Polyclonal Antibody to PFKFB1 (Liver) - Aff - Purified

Total Page:16

File Type:pdf, Size:1020Kb

Polyclonal Antibody to PFKFB1 (Liver) - Aff - Purified OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AP20411PU-N Polyclonal Antibody to PFKFB1 (Liver) - Aff - Purified Alternate names: 6-biphosphatase 1, 6-phosphofructo-2-kinase/fructose-2, F6PK, PFK-2 liver, PFK/FBPase 1, PFRX Quantity: 0.1 mg Concentration: 1.0 mg/ml Background: Phosphofructokinases (PFK) are regulatory glycolytic enzymes that convert fructose 6-phosphate and ATP into fructose 1,6-bisphosphate (through PFK-1), fructose 2,6-bisphosphate (through PFK-2), and ADP. Human PFK-1 is tetrameric and isoenzymes include, PFK-1 muscle (PFKM, PFK-A), PFK-1 liver (PFKL, PFK-B), and PFK-1 platelet (PFKP, PFK-C, PFKF). PFK-1 is inhibited by ATP and citrate (from the tricarboxylic acid cycle). PFK-1 undergoes activation in the presence of elevated AMP. The most potent activator is fructose-2,6-bisphosphate, which is produced by PFK-2 from the same substrate, fructose 6-phosphate. PFK-2 is bifunctional and a key regulator for PFK-1. PFK-2 catalyzes the synthesis of fructose-2,6-bisphosphate, and contains fructose-2,6-biphosphatase activity that catalyzes the degradation of fructose-2,6-bisphosphate. PFK-2 is dimeric and isoenzymes include PFK-2 liver (PFKFB1, PFRX), PFK-2 cardiac (PFKFB2), PFK-2 placental (PFKFB3, inducible PFK-2) and PFK-2 testis (PFKFB4). Uniprot ID: P16118 NCBI: NP_002616 GeneID: 5207 Host: Rabbit Format: State: Liquid purified Ig fraction (> 95% pure by SDS-PAGE). Purification: Affinity-Chromatography using epitope-specific immunogen. Buffer System: Phosphate buffered saline (PBS), pH~7.2 containing 15 mM Sodium Azide as preservative. Applications: Western blot: 1/500-1/1000. Immunohistochemistry on Paraffin Sections: 1/50-1/200. Other applications not tested. Optimal dilutions are dependent on conditions and should be determined by the user. Molecular Weight: ~ 52 kDa Specificity: This antibody detects endogenous levels of PFK-2 liv protein. (region surrounding Glu442) Species Reactivity: Tested: Human. Expected from sequence similarity: Mouse and Rat. Storage: Store undiluted at 2-8°C for one month or (in aliquots) at -20°C for longer. Avoid repeated freezing and thawing. Shelf life: one year from despatch. For research and in vitro use only. Not for diagnostic or therapeutic work. Material Safety Datasheets are available at www.acris-antibodies.com or on request. VA/20131009 1 / 2 AP20411PU-N: Polyclonal Antibody to PFKFB1 (Liver) - Aff - Purified Pictures: Immunohistochemistry: AP20411PU-N PFK-2 liv antibody staining of Paraffin- Embedded Human liver carcinoma tissue. Western blot (WB) analysis of AP20411PU- N PFK-2 liv antibody in extracts from HUVEC cells. For research and in vitro use only. Not for diagnostic or therapeutic work. Material Safety Datasheets are available at www.acris-antibodies.com or on request. VA/20131009 2 / 2 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B
