Multipath Propagation, Mitigation and Monitoring in the Light of Galileo and the Modernized GPS

Total Page:16

File Type:pdf, Size:1020Kb

Multipath Propagation, Mitigation and Monitoring in the Light of Galileo and the Modernized GPS Dissertation Multipath Propagation, Mitigation and Monitoring in the Light of Galileo and the Modernized GPS eingereicht von Dipl.-Ing. Markus Irsigler Vollständiger Abdruck der an der Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines Doktors der Inge- nieurwissenschaften (Dr.-Ing.) eingereichten Dissertation. Vorsitzender: Prof. Dr. rer. nat. Bernd Häusler, (Chairman) Institute of Space Technology, Bundeswehr University Munich 1. Berichterstatter: Univ.-Prof. Dr.-Ing. Günter W. Hein , (1st reviewer) Institute of Geodesy and Navigation, Bundeswehr University Munich 2. Berichterstatter: Univ.-Prof. Dr.-Ing. Bernd Eissfeller , (2nd reviewer) Institute of Geodesy and Navigation, Bundeswehr University Munich 3. Berichterstatter: Prof. Dr. Per K. Enge , (3rd reviewer) Dept. of Aeronautics and Astronautics, Stanford University Die Dissertation wurde am 4. April 2008 bei der Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg eingereicht und durch die Fakultät für Luft- und Raumfahrttechnik am 23. April 2008 angenommen. Tag der mündlichen Prüfung: 18. Juli 2008. Abstract Abstract Content of Thesis Among the numerous potential sources of GNSS signal degradation, multipath takes on a prominent position. Unlike other errors like ionospheric or tropospheric path delays which can be modeled or significantly reduced by differential techniques, multipath influences cannot be mitigated by such approaches. Although a lot of multipath mitigation tech- niques have been proposed and developed in the past – among them many receiver inter- nal approaches using special signal processing algorithms – multipath (especially multipath with small geometric path delays) still remains a major error source. This is why multi- path has been a major design driver for the definition of the Galileo signal structure car- ried out in the past years and the subsequent signal optimization activities. This thesis tries to provide a broad and comprehensive insight into various aspects of mul- tipath propagation, mitigation and monitoring (without claiming to be exhaustive). It con- tains an overview of the most important aspects of multipath propagation , including the discussion of different types of multipath signals (e.g. specular vs. diffuse multipath, sat- ellite vs. receiver multipath or hardware-induced multipath), typical characteristics such as periodic signal variations whose frequency depends on the satellite-antenna-reflector geometry and the impact on the signal tracking process within a GNSS receiver. A large part of this thesis is dedicated to aspects of multipath mitigation , first providing a summary of the most common multipath mitigation techniques with a special focus on receiver-internal approaches such as the narrow correlation technique, double-delta cor- relator implementations, the Early-Late Slope (ELS) technique or Early/Early tracking im- plementations. However, other mitigation approaches such as using arrays of closely spaced antennas or multipath-limiting antennas are discussed as well. Some of these techniques are used for subsequent multipath performance analyses considering signals of the (modernized) GPS and Galileo. These analyses base on a new methodology to estimate typical and meaningful multipath errors making use of multipath error envelopes that are scaled in a suitable way to account for different multipath environments. It will be shown that typical (mean) multipath errors can be derived from these scaled envelopes by com- putation of the envelope’s running average and that these mean multipath errors are of the same order as multipath errors obtained from complex statistical channel models. Another part of this thesis covers various aspects of multipath detection and monitoring . First, current techniques for multipath detection and monitoring are described and dis- cussed with respect to their benefits and drawbacks or their real-time capability. Among the considered approaches are techniques like “code minus carrier” monitoring, SNR monitoring, the use of differenced observations or spectral and wavelet analysis. Follow- ing this introductory overview, a completely new approach for real-time multipath moni- toring by processing