Small-Molecule Inhibition of 6-Phosphofructo-2-Kinase Activity Suppresses Glycolytic Flux and Tumor Growth
110 Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth Brian Clem,1,3 Sucheta Telang,1,3 Amy Clem,1,3 reduces the intracellular concentration of Fru-2,6-BP, Abdullah Yalcin,1,2,3 Jason Meier,2 glucose uptake, and growth of established tumors in vivo. Alan Simmons,1,3 Mary Ann Rasku,1,3 Taken together, these data support the clinical development Sengodagounder Arumugam,1,3 of 3PO and other PFKFB3 inhibitors as chemotherapeutic William L. Dean,2,3 John Eaton,1,3 Andrew Lane,1,3 agents. [Mol Cancer Ther 2008;7(1):110–20] John O. Trent,1,2,3 and Jason Chesney1,2,3 Departments of 1Medicine and 2Biochemistry and Molecular Introduction Biology and 3Molecular Targets Group, James Graham Brown Neoplastic transformation causes a marked increase in Cancer Center, University of Louisville, Louisville, Kentucky glucose uptake and catabolic conversion to lactate, which forms the basis for the most specific cancer diagnostic 18 Abstract examination—positron emission tomography of 2- F- fluoro-2-deoxyglucose (18F-2-DG) uptake (1). The protein 6-Phosphofructo-1-kinase, a rate-limiting enzyme of products of several oncogenes directly increase glycolytic glycolysis, is activated in neoplastic cells by fructose-2,6- flux even under normoxic conditions, a phenomenon bisphosphate (Fru-2,6-BP), a product of four 6-phospho- originally termed the Warburg effect (2, 3). For example, fructo-2-kinase/fructose-2,6-bisphosphatase isozymes c-myc is a transcription factor that promotes the expression (PFKFB1-4). The inducible PFKFB3 isozyme is constitu- of glycolytic enzyme mRNAs, and its expression is increased tively expressed by neoplastic cells and required for the in several human cancers regardless of the oxygen pressure high glycolytic rate and anchorage-independent growth of (4, 5).
[Show full text]