    Published OnlineFirst October 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0853 Statistics in CCR Clinical Cancer Research Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B. Poirion1, Liangqun Lu1,2, and Lana X. Garmire1,2 Abstract Identifying robust survival subgroups of hepatocellular car- index (C-index) ¼ 0.68]. More aggressive subtype is associated cinoma (HCC) will significantly improve patient care. Current- with frequent TP53 inactivation mutations, higher expression ly, endeavor of integrating multi-omicsdatatoexplicitlypredict of stemness markers (KRT19 and EPCAM)andtumormarker HCC survival from multiple patient cohorts is lacking. To fill BIRC5, and activated Wnt and Akt signaling pathways. We this gap, we present a deep learning (DL)–based model on HCC validated this multi-omics model on five external datasets of that robustly differentiates survival subpopulations of patients various omics types: LIRI-JP cohort (n ¼ 230, C-index ¼ 0.75), in six cohorts. We built the DL-based, survival-sensitive model NCI cohort (n ¼ 221, C-index ¼ 0.67), Chinese cohort (n ¼ on 360 HCC patients' data using RNA sequencing (RNA-Seq), 166, C-index ¼ 0.69), E-TABM-36 cohort (n ¼ 40, C-index ¼ miRNA sequencing (miRNA-Seq), and methylation data from 0.77), and Hawaiian cohort (n ¼ 27, C-index ¼ 0.82). This TheCancerGenomeAtlas(TCGA),whichpredictsprognosis is the first study to employ DL to identify multi-omics features as good as an alternative model where genomics and clinical linked to the differential survival of patients with HCC. Given data are both considered. This DL-based model provides two its robustness over multiple cohorts, we expect this workflow to optimal subgroups of patients with significant survival differ- be useful at predicting HCC prognosis prediction.
    [Show full text]
  • Small-Molecule Inhibition of 6-Phosphofructo-2-Kinase Activity Suppresses Glycolytic Flux and Tumor Growth
    110 Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth Brian Clem,1,3 Sucheta Telang,1,3 Amy Clem,1,3 reduces the intracellular concentration of Fru-2,6-BP, Abdullah Yalcin,1,2,3 Jason Meier,2 glucose uptake, and growth of established tumors in vivo. Alan Simmons,1,3 Mary Ann Rasku,1,3 Taken together, these data support the clinical development Sengodagounder Arumugam,1,3 of 3PO and other PFKFB3 inhibitors as chemotherapeutic William L. Dean,2,3 John Eaton,1,3 Andrew Lane,1,3 agents. [Mol Cancer Ther 2008;7(1):110–20] John O. Trent,1,2,3 and Jason Chesney1,2,3 Departments of 1Medicine and 2Biochemistry and Molecular Introduction Biology and 3Molecular Targets Group, James Graham Brown Neoplastic transformation causes a marked increase in Cancer Center, University of Louisville, Louisville, Kentucky glucose uptake and catabolic conversion to lactate, which forms the basis for the most specific cancer diagnostic 18 Abstract examination—positron emission tomography of 2- F- fluoro-2-deoxyglucose (18F-2-DG) uptake (1). The protein 6-Phosphofructo-1-kinase, a rate-limiting enzyme of products of several oncogenes directly increase glycolytic glycolysis, is activated in neoplastic cells by fructose-2,6- flux even under normoxic conditions, a phenomenon bisphosphate (Fru-2,6-BP), a product of four 6-phospho- originally termed the Warburg effect (2, 3). For example, fructo-2-kinase/fructose-2,6-bisphosphatase isozymes c-myc is a transcription factor that promotes the expression (PFKFB1-4). The inducible PFKFB3 isozyme is constitu- of glycolytic enzyme mRNAs, and its expression is increased tively expressed by neoplastic cells and required for the in several human cancers regardless of the oxygen pressure high glycolytic rate and anchorage-independent growth of (4, 5).