multi-correlator observations will be introduced. Previously being used primarily for the detection of Evil Waveforms (signal failures that originate from a malfunction of the satellite’s signal generation and transmission hardware), the same basic observations (linear combinations of correlator outputs) can be used for the devel- opment of a multi-correlator-based real-time multipath monitoring system. The objective is to provide the user with instant information whether or not a signal is affected by mul- tipath. The proposed monitoring scheme has been implemented in the form of a Matlab- based software called RTMM (Real-Time Multipath Monitor) which has been used to verify the monitoring approach and to determine its sensitivity. 2 Abstract Major Scientific Contributions and Achievements The major scientific contributions and achievements provided through this thesis can be summarized as follows: General achievements . The majority of the multipath-related knowledge is spread in conference papers, theses and journal articles. There is almost no textbook that covers this topic in a comprehensive and exhaustive way. This thesis combines a multitude of important aspects of multipath propagation, mitigation and monitoring in one coherent piece of work. Scientific Contributions . Besides the general achievement of carrying together all impor- tant multipath-related work, the thesis contains the following significant scientific con- tributions: • Detailed analysis of occurring frequencies of multipath oscillations for different geo- metric conditions. Expected frequencies are computed and visualized for ground mul- tipath scenarios and for varying reflector locations (see section 3.1.4, “The Frequency of Multipath Variations”, p. 37 - 44). • Analysis of the suitability of the carrier smoothing approach for the purpose of multi- path mitigation and elaboration of limitations and shortcomings of this approach. It is shown that carrier smoothing does not ensure efficient multipath mitigation in any situation (see section 4.1.7, “Carrier Smoothing”, p. 66 - 72). • Development of a new and very efficient methodology to obtain typical and meaning- ful multipath errors from common multipath error envelopes. The proposed method- ology makes use of the concept of scaling the envelopes in a suitable way to account for different multipath environments. The typical (mean) multipath errors that can be derived from these scaled envelopes are of the same order as multipath errors ob- tained from complex statistical channel models (see section 5.1, ”Criteria for Multi- path Performance Assessment”, p. 81 - 97). This methodology was used to compute expected multipath errors for the future Galileo signals and the signals of the mod- ernized GPS (see sections 5.2 and 5.3, “Expected Code Multipath Errors”,” Expected Carrier Multipath Errors”, p. 97 - 104). • Development of a real time multipath monitor based on multi-correlator observations. The proposed monitoring approach allows instant detection of multipath signals and can either be used to detect multipath-affected observations and exclude them from the subsequent positioning process or to de-weigh the affected observations. By de- termining the optimum metric (i.e. a suitable combination of correlator peak observa- tions), the monitor can be made very sensitive, so that even weak multipath signals can be detected (see section 7, “Development of a Real-Time Multipath Monitor (RTMM)”, p. 122 - 195). The development of this method is the principal topic of this thesis. 3 Zusammenfassung Zusammenfassung Inhalt der Arbeit Die Qualität eines Satellitensignals wird durch eine Vielzahl potenzieller Fehlerquellen negativ beeinflusst. Neben atmosphärischen Einflüssen wie ionosphärischen oder tro- posphärischen Laufzeitfehlern tragen Mehrwegeeinflüsse einen wesentlichen Anteil zum Gesamtfehlerbudget der Satellitennavigation bei. Während eine ganze Reihe von Fehler- einflüssen (z.B. die bereits erwähnten atmosphärischen Fehler) durch geeignete Modellie- rung oder differenzielle Verfahren deutlich reduziert werden können, ist dies durch die räumliche Dekorrelation der Mehrwegeeffekte nicht möglich. Obwohl in der Vergangen- heit eine Vielzahl von Verfahren zur Mehrwegereduzierung vorgeschlagen und entwickelt wurden – darunter eine Reihe spezieller empfängerinterner Signalprozessierungsalgo- rithmen – stellen Mehrwegesignale noch immer eine wesentliche, stets zu