 itch grass (Rottboellia cochinchinensis) as a Biological control of serrated tussock (Nassella case study, he found that highly specific fungal pathogens occur on this grassy trichotoma): Is it worth pursuing? weed in its centre of origin (Evans 1995). Indeed, both the rust and smut species D.T. BrieseA and H.C. EvansB under evaluation proved to be too specific A CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia. with clearly defined pathotype-biotype associations. Thus, it is probable that a B IIBC, Silwood Park, Ascot, Berkshire, SL5 7TA, United Kingdom. suite of pathotypes will have to be selected in order to cover the range of weed bio- Summary measures, revolving around the use of the types present in the neotropical target area. The potential for biological control of the herbicide fluproponate, have not pre- Nonetheless, the view that natural en- weedy grass, Nassella trichotoma, in vented the continued spread of the weed emies of grasses are not sufficiently spe- Australia is discussed in the light of re- (Campbell and Vere 1995). It is clear that cific and that the risk to economically-im- cent surveys for pathogens in its native other control options need to be investi- portant species of grass is too great to per- range and an improved understanding of gated in order to develop a more effective mit implementation of classical biological the taxonomic relationships of Nassella management strategy for this weed. One control remains a common one, and has to other Australian and South American such option is classical biological control; discouraged such projects in Australia. -
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. -
22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia]. -
Chorological Notes on the Non-Native Flora of the Province of Tarragona (Catalonia, Spain)
Butlletí de la Institució Catalana d’Història Natural, 83: 133-146. 2019 ISSN 2013-3987 (online edition): ISSN: 1133-6889 (print edition)133 GEA, FLORA ET fauna GEA, FLORA ET FAUNA Chorological notes on the non-native flora of the province of Tarragona (Catalonia, Spain) Filip Verloove*, Pere Aymerich**, Carlos Gómez-Bellver*** & Jordi López-Pujol**** * Meise Botanic Garden, Nieuwelaan 38, B-1860 Meise, Belgium. ** C/ Barcelona 29, 08600 Berga, Barcelona, Spain. *** Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Secció Botànica i Micologia. Facultat de Biologia. Universitat de Barcelona. Avda. Diagonal, 643. 08028 Barcelona, Spain. **** Botanic Institute of Barcelona (IBB, CSIC-ICUB). Passeig del Migdia. 08038 Barcelona, Spain. Author for correspondence: F. Verloove. A/e: [email protected] Rebut: 10.07.2019; Acceptat: 16.07.2019; Publicat: 30.09.2019 Abstract Recent field work in the province of Tarragona (NE Spain, Catalonia) yielded several new records of non-native vascular plants. Cenchrus orientalis, Manihot grahamii, Melica chilensis and Panicum capillare subsp. hillmanii are probably reported for the first time from Spain, while Aloe ferox, Canna ×generalis, Cenchrus setaceus, Convolvulus farinosus, Ficus rubiginosa, Jarava plumosa, Koelreu- teria paniculata, Lycianthes rantonnetii, Nassella tenuissima, Paraserianthes lophantha, Plumbago auriculata, Podranea ricasoliana, Proboscidea louisianica, Sedum palmeri, Solanum bonariense, Tipuana tipu, Tradescantia pallida and Vitis ×ruggerii are reported for the first time from the province of Tarragona. Several of these are potential or genuine invasive species and/or agricultural weeds. Miscellane- ous additional records are presented for some further alien taxa with only few earlier records in the study area. Key words: Alien plants, Catalonia, chorology, Spain, Tarragona, vascular plants. -
Two New Species of Anthracoidea (Ustilaginales) on Carex from North America
MYCOLOGIA BALCANICA 7: 105–109 (2010) 105 Two new species of Anthracoidea (Ustilaginales) on Carex from North America Kálmán Vánky ¹* & Vanamo Salo ² ¹ Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany ² Botanic Garden and Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland Received 28 November 2010 / Accepted 16 December 2010 Abstract. After a short revision of the genus Anthracoidea, two new species, A. multicaulis on C. geyeri and C. multicaulis, and A. praegracilis on C. praegracilis are described and illustrated. Key words: Anthracoidea, Anthracoidea multicaulis, Anthracoidea praegracilis, Carex, North America, smut fungi, Ustilaginales Introduction Materials and methods Th e genus Anthracoidea Bref. is a natural