    [Show full text]
  • Exploring the Non-Canonical Functions of Metabolic Enzymes Peiwei Huangyang1,2 and M
    © 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm033365. doi:10.1242/dmm.033365 REVIEW SPECIAL COLLECTION: CANCER METABOLISM Hidden features: exploring the non-canonical functions of metabolic enzymes Peiwei Huangyang1,2 and M. Celeste Simon1,3,* ABSTRACT A key finding from studies of metabolic enzymes is the existence The study of cellular metabolism has been rigorously revisited over the of mechanistic links between their nuclear localization and the past decade, especially in the field of cancer research, revealing new regulation of transcription. By modulating gene expression, insights that expand our understanding of malignancy. Among these metabolic enzymes themselves facilitate adaptation to rapidly insights isthe discovery that various metabolic enzymes have surprising changing environments. Furthermore, they can directly shape a ’ activities outside of their established metabolic roles, including in cell s epigenetic landscape (Kaelin and McKnight, 2013). the regulation of gene expression, DNA damage repair, cell cycle Strikingly, several metabolic enzymes exert completely distinct progression and apoptosis. Many of these newly identified functions are functions in different cellular compartments. Nuclear fructose activated in response to growth factor signaling, nutrient and oxygen bisphosphate aldolase, for example, directly interacts with RNA ́ availability, and external stress. As such, multifaceted enzymes directly polymerase III to control transcription (Ciesla et al., 2014),
    [Show full text]
  • Oncorequisite Role of an Aldehyde Dehydrogenase in the Pathogenesis of T-Cell Acute Lymphoblastic Leukemia
    Acute Lymphoblastic Leukemia SUPPLEMENTARY APPENDIX Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia Chujing Zhang, 1 Stella Amanda, 1 Cheng Wang, 2 Tze King Tan, 1 Muhammad Zulfaqar Ali, 1 Wei Zhong Leong, 1 Ley Moy Ng, 1 Shojiro Kitajima, 3 Zhenhua Li, 4 Allen Eng Juh Yeoh, 1,4 Shi Hao Tan 1 and Takaomi Sanda 1,5 1Cancer Science Institute of Singapore, National University of Singapore, Singapore; 2Department of Anatomy, National University of Singapore, Singapore; 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; 4VIVA-NUS CenTRAL, Department of Pedi - atrics, National University of Singapore, Singapore and 5Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.245639 Received: December 18, 2019. Accepted: May 14, 2020. Pre-published: May 15, 2020. Correspondence: TAKAOMI SANDA - [email protected] Zhang et al Roles of ALDH in T-ALL Supplementary Information Supplementary Materials and Methods Cell culture and reagents All human leukemia cell lines were cultured in RPMI-1640 medium (BioWest) supplemented with 10% FBS (BioWest). 293T cells were maintained in DMEM medium (BioWest) supplemented with 10% FBS and penicillin/streptomycin (Life Technologies). All-trans retinaldehyde was purchased from Sigma-Aldrich. Glucose free and Glutamine free RPMI- 1640 media were purchased from ThermoFisher. Patient derived xenograft (PDX) sample T-ALL patient-derived PDX sample (DFCI15) was kindly provided by Alejandro Gutierrez (Boston Children’s Hospital, Boston). Mouse studies were conducted according to the recommendations from the Institutional Animal Care and Use Committee (IACUC) and all protocols were approved by the Committee at the National University of Singapore (NUS).
    [Show full text]
  • Adiponectin Regulates Expression of Hepatic Genes Critical for Glucose and Lipid Metabolism
    Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism Qingqing Liua, Bingbing Yuana, Kinyui Alice Loa,b, Heide Christine Pattersona,c,d, Yutong Sune, and Harvey F. Lodisha,b,1 aWhitehead Institute for Biomedical Research, Cambridge, MA 02142; bDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cDepartment of Pathology, Brigham and Women’s Hospital, Boston, MA 02115; dInstitut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; and eDepartment of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 Contributed by Harvey F. Lodish, July 23, 2012 (sent for review May 30, 2012) The effects of adiponectin on hepatic glucose and lipid metabolism mediated by a master regulator of hepatic gene expression, the at transcriptional level are largely unknown. We profiled hepatic transcription factor (TF) Hnf4a. gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO Results mice fed a chow diet exhibited decreased mRNA expression of rate- Rate-limiting enzymes catalyze the slowest or irreversible steps limiting enzymes in several important glucose and lipid metabolic in metabolic pathways, which makes them the targets of tran- pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid scriptional regulation and/or posttranslational modifications activation and synthesis, triglyceride synthesis, and cholesterol such as phosphorylation in the regulation of metabolism (7). synthesis. In addition, binding of the transcription factor Hnf4a to Because adiponectin plays an important role in energy metabo- DNAs encoding several key metabolic enzymes was reduced in KO lism, our analysis on hepatic gene expression in adiponectin KO mice, suggesting that adiponectin might regulate hepatic gene and WT mice was specifically focused on the expression levels of expression via Hnf4a.