berücksichti- gende Fehlerquelle dar. Aus diesem Grund spielten die zu erwartenden Mehrwegefehler auch eine sehr wichtige Rolle im Zuge der Definition sowie der Optimierung der Galileo- Signalstruktur und können somit als wesentliches Design-Kriterium angesehen werden. Die vorliegende Arbeit gibt einen umfassenden Einblick in verschiedene Aspekte der Mehrwegeausbreitung, -reduzierung sowie der Detektion und der Überwachung (Monito- ring) auftretender Mehrwegeeffekte, ohne dabei allerdings Anspruch auf Vollständigkeit zu erheben. Die Arbeit beschreibt zunächst die wichtigsten Aspekte der Mehrwegeaus- breitung , wobei beispielsweise unterschiedliche Arten von Reflexionen (gerichtete vs. diffuse Reflexion) oder unterschiedliche Entstehungsarten (Reflexionen am Satelliten vs. Reflexionen in der Empfängerumgebung sowie
Recommended publications
  • Path Loss, Delay Spread, and Outage Models As Functions of Antenna Height for Microcellular System Design
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 43, NO. 3, AUGUST 1994 487 Path Loss, Delay Spread, and Outage Models as Functions of Antenna Height for Microcellular System Design Martin J. Feuerstein, Kenneth L. Blackard, Member, IEEE, Theodore S. Rappaport, Senior Member, IEEE, Scott Y. Seidel, Member, IEEE, and Howard H. Xia Abstract-This paper presents results of wide-band path loss be encountered in a microcellular system using lamp-post- and delay spread measurements for five representative microcel- mounted base stations at street comers, Measurement locations Mar environments in the San Francisco Bay area at 1900 MHz. were chosen to coincide with places where microcellular Measurements were made with a wide-band channel sounder using a 100-ns probing pulse. Base station antenna heights of systems will likely be deployed in urban and suburban areas. 3.7 m, 8.5 m, and 13.3 m were tested with a mobile receiver The power delay profiles recorded at each receiver lo- antenna height of 1.7 m to emulate a typical microcellular cation were used to calculate path loss and delay spread. scenario. The results presented in this paper provide insight into Path loss and delay spread are two important methods of the satistical distributions of measured path loss by showing the characterizing channel behavior in a way that can be related validity of a double regression model with a break point at a distance that has first Fresnel zone clearance for line-of-sight to system performance measures such as bit error rate [4] topographies. The variation of delay spread as a function of and outage probability [7].
    [Show full text]
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • Analysis of Outdoor and Indoor Propagation at 15 Ghz and Millimeter Wave Frequencies in Microcellular Environment
    Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 160-167 (2018) ASTESJ www.astesj.com ISSN: 2415-6698 Special issue on Advancement in Engineering Technology Analysis of Outdoor and Indoor Propagation at 15 GHz and Millimeter Wave Frequencies in Microcellular Environment Muhammad Usman Sheikh*, Jukka Lempiainen Tampere University of Technology, Department of Electronics and Communications Engineering, Finland. A R T I C L E I N F O A B S T R A C T Article history: The main target of this article is to perform the multidimensional analysis of multipath Received: 26 November, 2017 propagation in an indoor and outdoor environment at higher frequencies i.e. 15 GHz, 28 Accepted: 07 January, 2018 GHz and 60 GHz, using “sAGA” a 3D ray tracing tool. A real world outdoor Line of Sight Online: 30 January, 2018 (LOS) microcellular environment from the Yokusuka city of Japan is considered for the analysis. The simulation data acquired from the 3D ray tracing tool includes the received Keywords: signal strength, power angular spectrum and the power delay profile. The different Multipath propagation propagation mechanisms were closely analyzed. The simulation results show the difference Microcellular of propagation in indoor and outdoor environment at higher frequencies and draw a special 3D ray tracing attention on the impact of diffuse scattering at 28 GHz and 60 GHz. In a simple outdoor System performance microcellular environment with a valid LOS link between the transmitter and a receiver, 5G the mean received signal at 28 GHz and 60 GHz was found around 5.7 dB and 13 dB Millimeter wave frequencies inferior in comparison with signal level at 15 GHz.