group in the Th e specimens of Anthracoidea, examined in this study are Anthracoideaceae (Denchev 1997) of the order Ustilaginales, listed in Table 1 and Table 2. parasitising members of Cyperaceae in Carex, Carpha, Fuirena, Sorus and spore characteristics were studied using dried Kobresia, Schoenus, Trichophorum and Uncinia (comp. Vánky herbarium specimens. Spores were dispersed in a droplet 2002: 28–29). Sori around the ovaries as black, globoid, of lactophenol on a microscope slide, covered with a agglutinated spore masses with powdery surface. Spores single, cover glass, gently heated to boiling point to rehydrate the pigmented (dark brown), usually ornamented with spines, spores, and examined by a light microscope (LM) at 1000x warts or granules, rarely smooth, often with internal swellings magnifi cation. For scanning electron microscopy (SEM), dry or light-refractive areas. Spore germination results in two- spores were placed on double-sided adhesive tape, mounted celled basidia forming one or more basidiospores on each cell on a specimen stub, sputter-coated with gold-palladium, ca (Kukkonen 1963, 1964). -
Notes on Grasses (Poaceae) for the Flora of China, IV
Notes on Grasses (Poaceae) for the Flora of China, IV Sylvia M. Phillips Herbarium, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom. [email protected] Chen Shouliang Herbarium, Jiangsu Institute of Botany, Academia Sinica, 1 Qianghuhuocun, Nanjing, Jiangsu 210014, China. [email protected] ABSTRACT. The following changes are made in the preparation of the grass family account for the Poaceae, necessary for the upcoming Flora of Chi- Flora of China. na. Kengia chinensis is lectotypi®ed on a specimen of K. hackelii, and hence becomes a synonym of the ERAGROSTIDEAE latter. Kengia gracilis is synonymized under K. mu- cronata. Isachne clarkei is lectotypi®ed. Isachne be- Kengia hackelii (Honda) Packer, Bot. Not. 113: neckei (also lectotypi®ed) and I. tenuis are placed 291. 1960. Basionym: Diplachne hackelii Hon- as synonyms of I. clarkei. Isachne albens var. hir- da, J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 3: suta is lectotypi®ed and placed as a synonym under 112. 1930. Cleistogenes hackelii (Honda) Hon- I. sylvestris. Isachne semitalis is lectotypi®ed and da, Bot. Mag. (Tokyo) 50: 437. 1936. TYPE: placed in synonymy of I. schmidtii. The distinctions Japan. Musashi Prov., Shirako, 1880, Matsu- between the closely related species I. kunthiana, I. mura 4 (holotype, TI). schmidtii, and I. repens are discussed. The new spe- Kengia chinensis (Maximowicz) Packer, Bot. Not. 113: cies Arundinella suniana, from Yunnan province 291. 1960. Basionym: Diplachne serotina var. chi- and related to A. setosa, is described. Arundinella nensis Maximowicz, Bull. Soc. Imp. Naturalistes setosa var. esetosa is validated. The name Arundi- Moscou 54: 70. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Synopsis of Chinese Kengia (Poaceae)
Ann. Bot. Fennici 42: 47–55 ISSN 0003-3847 Helsinki 16 February 2005 © Finnish Zoological and Botanical Publishing Board 2005 Synopsis of Chinese Kengia (Poaceae) Hui Yu & Nan-Xian Zhao* South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China (*corresponding author’s e-mail: [email protected]) Received 8 Apr. 2004, revised version received 27 Aug. 2004, accepted 13 Oct. 2004 Yu, H. & Zhao, N.-X. 2005: Synopsis of Chinese Kengia (Poaceae). — Ann. Bot. Fennici 42: 47–55. The generic name Cleistogenes is invalid because it is identical with the technical term “cleistogene”. According to Art. 20.2 of the current ICBN, Kengia Packer (tribe Era- grosteae, Poaceae) is the correct name for Cleistogenes. The present paper deals with the Chinese species of the genus. There are 18 species and 8 varieties of Kengia in China. Nine new combinations are proposed herein. Key words: Cleistogenes, Kengia, nomenclature, taxonomy Cleistogenes was erected by Keng (1934) typi- we propose to treat the Chinese species using the fied by C. serotina (L.) Keng; it is considered to latter name. belong in the tribe Eragrosteae (Hubbard 1936). Packer (1960) argued the name Cleistogenes is invalid by its similarity to the technical term Kengia Packer “cleistogene” according to Art. 68 of Paris’ Code (Lanjouw 1960) (= Art. 20.2. of the current Bot. Not. 113: 291. 1960. — Cleistogenes Keng, Sinensia 5: 147. 1934, nom. inval., see Taxon 43: 123. 1994. — TYPE: Code; Greuter et al. 2000). So a new name Kengia serotina (L.) Packer. Kengia Packer was proposed to replace Cleis- togenes.