    [Show full text]
  • Emerging Roles of P53 Family Members in Glucose Metabolism
    International Journal of Molecular Sciences Review Emerging Roles of p53 Family Members in Glucose Metabolism Yoko Itahana and Koji Itahana * Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; [email protected] * Correspondence: [email protected]; Tel.: +65-6516-2554; Fax: +65-6221-2402 Received: 19 January 2018; Accepted: 22 February 2018; Published: 8 March 2018 Abstract: Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.
    [Show full text]
  • 6-Phosphofructo-2-Kinase/Fructose-2
    Published OnlineFirst August 7, 2019; DOI: 10.1158/1078-0432.CCR-18-3448 Translational Cancer Mechanisms and Therapy Clinical Cancer Research 6-Phosphofructo-2-Kinase/Fructose-2,6- Biphosphatase-2 Regulates TP53-Dependent Paclitaxel Sensitivity in Ovarian and Breast Cancers Hailing Yang1, Zhang Shu1,2,Yongying Jiang3, Weiqun Mao1, Lan Pang1, Abena Redwood4, Sabrina L. Jeter-Jones4, Nicholas B. Jennings5, Argentina Ornelas6, Jinhua Zhou1, Cristian Rodriguez-Aguayo1,7, Geoffrey Bartholomeusz1, LaKesla R. Iles1, Niki M. Zacharias8, Steven W. Millward6, Gabriel Lopez-Berestein1,7, Xiao-Feng Le1, Ahmed A. Ahmed9,10, Helen Piwnica-Worms4, Anil K. Sood5,7, Robert C. Bast1, and Zhen Lu1 Abstract Purpose: Paclitaxel is an integral component of primary Results: Knockdown of PFKFB2 inhibited clonogenic therapy for breast and epithelial ovarian cancers, but less than growth and enhanced paclitaxel sensitivity in ovarian and half of these cancers respond to the drug. Enhancing the breast cancer cell lines with wild-type TP53 (wtTP53). response to primary therapy with paclitaxel could improve Silencing PFKFB2 significantly inhibited tumor growth and outcomes for women with both diseases. enhanced paclitaxel sensitivity in four xenografts derived Experimental Design: Twelve kinases that regulate from two ovarian and two breast cancer cell lines, and metabolism were depleted in multiple ovarian and breast prolonged survival in a triple-negative breast cancer PDX. cancer cell lines to determine whether they regulate sensi- Transfection of siPFKFB2 increased the glycolysis rate, but tivity to paclitaxel in Sulforhodamine B assays. The effects decreased the flow of intermediates through the pentose– of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase phosphate pathway in cancer cells with wtTP53,decreasing 2(PFKFB2) depletion on cell metabolomics, extracellular NADPH.
    [Show full text]
  • Identification and Validation of a Six-Gene Signature Associated With
    Cai et al. BMC Cancer (2020) 20:1133 https://doi.org/10.1186/s12885-020-07598-3 RESEARCH ARTICLE Open Access Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer Luya Cai1†, Chuan Hu2†, Shanshan Yu3, Lixiao Liu1, Xiaobo Yu1, Jiahua Chen1, Xuan Liu1, Fan Lin4, Cheng Zhang4, Wenfeng Li3 and Xiaojian Yan1* Abstract Background: Cervical cancer (CC) is one of the most common gynaecological cancers. The gene signature is believed to be reliable for predicting cancer patient survival. However, there is no relevant study on the relationship between the glycolysis-related gene (GRG) signature and overall survival (OS) of patients with CC. Methods: We extracted the mRNA expression profiles of 306 tumour and 13 normal tissues from the University of California Santa Cruz (UCSC) Database. Then, we screened out differentially expressed glycolysis-related genes (DEGRGs) among these mRNAs. All patients were randomly divided into training cohort and validation cohort according to the ratio of 7: 3. Next, univariate and multivariate Cox regression analyses were carried out to select the GRG with predictive ability for the prognosis of the training cohort. Additionally, risk score model was constructed and validated it in the validation cohort. Results: Six mRNAs were obtained that were associated with patient survival. The filtered mRNAs were classified into the protective type (GOT1) and the risk type (HSPA5, ANGPTL4, PFKM, IER3 and PFKFB4). Additionally, by constructing the prognostic risk score model, we found that the OS of the high-risk group was notably poorer, which showed good predictive ability both in training cohort and validation cohort.