    [Show full text]
  • Fresnel Diffraction.Nb Optics 505 - James C
    Fresnel Diffraction.nb Optics 505 - James C. Wyant 1 13 Fresnel Diffraction In this section we will look at the Fresnel diffraction for both circular apertures and rectangular apertures. To help our physical understanding we will begin our discussion by describing Fresnel zones. 13.1 Fresnel Zones In the study of Fresnel diffraction it is convenient to divide the aperture into regions called Fresnel zones. Figure 1 shows a point source, S, illuminating an aperture a distance z1away. The observation point, P, is a distance to the right of the aperture. Let the line SP be normal to the plane containing the aperture. Then we can write S r1 Q ρ z1 r2 z2 P Fig. 1. Spherical wave illuminating aperture. !!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!! 2 2 2 2 SQP = r1 + r2 = z1 +r + z2 +r 1 2 1 1 = z1 + z2 + þþþþ r J þþþþþþþ + þþþþþþþN + 2 z1 z2 The aperture can be divided into regions bounded by concentric circles r = constant defined such that r1 + r2 differ by l 2 in going from one boundary to the next. These regions are called Fresnel zones or half-period zones. If z1and z2 are sufficiently large compared to the size of the aperture the higher order terms of the expan- sion can be neglected to yield the following result. l 1 2 1 1 n þþþþ = þþþþ rn J þþþþþþþ + þþþþþþþN 2 2 z1 z2 Fresnel Diffraction.nb Optics 505 - James C. Wyant 2 Solving for rn, the radius of the nth Fresnel zone, yields !!!!!!!!!!! !!!!!!!! !!!!!!!!!!! rn = n l Lorr1 = l L, r2 = 2 l L, , where (1) 1 L = þþþþþþþþþþþþþþþþþþþþ þþþþþ1 + þþþþþ1 z1 z2 Figure 2 shows a drawing of Fresnel zones where every other zone is made dark.
    [Show full text]
  • Line-Of-Sight-Obstruction.Pdf
    App. Note Code: 3RF-E APPLICATION NOT Line of Sight Obstruction 6/16 E Copyright © 2016 Campbell Scientific, Inc. Table of Contents PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections. 1. Introduction ................................................................ 1 2. Fresnel Zones ............................................................. 4 3. Fresnel Zone Clearance ............................................. 6 4. Effective Earth Radius ............................................... 7 5. Signal Loss Due to Diffraction .................................. 9 6. Conclusion ............................................................... 10 Figures 1-1. Wavefronts with 180° Phase Shift ....................................................... 2 1-2. Multipath Reception ............................................................................. 2 1-3. Totally Obstructed LOS ....................................................................... 3 1-4. Knife-Edge Type Obstruction .............................................................. 4 2-1. Fresnel Zones ....................................................................................... 5 3-1. Effective Ellipsoid Shape ..................................................................... 6 3-2. Path Profile Traversing Uneven Terrain with Knife-Edge Obstruction ....................................................................................... 7 5-1. Diffraction Parameter ..........................................................................
    [Show full text]
  • Noise and Multipath Characteristics of Power Line Communication Channels
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-30-2010 Noise and Multipath Characteristics of Power Line Communication Channels Hasan Basri Çelebi University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Çelebi, Hasan Basri, "Noise and Multipath Characteristics of Power Line Communication Channels" (2010). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1594 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Noise and Multipath Characteristics of Power Line Communication Channels by Hasan Basri C»elebi A thesis submitted in partial ful¯llment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: HÄuseyinArslan, Ph.D. Chris Ferekides, Ph.D. Paris Wiley, Ph.D. Date of Approval: Mar 30, 2010 Keywords: Power line communication, noise, cyclostationarity, multipath, impedance, attenuation °c Copyright 2010, Hasan Basri C»elebi DEDICATION This thesis is dedicated to my fianc¶eeand my parents for their constant love and support. ACKNOWLEDGEMENTS First, I would like to thank my advisor Dr. HÄuseyinArslan for his guidance, encour- agement, and continuous support throughout my M.Sc. studies. It has been a privilege to have the opportunity to do research as a member of Dr. Arslan's research group.