    [Show full text]
  • Glycolytic Reliance Promotes Anabolism in Photoreceptors
    bioRxiv preprint doi: https://doi.org/10.1101/101964; this version posted January 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Glycolytic reliance promotes anabolism in photoreceptors Yashodhan Chinchore, Tedi Begaj, David Wu, Eugene Drokhlyansky, Constance L. Cepko* *Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA [email protected] bioRxiv preprint doi: https://doi.org/10.1101/101964; this version posted January 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Sensory neurons capture information from the environment and convert it 2 into signals that can greatly impact the survival of an organism. These systems 3 are thus under heavy selective pressure, including for the most efficient use of 4 energy to support their sensitivity and efficiency1. In this regard, the 5 vertebrate photoreceptor cells face a dual challenge. They not only need to 6 preserve their membrane excitability via ion pumps by ATP hydrolysis2 but 7 also maintain a highly membrane rich organelle, the outer segment, which is 8 the primary site of phototransduction, creating a considerable biosynthetic 9 demand. How photoreceptors manage carbon allocation to balance their 10 catabolic and anabolic demands is poorly understood. One metabolic feature 11 of the retina is its ability to convert the majority of its glucose into lactate3,4 12 even in the presence of oxygen.
    [Show full text]
  • High Expression of Metabolic Enzyme PFKFB4 Is Associated with Poor
    Yao et al. Cancer Cell Int (2019) 19:165 https://doi.org/10.1186/s12935-019-0882-2 Cancer Cell International PRIMARY RESEARCH Open Access High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer Ling Yao1,2,3†, Lei Wang1,2,3†, Zhi‑Gang Cao1,2,3, Xin Hu1,2,3* and Zhi‑Ming Shao1,2,3,4* Abstract Background: Enhanced glycolysis in tumors, known as the Warburg efect, provides the metabolic basis of enhanced cancer cell proliferation and metastasis. The Warburg pathway enzyme 6‑phosphofructo‑2‑kinase/fructose‑ 2,6‑bisphosphatase 4 (PFKFB4) is a newly identifed key kinase that regulates transcriptional reprogramming and cell proliferation. Here we show the prognostic value of PFKFB4 expression in patients with operable breast cancer. Methods: PFKFB4 expression was evaluated by immunohistochemistry in surgical specimens retrospectively col‑ lected from 200 patients with histologically proven invasive ductal breast cancer. Kaplan–Meier survival analysis and Cox regression analysis were performed to assess the prognostic signifcance of PFKFB4 expression. Results: Kaplan–Meier survival analysis revealed that breast cancer patients with high PFKFB4 expression demon‑ strated unfavorable disease‑free survival (p 0.008) and overall survival (p 0.002). PFKFB4 had an hazard ratio (HR) of 7.38 (95% CI 1.69–32.3; p 0.008) in univariate= Cox analysis and retained prognostic= power (HR 7.44, 95% CI 1.67–33.2; p 0.009) when adjusted= by tumor size, lymph node status, grade, estrogen receptor status, human epidermal growth= factor receptor 2 status and subtype, which indicated PFKFB4 was an independent prognostic factor in breast cancer.
    [Show full text]
  • Metabolic Regulation of Calcium Pumps in Pancreatic Cancer: Role of Phosphofructokinase-Fructose- Bisphosphatase-3 (PFKFB3) D
    Richardson et al. Cancer & Metabolism (2020) 8:2 https://doi.org/10.1186/s40170-020-0210-2 RESEARCH Open Access Metabolic regulation of calcium pumps in pancreatic cancer: role of phosphofructokinase-fructose- bisphosphatase-3 (PFKFB3) D. A. Richardson1, P. Sritangos1, A. D. James2, A. Sultan1 and J. I. E. Bruce1* Abstract Background: High glycolytic rate is a hallmark of cancer (Warburg effect). Glycolytic ATP is required for fuelling plasma membrane calcium ATPases (PMCAs), responsible for extrusion of cytosolic calcium, in pancreatic ductal adenocarcinoma (PDAC). Phosphofructokinase-fructose-bisphosphatase-3 (PFKFB3) is a glycolytic driver that activates key rate-limiting enzyme Phosphofructokinase-1; we investigated whether PFKFB3 is required for PMCA function in PDAC cells. Methods: PDAC cell-lines, MIA PaCa-2, BxPC-3, PANC1 and non-cancerous human pancreatic stellate cells (HPSCs) were used. Cell growth, death and metabolism were assessed using sulforhodamine-B/tetrazolium-based assays, poly-ADP- ribose-polymerase (PARP1) cleavage and seahorse XF analysis, respectively. ATP was measured using a luciferase-based assay, membrane proteins were isolated using a kit and intracellular calcium concentration and PMCA activity were measured using Fura-2 fluorescence imaging. Results: PFKFB3 was highly expressed in PDAC cells but not HPSCs. In MIA PaCa-2, a pool of PFKFB3 was identified at the plasma membrane. PFKFB3 inhibitor, PFK15, caused reduced cell growth and PMCA activity, leading to calcium overload and apoptosis in PDAC cells. PFK15 reduced glycolysis but had noeffectonsteady-stateATPconcentrationinMIAPaCa-2. Conclusions: PFKFB3 is important for maintaining PMCA function in PDAC, independently of cytosolic ATP levels and may be involved in providing a localised ATP supply at the plasma membrane.
    [Show full text]
  • Altered Gene Expression Along the Glycolysis– Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer Joanna M
    Published OnlineFirst September 3, 2019; DOI: 10.1158/1078-0432.CCR-19-1543 Precision Medicine and Imaging Clinical Cancer Research Altered Gene Expression along the Glycolysis– Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer Joanna M. Karasinska1, James T. Topham1, Steve E. Kalloger1,2, Gun Ho Jang3, Robert E. Denroche3, Luka Culibrk4, Laura M.Williamson4, Hui-Li Wong5, Michael K.C. Lee5, Grainne M. O'Kane6, Richard A. Moore4, Andrew J. Mungall4, Malcolm J. Moore5, Cassia Warren1, Andrew Metcalfe1, Faiyaz Notta3, Jennifer J. Knox6, Steven Gallinger3,6, Janessa Laskin4,5, Marco A. Marra4,7, Steven J.M. Jones4,7, Daniel J. Renouf1,5,8, and David F. Schaeffer1,2,9 Abstract Purpose: Identification of clinically actionable molecular groups were identified: quiescent, glycolytic, cholestero- subtypes of pancreatic ductal adenocarcinoma (PDAC) is key genic, and mixed. Glycolytic tumors were associated with to improving patient outcome. Intertumoral metabolic hetero- the shortest median survival in resectable (log-rank test geneity contributes to cancer survival and the balance between P ¼ 0.018) and metastatic settings (log-rank test P ¼ distinct metabolic pathways may influence PDAC outcome. We 0.027). Patients with cholesterogenic tumors had the lon- hypothesized that PDAC can be stratified into prognostic gest median survival. KRAS and MYC-amplified tumors metabolic subgroups based on alterations in the expression of had higher expression of glycolytic genes than tumors with genes involved in glycolysis and cholesterol synthesis. normal or lost copies of the oncogenes (Wilcoxon rank Experimental Design: We performed bioinformatics analy- sum test P ¼ 0.015). Glycolytic tumors had the lowest sis of genomic, transcriptomic, and clinical data in an integrated expression of mitochondrial pyruvate carriers MPC1 and cohort of 325 resectable and nonresectable PDAC.
    [Show full text]