    [Show full text]
  • Influence of Terrain on Multipath Propagation of Fm Signal
    Journal of ELECTRICAL ENGINEERING, VOL. 56, NO. 5-6, 2005, 113–120 INFLUENCE OF TERRAIN ON MULTIPATH PROPAGATION OF FM SIGNAL J´an Klima ∗ — Mari´an Moˇzucha ∗∗ FM signal propagating through the troposphere interacts with the terrain as a reflecting plane. These reflected signals are not included into calculations and predictions of the field strength. The reason is simple — it is too difficult for processing, and demanding high quality data. For recent capabilities of computers and resolution level of digital terrain models this is not an irresolvable problem. In the report the authors show a practical demonstration how to include the reflected FM signals into the field strength calculations as well as the comparison with standard methods of field strength predictions. K e y w o r d s: digital terrain model (DTM), reflections, diffraction, multipath propagation 1 INTRODUCTION Here GRF represents a set of points of the terrain, z is the height in a point located in coordinates [x,y], A digital terrain model, as a discrete field of repre- KN F M is the curvature of the terrain as it is seen from sentative and positionally expressed points of the terrain the transmitter, FF M is the form, γF M is the slope, AF M and its approximation equations securing its continuity is the aspect, and δexp F M is irradiation — all from the [8] can serve, besides many other tasks, as a tool for lo- direction of the transmitter. cating, testing and calculating the reflecting planes for We will come from the known fact that the received propagating FM signals.
    [Show full text]
  • Image Grating Metrology Using a Fresnel Zone Plate Chulmin
    Image Grating Metrology Using a Fresnel Zone Plate by Chulmin Joo B.S. Aerospace Engineering, Korea Advanced Institute of Science and Technology (1998) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2003 @ Massachusetts Institute of Technology 2003. All rights resH S T OF TECHNOLOGY OCT 0 6 2003 LIBRARIES A uthor ......... .. ........... Department of Mechanical Engineering August 20, 2003 Certified by .. ...... ................ Mark L. Schattenburg Principal Research Scientist Thesis Supervisor C ertified by .... ....................... George Barbastathis Assistant Professor, Mechanical Engineering Thesis Supervisor Accepted by ....... ............. Ain A. Sonin Chairman, Department Committee on Graduate Students BARKER Image Grating Metrology Using a Fresnel Zone Plate by Chulmin Joo Submitted to the Department of Mechanical Engineering on August 20, 2003, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Scanning-beam interference lithography (SBIL) is a novel concept for nanometer- accurate grating fabrication. It can produce gratings with nanometer phase accuracy over large area by scanning a photoresist-coated substrate under phase-locked image grating. For the successful implementation of the SBIL, it is crucial to measure the spatial period, phase, and distortion of the image grating accurately, since it enables the precise stitching of subsequent scans. This thesis describes the efforts to develop an image grating metrology that is capable of measuring a wide range of image periods, regardless of changes in grat- ing orientation. In order to satisfy the conditions, the use of a Fresnel zone plate is proposed.
    [Show full text]
  • Mobile Tv: a Technical and Economic Comparison Of
    MOBILE TV: A TECHNICAL AND ECONOMIC COMPARISON OF BROADCAST, MULTICAST AND UNICAST ALTERNATIVES AND THE IMPLICATIONS FOR CABLE Michael Eagles, UPC Broadband Tim Burke, Liberty Global Inc. Abstract We provide a toolkit for the MSO to assess the technical options and the economics of each. The growth of mobile user terminals suitable for multi-media consumption, combined Mobile TV is not a "one-size-fits-all" with emerging mobile multi-media applications opportunity; the implications for cable depend on and the increasing capacities of wireless several factors including regional and regulatory technology, provide a case for understanding variations and the competitive situation. facilities-based mobile broadcast, multicast and unicast technologies as a complement to fixed In this paper, we consider the drivers for mobile line broadcast video. TV, compare the mobile TV alternatives and assess the mobile TV business model. In developing a view of mobile TV as a compliment to cable broadcast video; this paper EVALUATING THE DRIVERS FOR MOBILE considers the drivers for future facilities-based TV mobile TV technology, alternative mobile TV distribution platforms, and, compares the Technology drivers for adoption of facilities- economics for the delivery of mobile TV based mobile TV that will be considered include: services. Innovation in mobile TV user terminals - the We develop a taxonomy to compare the feature evolution and growth in mobile TV alternatives, and explore broadcast technologies user terminals, availability of chipsets and such as DVB-H, DVH-SH and MediaFLO, handsets, and compression algorithms, multicast technologies such as out-of-band and Availability of spectrum - the state of mobile in-band MBMS, and unicast or streaming broadcast standardization, licensing and platforms.
    [Show full text]
  • 900-Mhz Multipath Propagation Measurements for US Digital Cellular Radiotelephone
    I 132 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 39, NO. 2, MAY 1990 900-MHz Multipath Propagation Measurements for U. S. Digital Cellular Radiotelephone Abstract-The results of multipath power delay profile measurements delay profiles that describe the temporal extent of the of 900-MHz mobile radio channels in Washington, DC, Greenbelt, MD, multipath and the amplitude of multipath components from Oakland, CA, and San Francisco, CA, are presented. The measurements reflecting objects for various radio channels. have focused on acquiring worst case profiles for typical operating locations. The data reveal that at over 98% of the measured locations, Wide-band multipath channels can be grossly quantified by rms delay spreads are less than 12 ps. Urban areas typically have rms their mean excess delay (7) and root mean square (rms) delay delay spreads on the order of 2-3 ps and continuous multipath power out spread (a) [2]-[5], [9]-[14]. The mean excess delay is the first to excess delays of 5 ps. In hilly residential areas and in open areas within moment of the power delay profile and is defined to be a city, root mean square (rms) delay spreads are slightly larger, typically having values of 5-7 ps. In very rare instances, reflections from city ayzk7k skylines and mountains can cause rms delay spreads in excess of 20 ps. f=k. (1) The worst case profiles show resolvable diffuse multipath components at excess delays of 100 ws and amplitudes 18 dB below that of the first c 4 arriving signal. k The rms delay spread is the square root of the second central I.
    [Show full text]
  • Efficient Ray-Tracing Algorithms for Radio Wave Propagation in Urban Environments
    Efficient Ray-Tracing Algorithms for Radio Wave Propagation in Urban Environments Sajjad Hussain BSc. MSc. Supervisor: Dr. Conor Brennan School of Electronic Engineering Dublin City University This dissertation is submitted for the degree of Doctor of Philosophy September 2017 To my parents for their love and encouragement, my loving and supportive wife Akasha for always standing beside me and our beautiful son Muhammad Hashir. Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of PhD is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowl- edge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No.: 13212215 Date: 05/09/2017 Acknowledgements I would like to express special appreciation and thanks to my supervisor, Dr. Conor Brennan, for his continuous support and confidence in my work. His patience and encouragement were invaluable to me throughout the course of my PhD. He pushed me to perform to the best of my abilities. I would also like to thank my examiners, Dr. Jean-Frédéric and Dr. Prince Anandarajah for their brilliant comments and suggestions that has really improved the quality of this thesis. I would especially like to thank my colleagues including Ian Kavanagh, Vinh Pham-Xuan and Dung Trinh-Xuan for their help and support.
    [Show full text]
  • Improving Comms with 5Ghz
    Improving Comms With 5GHz Essential EG Guide ESSENTIAL GUIDES Introduction As broadcasters strive for more and RF technologies such as OFDM more unique content, live events are (Orthogonal Frequency Division growing in popularity. Consequently, Multiplexing) further improve the productions are increasing in complexity robustness of transmission. Rather than resulting in an ever-expanding number transmitting on one frequency, lower of production staff all needing access to symbol rate audio data is spread across high quality communications. Wireless multiple carriers to help protect against intercom systems are essential and multi-path interference and reflections, provide the flexibility needed to host essential for moving wireless handsets or today’s highly coordinated events. But highly dynamic environments. this ever-increasing demand is placing unprecedented pressure on the existing As 5GHz appears in the SHF range, it lower frequency solutions. displays some interesting beneficial characteristics associated with this The 5GHz spectrum offers new band, specifically directionality. This opportunities as the higher carrier allows engineers to direct narrow beams frequencies involved deliver more and steer them to make better use bandwidth for increased data of the available power. Furthermore, Tony Orme. transmission. In excess of twenty- interference with nearby transmissions five non-overlapping channels, each on the same frequency is reduced with a bandwidth of typically 20MHz, allowing frequency reuse. demonstrates the opportunity this technology has to outperform legacy The concept of constructive interference Broadcasters rely on clear and reliable systems based on lower frequencies provides signal amplification for communications now more than ever, such as DECT in the highly congested certain relative signal phases through especially when we consider how many 2.4GHz frequency spectrum.
    [Show full text]